CN202403836U - 多晶硅-金属热电偶塞贝克系数的在线测试结构 - Google Patents

多晶硅-金属热电偶塞贝克系数的在线测试结构 Download PDF

Info

Publication number
CN202403836U
CN202403836U CN2012200080905U CN201220008090U CN202403836U CN 202403836 U CN202403836 U CN 202403836U CN 2012200080905 U CN2012200080905 U CN 2012200080905U CN 201220008090 U CN201220008090 U CN 201220008090U CN 202403836 U CN202403836 U CN 202403836U
Authority
CN
China
Prior art keywords
polysilicon
testing
seebeck coefficient
resistance
thermopile
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn - After Issue
Application number
CN2012200080905U
Other languages
English (en)
Inventor
李伟华
袁风良
周再发
蒋明霞
刘海韵
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Southeast University
Original Assignee
Southeast University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Southeast University filed Critical Southeast University
Priority to CN2012200080905U priority Critical patent/CN202403836U/zh
Application granted granted Critical
Publication of CN202403836U publication Critical patent/CN202403836U/zh
Anticipated expiration legal-status Critical
Withdrawn - After Issue legal-status Critical Current

Links

Images

Landscapes

  • Measuring Temperature Or Quantity Of Heat (AREA)

Abstract

本实用新型公开了一种多晶硅-金属热电偶塞贝克系数的在线测试结构,该技术利用两个测温电阻分别测量热稳态时热电偶冷、热端的实际温差,测量热电偶堆的开路电压,并通过简单计算得到多晶硅-金属热电偶的塞贝克系数。本实用新型的测试结构的结构简单,制作方便,采用普通的MEMS表面加工工艺即可得到,避免了复杂的悬空结构和体加工工艺,测量温度为热稳定时热电偶堆的热端与冷端的实际温度值,不需要考虑辐射、对流等因素的影响,测试要求低,测试方法及测试参数值稳定,计算简单可靠。

Description

多晶硅-金属热电偶塞贝克系数的在线测试结构
技术领域
本实用新型涉及的是一种微机电系统中材料参数的在线测试技术,尤其涉及的是一种多晶硅-金属热电偶塞贝克系数的在线测试结构。
背景技术
热电偶作为一种常见的热传感器,得到广泛地应用,该传感器有效地将热转变为电压。多晶硅、金属是微机电系统器件制造的基本材料,利用多晶硅-金属所形成的热电偶进行热传感是微机电系统(MEMS)中常用的传感技术。
塞贝克(seebeck)系数是衡量热电偶传感灵敏度的重要参数,由形成热电偶的材料特性决定其大小。因为MEMS材料会受加工过程的影响而产生材料参数的变化,使得设计者需要了解具体工艺后材料参数的真实情况。对于热电偶而言,需要测量塞贝克系数的具体数值。由于参数与工艺相关的紧密性,所以,不离开加工环境并采用通用设备进行的在线测试成为参数测量的必要手段,也是对工艺重复性监控的必要措施。在线测试技术通常采用电学激励和电学测量的方法,通过电学量数值以及针对性的计算方法得到材料的物理参数。
现有的多晶硅-金属热电偶塞贝克系数在线测试结构通常采用悬空结构,以避免辐射、对流以及传导对于有效温度的影响。这些测试结构较为复杂,工艺难度较大,而且热辐射等影响并不能完全消除,结构设计重点在于降低其对测试、计算的影响。
实用新型内容
实用新型目的:本实用新型的目的在于克服现有技术的不足,提供了一种多晶硅-金属热电偶塞贝克系数的在线测试结构,利用两个测温电阻分别测量热稳态时热电偶冷、热端的实际温差,测量热电偶堆的开路电压,并通过简单计算得到多晶硅-金属热电偶的塞贝克系数。
技术方案:本实用新型是通过以下技术方案实现的,本实用新型的测试结构包括绝缘衬底、发热电阻、第一多晶硅电阻、第二多晶硅电阻、均热板和热电偶堆;发热电阻和第二多晶硅电阻分别设置在绝缘衬底上,均热板包裹在发热电阻上,第一多晶硅电阻位于均热板之上,热电偶堆的热端位于均热板上,冷端位于绝缘衬底上,发热电阻、第一多晶硅电阻、第二多晶硅电阻和热电偶堆的两端分别设有金属电极。
所述热电偶堆由多个多晶硅-金属热电偶串联而成,每个多晶硅-金属热电偶包括多晶硅条和金属条,多晶硅条和金属条相连。
所述均热板由二氧化硅制成,是具有较大热阻的绝缘材料,通过均热板将密集于发热电阻上的热场均匀到整个热电偶堆的热端区域。
有益效果:本实用新型相比现有技术具有以下优点:本实用新型测试结构的结构简单,制作方便,采用普通的MEMS表面加工工艺即可得到,避免了复杂的悬空结构和体加工工艺,测量温度为热稳定时热电偶堆的热端与冷端的实际温度值,不需要考虑辐射、对流等因素的影响,测试要求低,测试方法及测试参数值稳定,计算简单可靠。
附图说明
图1是本实用新型的结构示意图;
图2是加热电阻及其金属电极的结构示意图;
图3是均热板、加热电阻及其金属电极的结构示意图;
图4是第一多晶硅电阻、第二多晶硅电阻和热电偶堆的结构示意图。
具体实施方式
下面对本实用新型的实施例作详细说明,本实施例在以本实用新型技术方案为前提下进行实施,给出了详细的实施方式和具体的操作过程,但本实用新型的保护范围不限于下述的实施例。
如图1~4所示,本实施例的测试结构包括绝缘衬底、发热电阻101、第一多晶硅电阻103、第二多晶硅电阻105、均热板102和热电偶堆;发热电阻101和第二多晶硅电阻105分别设置在绝缘衬底上,均热板102包裹在发热电阻101上,第一多晶硅电阻103位于均热板102之上,热电偶堆的热端位于均热板102上,冷端位于绝缘衬底上,发热电阻101、第一多晶硅电阻103、第二多晶硅电阻105和热电偶堆的两端分别设有金属电极107。
本实施例中热电偶堆由四个多晶硅-金属热电偶串联而成,每个多晶硅-金属热电偶包括多晶硅条104和金属条106,多晶硅条104和金属条106相连。
均热板102由二氧化硅制成,是具有较大热阻的绝缘材料,通过均热板102将密集于发热电阻101上的热场均匀到整个热电偶堆的热端区域。
本实施例的制作方法具体如下:
(1)在N型半导体硅片上热生长100纳米厚度的二氧化硅层,通过低压化学气相沉积工艺沉积一层500纳米厚度的氮化硅层,制成绝缘衬底;
(2)采用低压化学气相沉积工艺沉积一层300纳米的多晶硅层并进行N型重掺杂使该层多晶硅成为导体,通过光刻工艺刻蚀加热电阻图形;
(3)使用低压化学气相沉积工艺沉积2000纳米厚度的磷硅玻璃(PSG),通过光刻工艺形成均热板102图形;
(4)利用低压化学气相沉积工艺淀积一层2000纳米厚度的多晶硅层,对该多晶硅层进行N型重掺杂,光刻刻蚀工艺形成第一多晶硅电阻103和第二多晶硅电阻105的图形以及热电偶堆的多晶硅条104;
(5)采用剥离工艺形成金属电极107和热电偶堆的金属条106图形。
对多晶硅-金属多晶硅-金属热电偶塞贝克系数的在线测试方法,包括以下步骤:
(1)测量室温下采用电阻表通过第一多晶硅电阻103两端的金属电极107测量其阻值R103∞,测量室温下采用电阻表通过第二多晶硅电阻105两端的金属电极107测量其阻值R105∞
(2)对发热电阻101施加直流电源使其发热,电流的大小不能超过发热电阻101的电流容量,以避免熔断电阻,同时采用电阻表检测第一多晶硅电阻103的阻值变化,当第一多晶硅的阻值稳定时,表明发热电阻101所产生的热量通过均热板102传导并被均匀化,形成稳定均匀的热场,均热板102上温度已进入稳态,记录此时第一多晶硅的阻值R103T,采用电阻表通过第二多晶硅电阻105两端的金属电极107测量此时第二多晶硅电阻105的阻值R105T,采用高阻电压表通过热电偶堆两端的金属电极107测量此时热电偶堆的开路电压VOUTn
(3)计算热电偶堆的塞贝克系数αs
α s = V OUTn n · ( ΔT 105 - ΔT 103 )
具体推导过程如下:
塞贝克系数αS的计算公式为:
α s = V OUT ΔT
式中,VOUT为热电偶的开路电压,ΔT为热电偶的热端与冷端的温度差。
为降低测试的难度,本实施例的热电偶堆由四个热电偶串联而成,因此,测量得到的开路电压需要除以串联热电偶的个数才为单个热电偶的开路电压,本实施例中n=4。
第一多晶硅电阻103的阻值与其上平均温度变化量ΔT103的关系为:
R 103 T = R 103 ∞ ( 1 + a 1 ΔT 103 + a 2 ΔT 103 2 )
式中a1、a2为多晶硅电阻的温度系数,已有研究表明可以通过测量得到多晶硅电阻的温度系数a1、a2,因此,将a1、a2作为已知量处理,作为常数代入求解公式,因为第一多晶硅电阻103和第二多晶硅电阻105的材料相同,所以第一多晶硅电阻103和第二多晶硅电阻105的温度系数相同。
将测量得到的R103∞和R103T代入电阻公式,由二次方程的求根公式得到:
ΔT 103 = - a 1 ± a 1 2 + 4 a 2 k 103 2 a 2 , 式中, k 103 = R 103 T - R 103 ∞ R 103 ∞ .
当多晶硅电阻温度系数为负值时,根号前取“-”号;当温度系数为正值时,根号前取“+”号;
同理,第二多晶硅电阻105上平均温度变化量ΔT105为:
ΔT 105 = - a 1 ± a 1 2 + 4 a 2 k 105 2 a 2 , 式中, k 105 = R 105 T - R 105 ∞ R 105 ∞ .
当多晶硅电阻为负温度系数时,根号前取“-”号;当多晶硅电阻为正温度系数时,根号前取“+”号;
多晶硅-金属热电偶堆的热端和冷端温差为:
ΔT=ΔT105-ΔT103
因此,多晶硅-金属热电偶的塞贝克系数为:
α s = V OUTn n · ( ΔT 105 - ΔT 103 ) .

Claims (3)

1.一种多晶硅-金属热电偶塞贝克系数的在线测试结构,其特征在于,包括绝缘衬底、发热电阻(101)、第一多晶硅电阻(103)、第二多晶硅电阻(105)、均热板(102)和热电偶堆;发热电阻(101)和第二多晶硅电阻(105)分别设置在绝缘衬底上,均热板(102)包裹在发热电阻(101)上,第一多晶硅电阻(103)位于均热板(102)之上,热电偶堆的热端位于均热板(102)上,冷端位于绝缘衬底上,发热电阻(101)、第一多晶硅电阻(103)、第二多晶硅电阻(105)和热电偶堆的两端分别设有金属电极(107)。
2.根据权利要求1所述的多晶硅-金属热电偶塞贝克系数的在线测试结构,其特征在于:所述热电偶堆由多个多晶硅-金属热电偶串联而成,每个多晶硅-金属热电偶包括多晶硅条(104)和金属条(106),多晶硅条(104)和金属条(106)相连。
3.根据权利要求1所述的多晶硅-金属热电偶塞贝克系数的在线测试结构,所述均热板(102)由二氧化硅制成。
CN2012200080905U 2012-01-10 2012-01-10 多晶硅-金属热电偶塞贝克系数的在线测试结构 Withdrawn - After Issue CN202403836U (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN2012200080905U CN202403836U (zh) 2012-01-10 2012-01-10 多晶硅-金属热电偶塞贝克系数的在线测试结构

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN2012200080905U CN202403836U (zh) 2012-01-10 2012-01-10 多晶硅-金属热电偶塞贝克系数的在线测试结构

Publications (1)

Publication Number Publication Date
CN202403836U true CN202403836U (zh) 2012-08-29

Family

ID=46701478

Family Applications (1)

Application Number Title Priority Date Filing Date
CN2012200080905U Withdrawn - After Issue CN202403836U (zh) 2012-01-10 2012-01-10 多晶硅-金属热电偶塞贝克系数的在线测试结构

Country Status (1)

Country Link
CN (1) CN202403836U (zh)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102608153A (zh) * 2012-01-10 2012-07-25 东南大学 多晶硅-金属热电偶塞贝克系数的在线测试结构
CN106841285A (zh) * 2017-02-17 2017-06-13 电子科技大学 一种简易新颖的薄膜热学性能测试结构
CN113406143A (zh) * 2021-07-20 2021-09-17 山东大学 一种基于悬空热电偶阵列的微米级单细胞光热评估系统
CN115420769A (zh) * 2022-08-31 2022-12-02 无锡物联网创新中心有限公司 红外热电堆传感器的塞贝克系数测试方法

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102608153A (zh) * 2012-01-10 2012-07-25 东南大学 多晶硅-金属热电偶塞贝克系数的在线测试结构
CN102608153B (zh) * 2012-01-10 2013-10-09 东南大学 多晶硅-金属热电偶塞贝克系数的在线测试结构
CN106841285A (zh) * 2017-02-17 2017-06-13 电子科技大学 一种简易新颖的薄膜热学性能测试结构
CN113406143A (zh) * 2021-07-20 2021-09-17 山东大学 一种基于悬空热电偶阵列的微米级单细胞光热评估系统
CN115420769A (zh) * 2022-08-31 2022-12-02 无锡物联网创新中心有限公司 红外热电堆传感器的塞贝克系数测试方法
CN115420769B (zh) * 2022-08-31 2024-02-02 无锡物联网创新中心有限公司 红外热电堆传感器的塞贝克系数测试方法

Similar Documents

Publication Publication Date Title
CN102608153B (zh) 多晶硅-金属热电偶塞贝克系数的在线测试结构
Iervolino et al. Temperature calibration and electrical characterization of the differential scanning calorimeter chip UFS1 for the Mettler-Toledo Flash DSC 1
US7294899B2 (en) Nanowire Filament
CN104677952A (zh) 一种高稳定性薄膜氢气传感器及其使用方法
CN104482971B (zh) 一种基于mems技术的热式流量传感器
CN101620192A (zh) 一种用于测量薄膜导热率的测试结构
CN202403836U (zh) 多晶硅-金属热电偶塞贝克系数的在线测试结构
CN109613051B (zh) 一种采用对比法测量材料Seebeck系数的装置及方法
JP2011185697A (ja) 熱電材料評価装置及び熱電特性評価方法
Velmathi et al. Design, electro-thermal simulation and geometrical optimization of double spiral shaped microheater on a suspended membrane for gas sensing
CN106197751A (zh) 一种温度场的温度测量方法及装置
CN110726490B (zh) 一种微尺度火工品发火温度测量装置
CN103713013B (zh) 测试管状材料轴向导热系数的装置
CN103424224A (zh) 微机械真空传感器
CN111157039A (zh) 一种可同时检测湿度、温度和流量的多功能气体传感器及其制备方法
US7377687B2 (en) Fluid temperature measurement
CN204439589U (zh) 一种高稳定性薄膜氢气传感器
CN202502063U (zh) 多晶硅材料残余应力在线测试结构
RU2764241C2 (ru) Устройство измерения скорости или расхода газа
CN202404055U (zh) 多晶硅断裂强度的在线测试结构
CN102636524A (zh) 电法瞬态测量材料热物性的装置及方法
CN105174200A (zh) 一种新型谐振式薄膜热电变换器的结构及制作方法
CN213337417U (zh) 一种薄膜热电材料性能参数测试装置及系统
CN107887291A (zh) 连接通孔的电迁移寿命时间测试装置及其测试方法
CN105785102B (zh) 微尺度样品的热电势测量电路、平台及方法

Legal Events

Date Code Title Description
C14 Grant of patent or utility model
GR01 Patent grant
AV01 Patent right actively abandoned

Granted publication date: 20120829

Effective date of abandoning: 20131009

RGAV Abandon patent right to avoid regrant