CN201937981U - Convenient and re-adhesive composite heat conduction and heat dissipation structure - Google Patents
Convenient and re-adhesive composite heat conduction and heat dissipation structure Download PDFInfo
- Publication number
- CN201937981U CN201937981U CN2010205470509U CN201020547050U CN201937981U CN 201937981 U CN201937981 U CN 201937981U CN 2010205470509 U CN2010205470509 U CN 2010205470509U CN 201020547050 U CN201020547050 U CN 201020547050U CN 201937981 U CN201937981 U CN 201937981U
- Authority
- CN
- China
- Prior art keywords
- ceramic powder
- heat
- heavily
- glutinous
- metal substrate
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Fee Related
Links
- 230000017525 heat dissipation Effects 0.000 title abstract description 43
- 239000002131 composite material Substances 0.000 title abstract description 30
- 239000000853 adhesive Substances 0.000 title abstract description 24
- 239000000919 ceramic Substances 0.000 claims abstract description 56
- 239000000843 powder Substances 0.000 claims abstract description 56
- 229910052751 metal Inorganic materials 0.000 claims abstract description 48
- 239000002184 metal Substances 0.000 claims abstract description 48
- 229920001187 thermosetting polymer Polymers 0.000 claims abstract description 22
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N Silicium dioxide Chemical compound O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 claims abstract description 11
- 238000010438 heat treatment Methods 0.000 claims abstract description 11
- 239000000741 silica gel Substances 0.000 claims abstract description 11
- 229910002027 silica gel Inorganic materials 0.000 claims abstract description 11
- 239000013078 crystal Substances 0.000 claims abstract description 5
- 229910052782 aluminium Inorganic materials 0.000 claims description 16
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 claims description 16
- 150000001875 compounds Chemical class 0.000 claims description 12
- RYGMFSIKBFXOCR-UHFFFAOYSA-N Copper Chemical compound [Cu] RYGMFSIKBFXOCR-UHFFFAOYSA-N 0.000 claims description 11
- 229910052802 copper Inorganic materials 0.000 claims description 9
- 239000010949 copper Substances 0.000 claims description 9
- XLOMVQKBTHCTTD-UHFFFAOYSA-N Zinc monoxide Chemical group [Zn]=O XLOMVQKBTHCTTD-UHFFFAOYSA-N 0.000 claims description 6
- 239000011347 resin Substances 0.000 claims description 5
- 229920005989 resin Polymers 0.000 claims description 5
- PNEYBMLMFCGWSK-UHFFFAOYSA-N Alumina Chemical group [O-2].[O-2].[O-2].[Al+3].[Al+3] PNEYBMLMFCGWSK-UHFFFAOYSA-N 0.000 claims description 4
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical group [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 claims description 3
- ATJFFYVFTNAWJD-UHFFFAOYSA-N Tin Chemical compound [Sn] ATJFFYVFTNAWJD-UHFFFAOYSA-N 0.000 claims description 3
- 229910002804 graphite Inorganic materials 0.000 claims description 3
- 239000010439 graphite Substances 0.000 claims description 3
- 229910010271 silicon carbide Inorganic materials 0.000 claims description 3
- 239000011787 zinc oxide Substances 0.000 claims description 3
- 239000000470 constituent Substances 0.000 claims 8
- 238000004026 adhesive bonding Methods 0.000 claims 3
- 239000004568 cement Substances 0.000 claims 3
- 229910017083 AlN Inorganic materials 0.000 claims 1
- PIGFYZPCRLYGLF-UHFFFAOYSA-N Aluminum nitride Chemical group [Al]#N PIGFYZPCRLYGLF-UHFFFAOYSA-N 0.000 claims 1
- 239000004411 aluminium Substances 0.000 claims 1
- 239000000758 substrate Substances 0.000 abstract description 36
- 239000000203 mixture Substances 0.000 abstract description 29
- 230000001070 adhesive effect Effects 0.000 abstract description 21
- 239000003292 glue Substances 0.000 abstract description 7
- 239000013049 sediment Substances 0.000 abstract 1
- 238000012360 testing method Methods 0.000 description 17
- 230000000694 effects Effects 0.000 description 11
- 239000000463 material Substances 0.000 description 10
- 239000002245 particle Substances 0.000 description 8
- 239000007787 solid Substances 0.000 description 8
- 238000005507 spraying Methods 0.000 description 7
- 239000011248 coating agent Substances 0.000 description 5
- 238000000576 coating method Methods 0.000 description 5
- 238000001816 cooling Methods 0.000 description 5
- 238000000034 method Methods 0.000 description 5
- 239000000428 dust Substances 0.000 description 4
- 229910052573 porcelain Inorganic materials 0.000 description 3
- 238000012546 transfer Methods 0.000 description 3
- 238000010521 absorption reaction Methods 0.000 description 2
- 238000009825 accumulation Methods 0.000 description 2
- 239000000084 colloidal system Substances 0.000 description 2
- 239000011889 copper foil Substances 0.000 description 2
- PMHQVHHXPFUNSP-UHFFFAOYSA-M copper(1+);methylsulfanylmethane;bromide Chemical compound Br[Cu].CSC PMHQVHHXPFUNSP-UHFFFAOYSA-M 0.000 description 2
- 238000011161 development Methods 0.000 description 2
- 238000002474 experimental method Methods 0.000 description 2
- 238000005259 measurement Methods 0.000 description 2
- 238000012986 modification Methods 0.000 description 2
- 230000004048 modification Effects 0.000 description 2
- HBMJWWWQQXIZIP-UHFFFAOYSA-N silicon carbide Chemical compound [Si+]#[C-] HBMJWWWQQXIZIP-UHFFFAOYSA-N 0.000 description 2
- 239000011358 absorbing material Substances 0.000 description 1
- 238000005524 ceramic coating Methods 0.000 description 1
- 238000006243 chemical reaction Methods 0.000 description 1
- 230000000052 comparative effect Effects 0.000 description 1
- 239000004020 conductor Substances 0.000 description 1
- 238000010276 construction Methods 0.000 description 1
- 230000007423 decrease Effects 0.000 description 1
- 230000007547 defect Effects 0.000 description 1
- 238000013461 design Methods 0.000 description 1
- 230000003670 easy-to-clean Effects 0.000 description 1
- 238000005485 electric heating Methods 0.000 description 1
- 239000011888 foil Substances 0.000 description 1
- 238000012423 maintenance Methods 0.000 description 1
- 238000004519 manufacturing process Methods 0.000 description 1
- 239000007769 metal material Substances 0.000 description 1
- TWNQGVIAIRXVLR-UHFFFAOYSA-N oxo(oxoalumanyloxy)alumane Chemical compound O=[Al]O[Al]=O TWNQGVIAIRXVLR-UHFFFAOYSA-N 0.000 description 1
- 238000007719 peel strength test Methods 0.000 description 1
- 230000005855 radiation Effects 0.000 description 1
Images
Landscapes
- Laminated Bodies (AREA)
Abstract
Description
技术领域technical field
本实用新型涉及一种方便重黏妥的复合导散热结构。The utility model relates to a composite conduction and heat dissipation structure which is convenient and heavy-glued.
背景技术Background technique
物理运动或化学反应都会发热,有作功就有热量产出是必然的,但对电子设备而言,怎样处理热量更为重要,因为比起其它多种工业零组件中的发热工件,电子元件的发热工件更容易受热烧坏,使得电器相关产销业者,莫不注重电器排散热问题。Physical movement or chemical reaction will generate heat, and it is inevitable that there will be heat output when work is done, but for electronic equipment, how to deal with heat is more important, because compared with other heat-generating workpieces in various industrial components, electronic components The heat-generating workpieces are more likely to be burned out by heat, so that the electrical appliance-related production and sales companies pay attention to the heat dissipation of electrical appliances.
而好些如电毯、电炉等电器内的电热元件,把作功发热当成本身必要的效用,也有些如电灯泡、高光效LED、计算机CPU等电路元件,不以发热作为使用上必需的效用,而是以其它诸如照明、运算等功能作为本身效用所在,但是有作功就会有热量产出,不论是否以作功发热当成本身必要的效用,都会生热,只是对热的耐受度有所不同,产生的热量一多,使工作周围温度超过维持正常工作所需的温度,就反而会烧损该作功元件本身,降低使用寿命,因此,在各种电器对其内部电路易积聚热处,加装帮助传散热的散热装置是必要的。And some electric heating elements in electrical appliances such as electric blankets and electric stoves use heat as a necessary function, and some circuit components such as light bulbs, high-efficiency LEDs, and computer CPUs do not use heat as a necessary function. It uses other functions such as lighting and computing as its own utility, but when it does work, it will produce heat. Regardless of whether it takes work and heat as its own necessary utility, it will generate heat, but the tolerance to heat is different. Different, if the heat generated is too much, the temperature around the working area exceeds the temperature required to maintain normal work, which will burn the working element itself and reduce the service life. , it is necessary to install a cooling device to help conduct heat dissipation.
众所周知,对热的传递有传导、对流、辐射三种方式,又以传导最容易控制实施,因此目前多以铜或铝材,制成多散热歧蕊的散热块贴叠电路聚热部位,以其易吸热材质及增多的表面积加强对电路聚热的传导散热效果,然而,如计算机CPU、强光效LED等电子元件的功率效能越被提高,产生更大量热度,使现有以铜或铝材,制成多散热鳍蕊的散热块已不足以应付更快速散热的需求。As we all know, there are three ways to transfer heat: conduction, convection, and radiation, and conduction is the easiest to control and implement. Therefore, at present, copper or aluminum materials are mostly used to make heat sinks with multiple heat sinks. Its heat-absorbing material and increased surface area enhance the conduction and heat dissipation effect of heat accumulation in the circuit. However, the power efficiency of electronic components such as computer CPUs and high-efficiency LEDs is improved, and a greater amount of heat is generated. Aluminum, made of heat dissipation blocks with multiple heat dissipation fins is not enough to meet the needs of faster heat dissipation.
现有光以铜或铝材制成的散热块,其散热能力会局限在单一铜或铝材本身的传、散热能力,就以散热比铝更强的铜材来说,铜吸热快、多,但散热仍不理想,仍有其它复合材料能吸热快、多,且散热比铜表现更佳,因此本创作人研究发现陶瓷即有吸散热都良好的特性,将铜或其它金属附着陶瓷,使陶瓷与空气接触的表面颗粒化,散热就能更快。Existing heat sinks made of copper or aluminum only have heat dissipation capabilities limited to the heat transfer and heat dissipation capabilities of a single copper or aluminum material. For copper materials that dissipate heat better than aluminum, copper absorbs heat quickly, There are many, but the heat dissipation is still not ideal. There are still other composite materials that can absorb heat quickly and more, and the heat dissipation performance is better than copper. Therefore, the author found that ceramics have the characteristics of good heat absorption and heat dissipation. Ceramics, the surface of the ceramics in contact with the air is granulated, and the heat dissipation can be faster.
有鉴于发展出对电路传散热更快的结构物需求,本创作人乃积极研究改进之道,经过一番艰辛的创作过程,终于研制出本实用新型。In view of the development of the need for structures with faster heat transfer and heat dissipation, the creator actively researched ways to improve it, and finally developed the utility model after some arduous creation process.
实用新型内容Utility model content
本实用新型所要解决的主要技术问题在于,克服现有技术存在的上述缺陷,而提供一种方便重黏妥的复合导散热结构,本实用新型因其硅胶不凝固,能轻易无伤地撕离金属基材及发热工件,完全没有胶渣残留,再清洁重贴简便,并且不粘手,使贴粘至发热工件更妥当,能迅速导散热,使黏附极为稳固,不会因灰尘而干扰贴附,或因灰尘产生大量气室(大气泡)。The main technical problem to be solved by this utility model is to overcome the above-mentioned defects existing in the prior art, and provide a convenient and heavy-bonded composite conduction and heat dissipation structure. There is no glue residue on metal substrates and heating parts, and it is easy to clean and reapply, and it is not sticky, so that it is more appropriate to stick to the heating parts. It can quickly conduct heat and make the adhesion extremely stable, and will not interfere with the paste due to dust. Attached, or a large number of air cells (big bubbles) are generated due to dust.
本实用新型解决其技术问题所采用的技术方案是:The technical scheme that the utility model solves its technical problem adopts is:
一种方便重黏妥的复合导散热结构,其特征在于,是由一层直径不超过30μm的陶瓷粉末组成物;一热传导率(λ)≥50W/m□K且厚度不超过2mm的金属基材、一层填充于陶瓷粉末组成物与金属基材之间的热固性胶,一层作为黏合金属基材与发热工件,具有适当自黏度的硅胶所构成,由该层热固性胶的内聚力包覆该层陶瓷粉末组成物的晶体间隙,使陶瓷粉末相互黏接,并与该金属基材黏接,且减少热固性胶黏裹陶瓷粉末的范围及厚度,让远离金属基材的部分陶瓷粉末仍直接暴露于空气中。A convenient and heavy-bonded composite conduction and heat dissipation structure is characterized in that it is composed of a layer of ceramic powder with a diameter of no more than 30 μm; a metal base with a thermal conductivity (λ) ≥ 50W/m K and a thickness of no more than 2mm material, a layer of thermosetting adhesive filled between the ceramic powder composition and the metal substrate, and a layer of silica gel with an appropriate self-viscosity for bonding the metal substrate and the heating workpiece, which is covered by the cohesive force of the layer of thermosetting adhesive The gap between the crystals of the layered ceramic powder composition allows the ceramic powders to bond to each other and to the metal substrate, and reduces the range and thickness of the thermosetting adhesive to wrap the ceramic powder, so that the part of the ceramic powder far away from the metal substrate is still directly exposed in the air.
前述的方便重黏妥的复合导散热结构,其中硅胶的自黏度为1~300g/英吋。In the above-mentioned convenient and heavy-bonding composite heat conduction and heat dissipation structure, the self-viscosity of the silica gel is 1-300 g/inch.
前述的方便重黏妥的复合导散热结构,其中陶瓷粉末组成物为碳化硅。In the aforementioned convenient and heavy-bonded composite conduction and heat dissipation structure, the ceramic powder composition is silicon carbide.
前述的方便重黏妥的复合导散热结构,其中陶瓷粉末组成物为氮化铝。In the aforementioned convenient and heavy-bonded composite conduction and heat dissipation structure, the ceramic powder composition is aluminum nitride.
前述的方便重黏妥的复合导散热结构,其中陶瓷粉末组成物为氧化锌。In the aforementioned convenient and heavy-bonded composite conduction and heat dissipation structure, the composition of the ceramic powder is zinc oxide.
前述的方便重黏妥的复合导散热结构,其中陶瓷粉末组成物为氧化铝。In the aforementioned convenient and heavy-bonded composite conduction and heat dissipation structure, the composition of the ceramic powder is alumina.
前述的方便重黏妥的复合导散热结构,其中陶瓷粉末组成物为石墨。The aforementioned convenient and heavy-bonded composite conduction and heat dissipation structure, wherein the ceramic powder composition is graphite.
前述的方便重黏妥的复合导散热结构,其中金属基材为铜。In the above-mentioned convenient and heavy-bonded composite conduction and heat dissipation structure, the metal base material is copper.
前述的方便重黏妥的复合导散热结构,其中金属基材为铝。In the aforementioned convenient and heavy-bonded composite conduction and heat dissipation structure, the metal base material is aluminum.
前述的方便重黏妥的复合导散热结构,其中金属基材为锡箔。The aforementioned convenient and heavy-bonded composite heat conduction and heat dissipation structure, wherein the metal substrate is tin foil.
前述的方便重黏妥的复合导散热结构,其中热固性胶为树酯。In the aforementioned convenient and heavy-glued composite heat conduction and heat dissipation structure, the thermosetting glue is resin.
本实用新型方便重黏妥的复合导散热结构,其是以直径不超过30um的一层陶瓷粉末组成物、一热传导率(λ)≥50W/m·K且厚度不超过2mm的金属基材,及填充于陶瓷粉末组成物与金属基材之间的一层热固性胶,及一层作为黏合金属基材与发热工件的背胶所构成,借由该热固性胶的内聚力包覆该陶瓷粉末组成物的晶体间隙,使陶瓷粉末相互黏接,并与金属基材黏接,且减少热固性胶黏裹陶瓷粉末的范围及厚度,让远离金属基材的部份陶瓷粉末仍直接暴露于空气中,得以金属基材面搭接于电路易聚热部位(发热工件的聚热处),就能迅速导散热。The utility model is a convenient and heavy-bonded composite conduction and heat dissipation structure, which is composed of a layer of ceramic powder with a diameter of no more than 30um, a metal base material with a thermal conductivity (λ) ≥ 50W/m·K and a thickness of no more than 2mm. It is composed of a layer of thermosetting adhesive filled between the ceramic powder composition and the metal substrate, and a layer of adhesive used to bond the metal substrate and the heating workpiece. The ceramic powder composition is covered by the cohesive force of the thermosetting adhesive The gap between the crystals makes the ceramic powder bond to each other and the metal substrate, and reduces the range and thickness of the thermosetting adhesive to wrap the ceramic powder, so that the part of the ceramic powder far away from the metal substrate is still directly exposed to the air. The surface of the metal substrate is lapped on the heat-gathering part of the circuit (the heat-gathering place of the heat-generating workpiece), so that heat can be quickly dissipated.
而本创作人自己又发现,若以常用的树脂类胶体做为本实用新型的背胶,会在例如电路检修要暂时移除,须撕开黏合面重黏等情形,因树脂类胶体凝固牢结到金属基材与发热工件,而稍稍撕开就会扯破薄薄的金属基材,不论有没有再经剪修整形重贴,都使重黏后的散发热效果不彰,另且,不论是发热工件或金属基材上的撕开表面,也会留下胶渣,必须加以清除,使重新粘贴的贴合面才能平整,不影响散热功效,对应此,本创作人更研究出以具有适当自黏度的硅胶为上述结构的背胶,由于具有适当自黏度的硅胶会因本身静电力造成压力差,使铜箔与发热工件间产生附壁现象,自然贴附,慢慢自行排出贴粘面间的气泡,使黏附极为稳固。And the author himself found that if the commonly used resin colloid is used as the adhesive of the present utility model, it will be temporarily removed for circuit maintenance, and the adhesive surface must be torn off and re-adhesive, etc., because the resin colloid is solidified It is bonded to the metal substrate and the heating workpiece, and if it is torn apart a little, it will tear the thin metal substrate. Regardless of whether it has been trimmed and re-attached, the heat dissipation effect after re-bonding will not be obvious. In addition, Regardless of whether it is a heat-generating workpiece or the torn surface on the metal substrate, there will be glue residue left, which must be removed so that the re-pasted surface can be smooth and the heat dissipation effect will not be affected. Correspondingly, the creator has developed the following The silica gel with proper self-viscosity is the back adhesive of the above structure. Since the silica gel with proper self-viscosity will cause a pressure difference due to its own electrostatic force, there will be a phenomenon of wall adhesion between the copper foil and the heating workpiece. The air bubbles between the adhesive surfaces make the adhesion extremely stable.
再者,本实用新型方便重黏妥的复合导散热结构,多使用于电子产品,且电子产品多于无尘室中安装,可使此种硅胶十分紧密附着于发热工件产品上,不会因灰尘而干扰贴附,或因灰尘产生大量气室(大气泡)。Furthermore, the convenient and heavy-glued composite conduction and heat-dissipating structure of the utility model is mostly used in electronic products, and electronic products are more installed in clean rooms. Dust interferes with attachment, or a large number of air cells (big bubbles) are generated due to dust.
另外,本实用新型方便重黏妥的复合导散热结构,因其硅胶不凝固,能轻易无伤地撕离金属基材及发热工件,完全没有胶渣残留,再清洁重贴简便,并且不粘手,使贴粘至发热工件更妥当。In addition, the utility model has a convenient and re-adhesive composite heat-conducting and heat-dissipating structure. Because the silica gel does not solidify, it can be easily torn off the metal substrate and the heating workpiece without any damage, and there is no glue residue. hand, making it more secure to stick to the heat-generating workpiece.
附图说明Description of drawings
下面结合附图和实施例对本实用新型进一步说明。Below in conjunction with accompanying drawing and embodiment the utility model is further described.
图1是本实用新型方便重黏妥的复合导散热结构的结构示意图。Fig. 1 is a schematic structural view of the convenient and heavy-glued composite conduction and heat dissipation structure of the present invention.
图2是有无涂布本实用新型方便重黏妥的复合导散热结构的小灯测 试位置剖示图。Fig. 2 is the sectional view of the test position of the small lamp with or without coating the utility model's convenient and heavy-bonded composite conduction and heat dissipation structure.
图3是有无涂布本实用新型方便重黏妥的复合导散热结构的小灯涂布效果测试比较曲线图。Fig. 3 is a comparative graph of the coating effect test of the small lamp with or without coating the convenient and heavy-glued composite conduction and heat dissipation structure of the utility model.
图4的测试本实用新型方便重黏妥的复合导散热结构瓷粉末组成物粒大小与热传导影响曲线图。Figure 4 is a graph showing the effect of particle size and heat conduction on the convenient and heavy-bonded composite heat-conducting and heat-dissipating structural porcelain powder of the utility model.
图5是测试本实用新型方便重黏妥的复合导散热结构的固含量对热传导及强度影响曲线图。Fig. 5 is a graph showing the influence of solid content on heat conduction and strength of the convenient and heavy-bonded composite heat conduction and heat dissipation structure of the present invention.
图中标号说明:Explanation of symbols in the figure:
1....金属基材 10,11,12....陶瓷粉末组成物1....
2....铝灯罩壳 20....金属基材2....
3,4,5....测温线感测头 30....热固性胶3, 4, 5....Temperature measuring
6....发热工件 40....硅胶6....
具体实施方式Detailed ways
图1为本实用新型方便重黏妥的复合导散热结构的结构示意图,由图所示可知,本实用新型此种方便重黏妥的复合导散热结构,由直径不超过30um的一层陶瓷粉末组成物10,11,12、一热传导率(λ)≥50W/m·K且厚度不超过2mm的金属基材20,及填充于陶瓷粉末组成物10,11,12与金属基材20之间的一层热固性胶30,及一层作为黏合金属基材与发热工件,具有适当自黏度的硅胶40所构成,借由该层热固性胶30的内聚力包覆该层陶瓷粉末组成物10,11,12的晶体间隙,使陶瓷粉末相互接,并与该金属基材20黏接,且减少热固性胶黏30裹陶瓷粉末的范围及厚度,让远离金属基材20的部分陶瓷粉末仍直接暴露于空气中,经试验该层陶瓷粉末组成物10,11,12,可为碳化硅、氮化铝、氧化锌、氧化铝或石墨,而该金属基材20则可为铜箔、铝板、锡箔,甚或如灯壳的铝质反光罩杯等一般金属材料,至于该层热固性胶30即为树酯,-61而硅胶40自黏度约在1~300g/英吋之间,也就是peeling强度(撕裂强度)在1~300g/英吋之间。Figure 1 is a schematic structural view of the convenient and heavy-bonded composite heat conduction structure of the present invention. As can be seen from the figure, the convenient and heavy-bonded composite heat conduction structure of the present invention consists of a layer of ceramic powder with a diameter of no more than
将此结构进行测试,方法步骤如下:To test this structure, the method steps are as follows:
1.先将陶瓷粉末组成物10,11,12与热固性胶30充分混合后,涂布于金属基材20表面,先经量测温设备量测,确认导热、散热效果。1. The
2.配合产品对导热及强度要求标准,调整粉末颗粒、固含量(陶瓷粉末组成物10,11,12占陶瓷粉末组成物10,11,12混合热固性胶30总体的比例)对应各强度要求进行模拟施工,逐一检测纪录。2. In accordance with the product requirements for thermal conductivity and strength, adjust the powder particles and solid content (the proportion of
3.分析比较找出最佳条件。3. Analyze and compare to find out the best conditions.
以美国材料测试标准(ASTM)的热传导实验(ASTM D5470)为测试标准进行实验,将粒度d50=1~100μm陶瓷粉末组成物10,11,12涂布铝板的金属基材20,由此在环境温度28℃开启电路作功经过20、40、80、100分钟,各以红外线摄影机侦测拍摄测温一次的实验为例,整理出如下比较表:The heat conduction test (ASTM D5470) of the American Standards for Testing Materials (ASTM) is used as the test standard to carry out the experiment, and the
此即对应前述第1.步骤的实测得出:This is corresponding to the actual measurement of the first step above:
1-1.经红外线摄影机侦测拍摄,喷涂材料能有效将热均匀传布到整个金属基材20,经涂布陶瓷形成本实用新型方便重黏妥的复合导散热结构的金属基材20,其与热温成正比的摄得亮度,不论正面或反面均较现有未涂布陶瓷的金属基材1,光热度都更柔弱且更分散均匀。1-1. After being detected and photographed by an infrared camera, the sprayed material can effectively spread heat evenly to the
1-2.在热源与室温相差18.4℃(46.4℃-28℃,以上表100分钟后的相对字段数据),稳态后无喷涂与有喷涂者灯源有3.5℃(46.4℃-42.9℃)差距;降温效率约19%(3.5℃/18.4℃)。1-2. When the difference between the heat source and the room temperature is 18.4°C (46.4°C-28°C, the relative field data in the above table after 100 minutes), the lamp source without spraying and spraying after steady state is 3.5°C (46.4°C-42.9°C) The gap; the cooling efficiency is about 19% (3.5°C/18.4°C).
1-3.正背面热源与室温温差12.6℃(40.6℃-28℃,以上表100分钟后的相对字段数据的数据),稳态后无喷涂与有喷涂者有3.9℃(40.6℃-28℃)差距;有喷涂的金属基材1壳降温效率约30.9%(3.9℃/12.6℃)。1-3. The temperature difference between the front and back heat sources and room temperature is 12.6°C (40.6°C-28°C, the data in the relative field data after 100 minutes in the above table), and the difference between those without spraying and those with spraying after steady state is 3.9°C (40.6°C-28°C ) gap; the cooling efficiency of the sprayed metal substrate 1 shell is about 30.9% (3.9°C/12.6°C).
得证本实用新型此种方便重黏妥的复合导散热结构确实能更快速更有效地降低电路温度,再进一步测试小灯涂内侧有或无喷涂出本实用新型的方便重黏妥的复合导散热结构的散热效果,如图2的小灯测试位置剖视图所示,分别于内侧小灯有喷涂及无喷涂前述陶瓷粉末组成物10,11,12的铝灯罩壳2外侧适当位置贴设测温线感测头3、内侧适当位置贴设测温线感测头4,以及在灯源旁适当位置贴设至少一只测温线感测头5,测试过程保持铝灯罩壳2内侧有5~7℃温差,测试得出的结果,一如图3的小灯涂布效果测试比较曲线图,随着点亮时间拉持长,灯源产生的温度线L1,L2不断起伏,而整段点亮过程中,铝灯罩壳2内侧有喷涂产生的温度线L3都比铝灯罩壳2内侧未经喷涂处理产生的温度线L4更低温,也就是降温效果更好,平均算下来降温效率在18.5%~25.9%左右,再次证明本实用新型此种积层式复合导散热构造快速散热的优越性。It has been proved that the convenient and heavy-glued composite conduction and heat-dissipating structure of the utility model can indeed reduce the temperature of the circuit more quickly and effectively, and then further test whether the inner side of the small lamp is sprayed or not, and the convenient and heavy-glued composite conductor of the utility model is obtained. The heat dissipation effect of the heat dissipation structure, as shown in the cross-sectional view of the test position of the small lamp in Figure 2, is attached to the appropriate position outside the
更深入到前述第2步骤进行实测操作,以美国材料测试标准(ASTM)进行硬度测试(ASTM D3363)、百格测试(ASTM D3002 D3359)、剥离强度实验(ASTM D413),与热传导实验(ASTM D5470)相交叉分析,同时测试前述陶瓷粉末组成物10,11,12不同颗粒大小造成散热效果的差异,以及控制前述陶瓷粉末组成物10,11,12于一定固定粒径下,变动固含量(前述陶瓷粉末组成物10,11,12占陶瓷粉末组成物10,11,12混合热固性胶30总体的比例),产生能承受剥离强度的热传导表现,逐一检测纪录,得出图4的瓷粉末组成物粒大小与热传导影响曲线图,跟图5的固含量对热传导及强度影响曲线图。Go deeper into the aforementioned second step for actual measurement operations, and use the American Standards for Testing Materials (ASTM) to conduct hardness tests (ASTM D3363), hundred-grid tests (ASTM D3002 D3359), peel strength tests (ASTM D413), and heat conduction tests (ASTM D5470 ) phase cross analysis, while testing the difference in heat dissipation effect caused by different particle sizes of the aforementioned
观察这些统计曲线图,就可进入前述第3步骤找出最佳条件,从图5可以找出固含量与热传导及强度的关连及最佳条件如下:Observing these statistical curves, you can enter the third step to find the optimal conditions. From Figure 5, you can find out the relationship between solid content, heat conduction and strength, and the optimal conditions are as follows:
3-1.固含量增加热传导有效提升,但强度也随的下降。3-1. The heat conduction is effectively improved with the increase of solid content, but the strength also decreases accordingly.
3-2.固含量超过67%以上热导传可达50W/m.K,固含量超过92%强度会下降到1Kg/cm以下,故理想值应在70~90W%之间。3-2. If the solid content exceeds 67%, the thermal conductivity can reach 50W/m.K, and if the solid content exceeds 92%, the strength will drop below 1Kg/cm, so the ideal value should be between 70-90W%.
而从图5可以找出瓷粉末组成物粒大小与热传导的关连及最佳条件如下:From Figure 5, it can be found that the relationship between the particle size of the porcelain powder composition and the heat conduction and the optimal conditions are as follows:
3-3.在前述瓷粉末组成物10,11,12粒径10μm以上可得到理想导热 值,30μm以后已经非常稳定。3-3. The ideal thermal conductivity value can be obtained when the particle size of the aforementioned
另外考虑金属基材20使用铜、铝金属的导热效果,已获实证,普世认可,而吸热量与强度均与厚度、面积、体积呈正比,唯配合产品挠性与成本需要调整,箔、片材理想厚度在1mm以内。In addition, considering the heat conduction effect of copper and aluminum as the
综上所述,本实用新型此种方便重黏妥的复合导散热结构,确实能对发热工件易聚热部位,更迅速导散热功效。本实用新型在结构设计、使用实用性及成本效益上,完全符合产业发展所需,且所揭示的结构亦是具有前所未有的创新构造,具有新颖性、创造性、实用性,符合有关新型专利要件的规定,故依法提起申请。To sum up, the convenient and heavy-glued compound conduction and heat dissipation structure of the present invention can indeed conduct and dissipate heat more quickly to the parts of the heat-generating workpiece that are prone to heat accumulation. The utility model fully meets the needs of industrial development in terms of structural design, practicability and cost-effectiveness, and the disclosed structure also has an unprecedented innovative structure, novelty, creativity and practicability, and meets the requirements of the relevant new patent requirements stipulations, so the application is filed in accordance with the law.
以上所述,仅是本实用新型的较佳实施例而已,并非对本实用新型作任何形式上的限制,凡是依据本实用新型的技术实质对以上实施例所作的任何简单修改、等同变化与修饰,均仍属于本实用新型技术方案的范围内。The above is only a preferred embodiment of the utility model, and does not limit the utility model in any form. Any simple modification, equivalent change and modification made to the above embodiments according to the technical essence of the utility model, All still belong to within the scope of the technical solution of the utility model.
Claims (11)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN2010205470509U CN201937981U (en) | 2010-09-29 | 2010-09-29 | Convenient and re-adhesive composite heat conduction and heat dissipation structure |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN2010205470509U CN201937981U (en) | 2010-09-29 | 2010-09-29 | Convenient and re-adhesive composite heat conduction and heat dissipation structure |
Publications (1)
Publication Number | Publication Date |
---|---|
CN201937981U true CN201937981U (en) | 2011-08-17 |
Family
ID=44449482
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN2010205470509U Expired - Fee Related CN201937981U (en) | 2010-09-29 | 2010-09-29 | Convenient and re-adhesive composite heat conduction and heat dissipation structure |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN201937981U (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN103373017A (en) * | 2012-04-25 | 2013-10-30 | 華廣光電股份有限公司 | Flexible Ceramic Substrate |
-
2010
- 2010-09-29 CN CN2010205470509U patent/CN201937981U/en not_active Expired - Fee Related
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN103373017A (en) * | 2012-04-25 | 2013-10-30 | 華廣光電股份有限公司 | Flexible Ceramic Substrate |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN206250180U (en) | Thermal interfacial material component and equipment | |
JP3173569U (en) | Thin metal substrate with high thermal conductivity | |
CN102250588B (en) | High-performance phase-change heat conduction material and preparation method thereof | |
WO2015072428A1 (en) | Heat sink | |
TWI411691B (en) | Metal thermal interface material and heat dissipation device | |
JP5538739B2 (en) | Thermally conductive composite sheet and method for producing the same | |
WO2002084735A1 (en) | Radiating structural body of electronic part and radiating sheet used for the radiating structural body | |
JP2010010599A (en) | Heat diffusion sheet | |
CN205194687U (en) | A thermally conductive silicone sheet for mobile phones | |
WO2015160528A1 (en) | Thermal interface material assemblies and related methods | |
JP5421451B2 (en) | Thermal diffusion sheet | |
US20130280519A1 (en) | Flexible ceramic substrate | |
CN206558540U (en) | A flip-chip flexible COB light source with good heat dissipation | |
JP5261263B2 (en) | Brazing material and joining method of brazing material | |
CN201937981U (en) | Convenient and re-adhesive composite heat conduction and heat dissipation structure | |
TWM540741U (en) | Multi-layer composite heat conduction structure | |
CN203590662U (en) | Electronic component cooling device | |
TWM420832U (en) | Rigid-flex double sided thermal conductivity substrate | |
TWI463710B (en) | Mrthod for bonding heat-conducting substraye and metal layer | |
CN103373017A (en) | Flexible Ceramic Substrate | |
CN206451697U (en) | Multilayer Composite Heat Conduction Structure | |
CN106189913B (en) | Heat-conducting glue band and heat-conducting double-sided adhesive tape | |
CN103619149A (en) | Thermal radiation heat dissipation film with electromagnetic shielding function and manufacturing method thereof | |
JP5495429B2 (en) | Heat dissipation composite sheet | |
CN102223781A (en) | Laminated composite heat conducting and dissipating structure |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
C14 | Grant of patent or utility model | ||
GR01 | Patent grant | ||
C17 | Cessation of patent right | ||
CF01 | Termination of patent right due to non-payment of annual fee |
Granted publication date: 20110817 Termination date: 20130929 |