CN1973573B - 声学装置及制作声学装置的方法 - Google Patents

声学装置及制作声学装置的方法 Download PDF

Info

Publication number
CN1973573B
CN1973573B CN2005800114302A CN200580011430A CN1973573B CN 1973573 B CN1973573 B CN 1973573B CN 2005800114302 A CN2005800114302 A CN 2005800114302A CN 200580011430 A CN200580011430 A CN 200580011430A CN 1973573 B CN1973573 B CN 1973573B
Authority
CN
China
Prior art keywords
diaphragm
mode
quality
transducer
acoustic apparatus
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN2005800114302A
Other languages
English (en)
Other versions
CN1973573A (zh
Inventor
格雷厄姆·班克
尼尔·哈里斯
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NVF Tech Ltd
Original Assignee
New Transducers Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from GB0408499A external-priority patent/GB0408499D0/en
Priority claimed from GB0408519A external-priority patent/GB0408519D0/en
Priority claimed from GB0415631A external-priority patent/GB0415631D0/en
Priority claimed from GB0425921A external-priority patent/GB0425921D0/en
Priority claimed from GB0425923A external-priority patent/GB0425923D0/en
Priority claimed from GB0500161A external-priority patent/GB0500161D0/en
Application filed by New Transducers Ltd filed Critical New Transducers Ltd
Priority claimed from PCT/GB2005/001352 external-priority patent/WO2005101899A2/en
Publication of CN1973573A publication Critical patent/CN1973573A/zh
Publication of CN1973573B publication Critical patent/CN1973573B/zh
Application granted granted Critical
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Audible-Bandwidth Dynamoelectric Transducers Other Than Pickups (AREA)

Abstract

一种声学装置,其包括:膜片(10),其具有面积且具有操作频率范围,且膜片(10)可致使其在操作频率范围中具有共振模态;机电换能器,其具有耦合至膜片(10)且经适配可和膜片交换能量的驱动零件;及至少一机械阻抗构件(20、22、24),其耦合至膜片或和膜片整合;换能器的驱动零件(26)及至少一机械阻抗构件(20、22、24)的定位与质量可致使膜片(10)的面积上的净横向模态速度趋向于零。一种制作声学装置的方法,该声学装置含有具有面积且具有包括活塞至模态转变的操作频率范围的膜片,该方法包括:选择膜片参数使膜片在操作频率范围中具有共振模态;将机电换能器的驱动零件耦合至膜片,以和膜片交换能量;在膜片中加入至少一机械阻抗构件;及选择换能器的驱动零件的定位与质量及至少一机械阻抗构件的定位与参数,致使面积上的净横向模态速度趋向于零。

Description

声学装置及制作声学装置的方法
技术领域
本发明有关声学装置,如扬声器与话筒,尤其有关弯曲波装置。
背景技术
先从原理来看,施加于活塞状扬声器膜片的点力将提供自然平坦的频率响应,但提供落在较高频率上的功率响应。这是由于辐射耦合随着辐射的波长变得可比于膜片的长度l或圆形膜片的一半直径或半径而变化,即,其中ka大于2或kl大于4(k为波数频率)。然而,就理论的、自由安装的弯曲波平板扬声器而言,纯力(即,无质量的点驱动)将随着频率而提供平坦声压与平坦声功率。
然而,实际的弯曲波平板支撑于悬架上,且具有包括质量的复合驱动点阻抗的激励器。和理论的预期相比,此类物体将显现不均匀的频率响应。这是由于目前所出现的各种质量和顺性无法平衡平板的模态行为。只要模态密度够高,就可设计系统致使模态以有利的方式在频率上分布,以获得更均匀的声学响应。但此分布型模态在模态稀疏的较低弯曲频率处可能没那么有效,因而通常不足以构成理想的频率响应。
平坦压力响应与功率响应的客观性降至最低弯曲频率,因此弥补到活塞状或整体范围的间隙需要重建模态平衡的理论条件。如果可以实现这点,则经调整的模态平衡恢复实际平板的声音作用至所需理论条件。这将提供新种类的扬声器辐射体,且其中辐射响应在功率或频率上和驱动点质量无关。
采用实际膜片与驱动方法的换能器与扬声器的设计师的目标是获得基本上和频率无关的操作。一旦实现首要目的,设计师便可构造其他所需特性。
发明内容
根据本发明,提供一种声学装置,其包括:膜片,其具有面积且具有操作频率范围,且膜片使其在操作频率范围中具有共振模态;机电换能器,其具有耦合至膜片且经适配可和膜片交换能量的驱动零件;及至少一机械阻抗构件,其耦合至膜片或和膜片整合;换能器的驱动零件及至少一机械阻抗构件的定位与质量可致使面积上的净横向模态速度趋向于零。
根据本发明的第二方面,提供一种制作声学装置的方法,该声学装置含有具有面积且具有操作频率范围的膜片,该方法包括:选择膜片参数使膜片在操作频率范围中具有共振模态;将机电换能器的驱动零件耦合至膜片,以和膜片交换能量;在膜片中加入至少一机械阻抗构件;及选择换能器的驱动零件的定位与质量及所述至少一机械阻抗构件的定位与参数,致使面积上的净横向模态速度趋向于零。
至少一机械阻抗构件的机械阻抗Z(ω)定义如下:
Z(ω)=j·ω·M(ω)+k(ω)/(j·ω)+R(ω)
其中ω是以每秒弧度为单位的频率,
M(ω)是元件的质量,
k(ω)是元件的刚度(stiffness),及
R(ω)是元件的阻尼。
至少一机械阻抗构件可以是耦合至膜片的离散的元件,如质量或悬架。或者,膜片可具有随着面积有所不同的质量、刚度及/或阻尼,以在选定的位置提供至少一机械阻抗构件。依此方式,将机械阻抗构件和膜片整合。例如,可通过如模制(moulding)过程形成变化厚度的膜片,包括从膜片的一面或两面上的平面出的脊状物或凸出物。脊状物或凸出物可当作机械阻抗构件。
通过计算不受相位相消影响的rms(均方根)横位移,可量化面积上的净横向模态速度。例如,对于圆形膜片,rms横位移可计算如下:
Ψ rms = 1 R ∫ 0 R r Ψ 2 dr
其中R是膜片的半径,及
ψ(r)是模态形状。
特定声学装置的优点的测量可计算如下
相对平均位移Ψrel=Ψmeanrms
其中,对于圆形膜片
平均横位移 Ψ mean = 1 R ∫ 0 R rΨdr .
平均横位移应为低以取得最佳平衡。如果面积上的净横向模态速度是零,则相对平均位移也将是零。在最糟的情况,相对平均位移将等于一。为了使面积上的净横向模态速度趋向于零,相对平均位移可小于0.25或小于0.18。换句话说,当相对平均位移小于rms横向速度的25%,或最好小于18%时,可使面积上的净横向模态速度趋向于零。
对于零净横向模态速度,需要以惯性的方式使膜片的模态平衡至以下程度:除了“整体位移”或“活塞”模态,模态具有零平均位移(即,由产生器平面上的模态形状所围起的面积等于该平面下的面积)。这表示,净加速,以及因此轴上压力响应,仅由任何频率的运动的活塞状分量决定。
存在各种物体,其所有非活塞状模态具有零平均位移,例如,以点源驱动的附有自由边缘的均匀单位面积质量的薄板。然而,此类物体代表理论上的声学装置,因为实际上无法实现点驱动与自由边缘。
净横向模态速度趋向于零可通过以下方式来实现:在数学上将节点轮廓,因此也将上述实际声学装置的模态与速度剖面映射至理想理论装置(如,自由振动膜片)的模态与速度剖面。在数学上,映射是关联一个集合X中每一个元素x到另一个集合Y中的唯一元素y的规则。可将映射表示为函数f,因此:y=f(x)。如果没有元素剩下未从X映射,且如果x中各值仅指派给y的一个值,才能说从X映射至Y。
其实现的一个方法是对理想理论声学装置的模态计算其中驱动点阻抗Zm处于极大值或导纳Ym处于极小值的位置,然后在这些位置上安装驱动零件及/或至少一机械阻抗构件。导纳是阻抗的倒数(Zm=1/Ym)。
例如,对于圆形膜片的情况,可以通过改变膜片的在其中心与其周围间的驱动直径来计算位置,随着驱动直径的改变计算平均驱动点导纳,然后在由导纳极小值给定的位置加入机械阻抗。
阻抗Zm与导纳Ym系从模态总和来计算,因此其值取决于含在总和中的模态数。如果只考虑第一模态,则其位置处于该模态节线上或和该模态节线相当接近。通常,此位置趋向于接近所考虑最高模态的节点,但其他模态的影响意味着此对应可能不精确。不过,对于设计解决方案,所选最高模态的节线位置尚可接受。前三个模态的解并非前两个模态的解的延伸。可将此位置考虑为平均节位置,因此,可将换能器及/或至少一机械阻抗构件的驱动零件设置在操作频率中模态的平均节位置。
作为使用导纳的替代方案,可通过以下方式来计算机械阻抗构件的位置:定义其中机械阻抗构件为整体零件的系统模型,并最佳化此模型,以提供趋向于零的净体积位移。例如,对于圆形膜片,可将此模型定义为包括相同材料的同心环的圆盘,且在同心环的接合处有圆形线质量。可从下式计算净体积位移:
∫ 0 R rψ ( kr ) dr
其中R是膜片的半径,及
ψ(r)是模态形状。
或者,可通过以下方式来计算机械阻抗构件的位置:定义其中机械阻抗构件为整体零件的系统模型,并最佳化此模型,以提供趋向于零的相对平均体积位移。
也可以使用不同的方法组合,例如,可将机械阻抗构件安装在第三模态的节线处,并可使用最佳化来说明前两个模态。
换能器位置为平均低速即,导纳极小值的位置。标准分布模态扬声器的标准宗旨是在具有最平顺阻抗的位置处安装换能器,以尽可能均等地耦合至尽可能多的模态。据此,从一个观点来看,上述本发明和分布模态的观点不同。
膜片参数包括:形状、大小(纵横比)、弯曲刚度、表面积密度、剪切模量、各向异性及阻尼。可选择能够最佳化不同应用的效能的参数。例如,对于长度或直径5至8cm的小型膜片,可选择能够提供相对较硬、较轻膜片的膜片材料,该膜片在所需高频操作范围中只有两个模态。由于只有两个模态,通过平衡这些模态,可以相对较低的成本实现良好的声音辐射。或者,对于其中在活塞状范围中具有良好低频功率的长度或直径25cm的大型平板,可选择能够将第一模态放置于中频带如,1kHz以上的膜片材料与厚度。然后,可平衡一连串达第七或更多的模态,以实现具有良好功率一致性的宽频率响应及保持良好的离轴频率响应。
在设计中,参数变化的相对效应关系重大,且模态辐射的平衡对表面积密度的一致性比对弯曲刚度更为相关。例如,对于简单的圆形膜片,达2∶1的弯曲刚度的各向异性对于性能只有适度效应且可容许达4∶1。可利用高切变产生较高频率处的效率减小。
换能器经适配可在移动平移中的膜片。换能器可以是具有形成驱动零件的音圈与磁铁系统的动圈装置。弹性悬架可将膜片耦合至底架。可将磁铁系统接地至底架。悬架系设在操作频率范围中模态的平均节位置。将音圈耦合至膜片的位置和将该悬架耦合至膜片的位置不同。
操作频率范围包括活塞至模态转变。膜片参数可使活塞状范围以上的操作频率范围中有两或多个膜片模态。
膜片可具有圆形周围与质量中心。膜片的参数可使第一膜片模态低于ka=2,其中k为波数,a为依米(m)测量的膜片半径及k的单位为m-1。例如,这可通过选择具有适当刚度的平板材料来实现。平板材料的刚度也可用来定位符合频率,以协助控制方向性。
膜片对弯曲刚度为各向同性。可针对rms(均方根)平均所得模态位置设计适度的膜片弯曲刚度各向异性。对于x=2y的椭圆形膜片(举例说明),纯圆形同等模态结果可以对应的刚度比率16∶1来实现。依此方式,膜片可以是椭圆形且对弯曲刚度为各向异性,使其行为有如各向同性材料的圆形膜片。
各向异性,如对于圆形膜片的情况,将改变共振模态的实际频率,但圆形模态行为强而有力且在膜片上彰显其力。如上述,容许达4∶1的适度各向异性。
至少一机械阻抗构件可以是圆形或椭圆形的环形质量的形式。可将若干环形质量耦合至操作频率范围中模态的平均节位置的膜片或和其整合。质量在权重上朝向膜片的中心减少。所述环形质量或各环形质量可通过离散质量的阵列来形成。多于三个此种质量已经足够,六个此种质量足以等于连续的环形质量。所述质量及/或悬架的质量系按音圈质量进行缩放。
可在高平板速度的位置处,将阻尼构件设在膜片上或和膜片整合,借此阻尼所选定的模态。对于圆形或椭圆形平板,阻尼构件可以是设在高平板速度的环形上的衬垫的形式。在弯曲波的装置中,高平板速度的区域是平板最大曲率的区域。阻尼(受制层或非受制层与否)在因弯曲至可能的最大程度而受到最大应变时最有效。
对于所有频率,在平板的中心与边缘有最大弯曲曲率,因此已知可使用中心及/或边缘阻尼,尤以中心阻尼为佳。然而,对于不同的模态阶次,在中心与边缘面积间的不同直径比处也有高平板速度的区域。据此,只在中心及/或边缘面积使用阻尼提供正确的阻尼的轴上响应,但未阻尼的高速度区域的离轴贡献代表其中没有适当的离轴响应阻尼。将阻尼垫放在高平板速度的环形面上可解决此问题。
可因其在声学响应中造成不想要的峰值而选择模态,及阻尼垫的效应是要减少或消除此峰值。阻尼无法添加,且不同的模态需要阻尼处于不同的地方。例如,如果需要更多的阻尼精确性,则可将阻尼垫安装在多于一个的位置处。然而,要避免铺上覆盖整个平板的总阻尼层。
通过仅阻尼选定的模态,便不必阻尼整个平板,因此并无损于灵敏度。可阻尼选定的模态整体,例如,轴上与离轴均予以阻尼。此外,较低频率模态不会明显受到阻尼,因此,得以保留低于阻尼模态的扬声器的行为。
阻尼垫可以是连续的环形衬垫或可予以分段,以使用小块的非圆形阻尼。或者,根据需要阻尼的响应峰值的强度而定,可以只阻尼环形面的部分。
对于圆形与椭圆形形状,其中有两种类型的模态:径向模态,其具有和膜片圆周为同心的节线;及轴向模态,其在膜片半径上具有节线。轴向模态为次要模态,通常在声学上并不重要。不过,可视需要通过机械阻抗构件的共同调整,将轴向模态衰减、阻尼或甚至减到最少。例如,在膜片平面中提供刚度可就轴向模态加强膜片,且不会影响径向模态的平衡。在某些文章中又将轴向模态称为“钟”模态。
可选择使操作频率范围中有两个膜片径向模态的膜片参数。基本上可将环形质量配置在任何或所有直径比0.39与0.84的地方,借此平衡这两个模态。如果第三径向模态在操作频率范围中,则可将阻尼垫配置在任何或所有直径比0.43与0.74的地方。或者,基本上可将环形质量配置在任何或所有直径比0.26、0.59及0.89的地方,借此平衡前三个模态。
如果第四径向模态在频率范围中,则可将阻尼垫配置在任何或所有直径比0.32、0.52及0.77的地方,借此阻尼第四模态。或者,基本上可将环形质量配置在任何或所有直径比0.2、0.44、0.69及0.91的地方,借此平衡前四个模态。
如果第五径向模态在频率范围中,则可将阻尼垫配置在任何或所有直径比0.27、0.48、0.63及0.81的地方,借此阻尼第五模态。或者,基本上可将环形质量配置在任何或所有直径比0.17、0.35、0.54、0.735及0.915的地方。如果在频率范围中有额外模态,则可选择更多的模态数量,以按照已经概述的基本策略进行平衡。
膜片可为环形。以下各表就介于0.05至0.35的平板半径的孔洞大小显示质量与音圈的可能环形位置。最内侧的位置受到孔洞大小的影响最多。
考虑两个径向模态时的位置:
考虑三个径向模态时的位置:
考虑四个径向模态时的位置:
Figure 2005800114302A00800073
例如,膜片可包括直径比0.20的孔洞,且基本上可将环形质量配置在任何或所有直径比0.33、0.62及0.91的地方,借此平衡三个模态。或者,基本上可将环形质量配置在任何或所有直径比0.23、0.46、0.7及0.92的地方,借此平衡四个模态。
膜片大致为矩形且具有质量中心。膜片的参数可以使第一膜片模态低于kl=4,其中k为模态数量(单位为m-1),及l为以米(m)测量的平板长度。
可将悬架、换能器的驱动零件及/或至少一机械阻抗构件设在离膜片的质量中心与周围的对置位置。如果膜片每单位面积为均匀质量,则这些对置位置和质量中心为等距离。机械阻抗构件可以是一对质量的形式,该对质量系设在和膜片的质量中心隔开的对置位置。
膜片可为横梁状,即,具有伸长的矩形表面积及模态可沿着横梁的长轴。可沿着横梁的长轴将换能器、成对质量及/或悬架耦合至膜片。
如果在操作频率范围中有两个模态,则基本上可将成对质量配置在离质量中心的任何或所有比率0.29与0.81的地方。基本上可将成对质量配置在离质量中心的任何或所有比率0.19、0.55及0.88的地方,其中将平衡三个模态。或者,在其中将平衡四个模态的情况,基本上可将成对质量配置在离质量中心的任何或所有比率0.15、0.4、0.68及0.91的地方。或者,在其中将平衡五个模态的地方,基本上可将成对质量配置在离质量中心的任何或所有比率0.11、0.315、0.53、0.74及0.93的地方。在设计中,可选择更多的模态数量以按照已经概述的基本策略进行平衡。
对于横梁状膜片,其中有两个类型的模态:具有和横梁短轴平行的节线的模态及具有和横梁长轴平行的节线的交叉模态。交叉模态为次要模态,在声学上除了高频的外,通常不重要。换能器直径相对平板宽度的比率具有约0.8的值,借此以有利的方式抑制最低交叉模态。
其中横梁为可变的厚度,上述比率概念可以和刚度变化所决定的平均节区关联的距离来取代。对于刚度的对称分布,在等效离中心的半径的意义上,使用中心作为参考关系重大,但当横梁具有不对称的刚度分布时,驱动与质量的位置是指横梁的一端。
在各上述具体实施例中,可在所述比率的一处将换能器音圈耦合至膜片。对于圆形或环形膜片,可按同心的方式将音圈安装在膜片上。
对于矩形平板,可将一对换能器安装在各具有相同比率的对置位置上,或安装在两个具有不同比率的对置位置上。或者,可安装单一的换能器,使其驱动零件能够驱动两个各具有相同比率的对置位置。或者,可将换能器与平衡质量安装在各具有相同比率的对置位置上,该质量可就活塞状范围动态补偿膜片。然而,应明白,如果不需要膜片的活塞状操作,则避免膜片摇摆的此种质量补偿并非限制。
扬声器可包括轻量刚性耦合器的形式的尺寸适配器,以适配选来装入合适便利的经济框架的音圈的大小,致使驱动处于平均的节位置。可在第一直径处将耦合器耦合至换能器及在第二直径处耦合至膜片。第二直径为操作频率范围中模态的第一平均节位置的环形位置。
耦合器为截头圆锥形。第一直径可大于第二直径,借此大的线圈组件可由反向耦合器适配成较小的驱动轨迹,及通过将截头圆锥形耦合器的较小端固定至音圈组件并将其较大端固定至膜片,将较小的音圈组件适配成大轨迹。
能使用高功率能力与效率的超尺寸的音圈组件同时保留预期自小线圈驱动的较高频率的功率响应具有额外好处。相反地,现在可将通常属于适度成本的小音圈组件适配到较大的驱动圈。在此情况中,第一直径小于第二直径。例如,为了获得圆形膜片的最高频率的较宽方向性,设计师将选择较小的声音驱动圈,无论直接驱动或经由减小耦合器。或者,需要较高效率与最大声级时,将音圈适配成较大的驱动圈,例如,膜片上的较大半径平均节线。
基本上可在任何外侧比率处将悬架耦合至膜片。合适的悬架材料包括模制橡胶或弹性聚合物多孔发泡塑料。悬架的有效质量可随着频率稍微更动,及质量本身随着频率而有所不同。这是因为悬架的组成物与型态造成其中行为随着频率变化的复合机械阻抗。
在设计中,可调整悬架在平板上的物理位置以找出操作频率范围中的最佳总匹配。另外,或者,可以如FEA来塑造悬架的行为,以确定有效质量中心、阻尼及刚度,因此,有助于在平板上找出其位置。
根据膜片特性而定,在机械阻抗构件的位置上,介于+/-5%至+/-10%的容限为可接受。在机械阻抗构件的质量上,介于+/-5%至+/-10%的容限亦为可接受。一般而言,变化质量的容限大于位置变化的容限。
就自我支撑而言,膜片最好为刚性。膜片可以是整体的、多层的或复合物。复合的膜片可以具有夹在两个外皮间的核心的材料制成。合适的核心包括纸核心、蜂巢核心或波状塑料核心,且核心可在纵向上或径向上具有凹槽。合适的外皮包括纸、铝及聚合物塑料。一种合适的合成材料是Correx
Figure 058114302_0
。所用材料可通过编织在各向同性或各向异性上加强或通过单向硬化纤维来加强。
膜片可为平面或可为凹下。用语“凹下”泛指所有非平面膜片,无论凹下、拱形或半球形,包括圆锥形截面与无论圆形或椭圆形的复合曲线。
凹下形式可在中心处具有平面截面。膜片具有随着长度而有所不同的厚度或宽度。
扬声器包括小孔。可将第二膜片安装在此小孔中。第二膜片的操作和第一膜片一样,例如,均具有耦合至第一平均节位置的换能器及在第二平均节位置处耦合的至少一质量。或者,可以活塞状的方式或作为弯曲模态装置来操作第二膜片。
可将密封部件安装在小孔中,借此在声学上基本上密封小孔以免声学输出泄漏。密封半径相对膜片外径的比率是经调整可实现所需声学响应的额外参数。
可将声学装置安装在外壳中,且可选择能够改进声学装置的效能的外壳的声学特性。
声学装置为扬声器,其中换能器经适配可响应施加于换能器的电信号将弯曲波的能量施加于膜片,且膜片经适配可在辐射面积的上辐射声学声音。或者,声学装置为话筒,其中膜片经适配可在声音入射于其上时振动,且换能器经适配可将振动转换成电信号。
因此本发明的方法及声学装置有关弯曲波的模态的运用。相比之下,活塞与圆锥形先前技术寻找阻止模态行为,例如,通过使用阻尼或特定结构与驱动耦合方面。然而,本发明的声学装置有关最低弯曲频率。并不需要密集或均匀分布这些模态。促进所说明模态以进行辐射,但其轴上贡献为通过以下方式所平衡的辐射:在操作频率范围中模态的平均节位置处安装换能器、悬架及/或质量。
本发明利用由简单的自由薄板,即膜片辐射声音的原理,该薄板是通过不含关联质量的理论纯点力驱动成弯曲。这实际上无法实现,因施加该力时必须通过必然牵涉质量的机构,例如,因电动力换能器的音圈组件或激励器所产生的质量。还有,呈现在薄板上的实际的力通常不在单一的点上,而是沿着直线,如在圆形线圈架中。
声学装置的设计师在本发明原理内拥有调整不同情况与应用的效能的自由,其通过总体或选择性随着频率调整净横向模态速度。例如,对于特定应用,如在车中,收听者为离轴,在不同的频率或不同的辐射角度需要不同的频率特性。
本发明以下各方面亦利用相同原理且具有相同的附属特色。
根据本发明的另一方面,其中提供一种具有操作频率范围的声学装置,其包括:膜片,其具有圆形周围与质量中心,且该膜片为致使其在操作频率范围中具有共振模态;及换能器,其耦合至膜片且经适配可响应施加于换能器的电信号将弯曲波的能量施加至膜片,该换能器是在操作频率范围中模态的第一平均节位置耦合至膜片;及至少一质量,其是在操作频率范围中模态的第二平均节位置耦合至膜片或和膜片整合。
根据本发明的另一方面,其中提供一种具有操作频率范围的扬声器,其包括:膜片,其具有质量中心且该膜片为致使其在操作频率范围中具有共振模态;换能器构件,其耦合至膜片且经适配可响应施加于换能器的电信号将弯曲波的能量施加至膜片,该换能器构件是在和膜片质量中心隔开的对置位置及操作频率范围中模态的第一平均节位置耦合至膜片;及至少一对和膜片整合或耦合至膜片的质量,其耦合位置是在和膜片质量中心隔开的对置位置及操作频率范围中模态的第二平均节位置。
从再一方面,本发明为一种制作扬声器的方法,该扬声器具有操作频率范围且具有圆形周围与质量中心的平面膜片,该方法包括:选择膜片参数以使其在操作频率范围中具有共振模态;按和膜片质量中心同心的方式将换能器耦合至膜片以响应施加于换能器的电信号在其中施加弯曲波的能量;及按和膜片质量中心同心的方式将弹性悬架耦合至膜片,并远离其周围且设在操作频率范围中模态的平均节位置的环形面处。
从另外的方面,本发明为一种制作扬声器的方法,该扬声器具有操作频率范围且具有圆形周围与质量中心的平面膜片,该方法包括:选择膜片参数使其在操作频率范围中具有共振模态;将换能器耦合至膜片以响应施加于换能器的电信号在操作频率范围中模态的第一平均节位置处在膜片中施加弯曲波的能量;及在操作频率范围中模态的第二平均节位置处在膜片中加入至少一质量。
附图说明
本发明通过范例在附图中进行图解,其中:
图1a为本发明的第一具体实施例的平面图;
图1b为沿着图1a的直线AA的横截面图;
图2a为显示含有及不合质量的图1a装置的轴上声压随着频率变化的曲线图;
图2b为显示含有及不含质量的图1a装置的半空间功率(即,在本具体实施例的前方在半球体上积分的声功率)随着频率变化的曲线图;
图3为显示分成和各质量相关联的频带的图1a装置的电压灵敏度随着频率变化的曲线图;
图4a为显示在最外侧位置具有两个不同质量的图1a装置的电压灵敏度随着频率变化的曲线图;
图4b与4c为在图3a中测量的装置的外侧截面的横截面图;
图5a为安装在障板中的图1a装置的横截面图;
图5b为显示安装在阶状障板与齐平装入的障板中的图1a装置的电压灵敏度随着频率变化的曲线图;
图6a与6b为分别显示本发明第二具体实施例的含有及不含质量的轴上声压与半空间功率随着频率变化的曲线图;
图7a、7b与7c为分别显示两个理论扬声器与实际扬声器的轴上声压与半空间功率随着频率变化的曲线图;
图8显示图7b与7c的扬声器的速度剖面的部分;
图9a至9e分别显示第一模态至前五个模态的导纳Ym的实部平均值随着平板直径的变化;
图9f显示前五个模态的模态形状与环形位置;
图9g与9h显示具有离散与加长质量之前八个模态的导纳Ym的实部平均值随着平板直径的变化;
图9i与9j显示分别使用离散与连续质量的四个模态解决方案的声压级与声功率级随着频率而改变;
图9k显示最佳化方法后的平板的前三个模态;
图10a分别对于包括圆形膜片的扬声器的第一模态至第二模态及第二模态及以上,显示低于第一模态的频率响应;
图10b显示图10a范围中的扬声器的活塞位移;
图10c与10d显示图10a范围中的扬声器的模态位移;
图10e分别对于两个模态已平衡的图10a扬声器的第一模态至第二模态及第二模态及以上,显示低于第一模态的频率响应;
图10f显示图10e范围中的扬声器的活塞位移;
图10g与10h显示图10e范围中的扬声器的模态位移;
图10i分别对于图10e扬声器的第一模态至第二模态及第二模态及以上,显示低于第一模态的频率响应;
图10j显示图10i的扬声器的活塞方向性;
图10k与101显示图10i范围中的扬声器的模态方向性;
图11a至11d为具有在四个不同环形位置驱动的圆形平板的扬声器的声压与功率随着频率变化的模拟;
图11e为用于附较轻外质量的图11d的具有在环形位置驱动的圆形平板的扬声器的声压与功率随着频率变化的模拟;
图12a与12b为本发明的其他具体实施例的横截面图;
图12c为图12a与12b的具体实施例的功率响应相对频率的曲线图;
图13为图12a与12b的平板的前三个模态响应的对数平均相对半径的曲线图;
图14为本发明另一个具体实施例的图;
图15与16为声压相对频率的曲线图,其中分别显示最内侧环形位置的质量与环形位置变化10%的效应;
图17a与17b为声压相对频率的曲线图,其中分别显示中间环形位置的质量与环形位置变化10%的效应;
图18a与18b为声压相对频率的曲线图,其中分别显示最内侧环形位置的质量与环形位置变化10%的效应;
图19为声压(db)相对频率(Hz)的曲线图,其中显示同时变化环形位置与质量20%的效应;
图20为声压(db)相对频率(Hz)的曲线图,其中显示使用环形膜片以实现所需圆形平板的近似效应。
图21显示前两个模态已经平衡且其中安装单一阻尼垫的扬声器的轴上声压级(SPL)与声功率级(SWL)曲线(分别为下方与上方曲线);
图22a为本发明另一方面的扬声器的平面图;
图22b显示图22a的扬声器的轴上声压级(SPL)与声功率级(SWL)曲线(分别为下方与上方曲线);
图23为截头圆锥形耦合器的透视图;
图24为结合入图23的耦合器的扬声器驱动单元的侧视图;
图25为图24的驱动单元的后视图;
图26a至26d显示图23的驱动单元的变化的声压(db)相对频率(Hz);
图27a为本发明的第二具体实施例的平面图;
图27b为沿着图27a的直线AA的横截面图;
图28a为显示图12b装置的轴上声压与半空间功率随着频率变化的曲线图;
图28b、28c及28d为显示夹角分别为158°、174°及166°的图27a的装置的轴上声压与半空间功率随着频率变化的曲线图;
图29a为本发明的另一项具体实施例的平面图;
图29b为沿着图29a的直线AA的横截面图;
图30a为本发明的另一项具体实施例的平面图;
图30b为沿着图30a的直线AA的横截面图;
图31显示图29a的平板的前四个模态的导纳Ym的实部平均值随着平板直径的变化;
图32a为显示图29a的装置的轴上声压与半空间功率随着频率变化的曲线图;
图32b、32c及32d为显示具有不同环形质量的图29a装置的轴上声压与半空间功率随着频率变化的曲线图;
图33a与33b为可结合入本发明装置的另一种平板的横截面图;
图34a为本发明的另一个具体实施例的平面图;
图34b为沿着图34a的直线AA的横截面图;
图35a与35b为显示分别具有一个质量、两个质量及不含质量的图34a装置的轴上声压与半空间功率随着频率变化的曲线图;
图36a、36b与36c为分别显示两个理论扬声器与实际扬声器的轴上声压与半空间功率随着频率变化的曲线图;
图36d至36g分别为图34a的平板的前两个至前五个模态的对数平均导纳相对半长度的曲线图;
图36h与36i分别为两个模态与五个模态解决方案的声压级相对频率的曲线图;
图37与38为本发明两个进一步具体实施例的平面图;
图39a与39b为显示分别具有及不具有质量的图38装置的轴上声压与半空间功率随着频率变化的曲线图;
图40a为本发明的另一项具体实施例的平面图;
图40b为沿着图40a的直线AA的横截面图;
图41a为图40a的具体实施例的膜片的前四个模态形状的曲线图;
图41b为图41a的模态形状的傅立叶变换的曲线图;
图41c为显示图40a的膜片的第一模态与前两个模态的响应的对数平均的曲线图;及
图41d为显示图40a的膜片的前三个模态与前四个模态的对数平均导纳的曲线图;
图42a、42b与42c为分别显示两个理论扬声器与实际扬声器的轴上声压与半空间功率随着频率变化的曲线图;
图43a为本发明的一个替换具体实施例的平面图;
图43b为图43a的具体实施例的膜片的前四个模态形状的曲线图;
图43c为显示图43a的膜片的第一模态与前两个模态的对数平均导纳的曲线图;
图43d为显示图43a的膜片的前三个模态与前四个模态的对数导纳的曲线图;
图44a为本发明的一个替换具体实施例的平面图;
图44b为图44a的具体实施例的膜片的前四个模态形状的曲线图;
图45、46及47为分别显示矩形活塞状扬声器、理论共振平板形式扬声器、及实际共振平板形式扬声器的轴上声压与半空间功率随着频率变化的曲线图;
图48a与48b为本发明另一项具体实施例的平面图与侧视图;
图49与50为分别显示图48a的具体实施例的轴上声压与半空间功率随着频率变化的曲线图;
图51a与51b为显示图48a的具体实施例的变型的轴上声压与半空间功率随着频率变化的曲线图;
图52a与52b为包括耦合器的扬声器的横截面图与后视图;
图53a与53b为包括耦合器的第二具体实施例的扬声器的横截面图与后视图;
图54为换能器的音圈有效净力F相对音圈半径ρ的曲线图;
图55a与55b分别为四分之一圆形与横梁状膜片的平面图;
图55c为图55a与55b的四分之一膜片的侧视图;
图56a与56b分别显示不含及含有悬架平衡质量的扬声器的轴上声压与45°的声压随着频率的变化;
图56c显示不含及含有悬架平衡质量的扬声器的半空间功率随着频率的变化;
图57a为本发明的另一项具体实施例的平面图;
图57b为沿着图57a的直线AA的横截面图;
图58为本发明的另一项具体实施例的平面图;及
图59为本发明另一项具体实施例的部分截面图。
具体实施方式
图1a与1b显示的扬声器包括:圆形平板10的形式的膜片;及换能器12,其具有按同心的方式安装在平板10上的音圈26。三个环状(或环形)质量20、22、24系使用胶带按同心的方式安装在平板10上。音圈与质量系各设在称为位置1至4的环形位置,其中位置1为最内侧的位置及位置4为最外侧。
平板与换能器受支撑于包括凸缘16的圆形底架14,平板10则通过圆形悬架18附着至凸缘。凸缘16系和平板10的周围隔开并围绕平板10的周围,及悬架18是在和平板10的周围隔开的环形处附着。依此方式,平板边缘可自由移动,这点很重要,因在此位置有波腹。同样地,在平板的中心未设有任何质量,因在此位置也有波腹。换能器12接地至底架14。
平板10是以各向同性材料制成,即5mm厚的RohacellTM(膨胀聚甲基酰亚胺),且平板具有125mm的直径。质量为黄铜片且为1mm厚。音圈26、各质量及悬架的位置为平板的模态的平均节位置,其出现在操作频率范围中及如图7a至10所述进行计算。
质量的值相对于其位置及音圈的质量进行缩放,如图11a至11e所述。质量的值如下表所列:
Figure 2005800114302A00800171
图2a与2b显示含有三个环状质量(实线)及不含质量(虚线)的扬声器的轴上压力与半空间功率。含有质量的扬声器具有延伸的离轴频率响应并已改善聆听区上的声音品质与可理解性。另一个优点是含有质量的装置和频率同调且没有任何显著延迟。据此,可形成精确的立体影像。
不含质量的扬声器膜片组件的质量是11.8g,质量增加额外的10.8g。如图2a与2b所示,此特定设计造成活塞区(即,低于600Hz)中损失约6dB。如图3所示,可利用有限元分析(FEA)决定的平板模态将装置的频率范围分成各频带(如虚线所示)。各频带具有和其相关联的特定质量,且增加质量将减少该频带的灵敏度,反之亦然。活塞区的灵敏度是由最外侧位置的质量来控制。平板的机械阻抗朝向周围降低,因此,最外侧位置需要的质量较少。
图4a显示减少位置4的总质量1.25g的效应。虚线显示减少的质量的响应,实线显示较高的质量。如预期,150至600Hz的灵敏度增加。然而,中频带的灵敏度降低,这表示最外侧位置的质量影响达4kHz的频率响应。低于150Hz的灵敏度则未变化。悬架的质量贡献随着频率而有所不同,且质量贡献系决定于85Hz,其就较高频率的精确平衡模态而言,可能是误差的来源。
图4b与4c显示如何减少最外侧位置的质量。用于图4b装置(与图1a)的悬架18具有对称的横截面,其包括两个等大小的延伸于半圆形截面34各侧的凸缘30、32。凸缘30、32系分别附着于平板10及底架的凸缘16上。在图4c中,已移除附着于平板10上的凸缘36的大部分,以减少悬架质量0.25g。也已将质量40减少1g,使得总质量减少1.25g。
图2a与2b表示平板边缘有衍射。图5a显示安装在障板28的图1a的装置。图5b显示含有障板(实线)及不含障板(虚线)的装置的灵敏度的模拟。将装置齐平安装在障板中可使高频所见的干扰模式变得平滑。
在第二具体实施例中,将平板材料变成1mm厚的铝,下表比较材料特性与模态值。
Figure 2005800114302A00800181
铝平板具有显著较高的弯曲刚度。这并未显著改变轴上压力或声功率,但却改变了模态的频率。因此,一般而言,可选择或调整确保平板为相对于平板直径的够快模态的刚度,以提供良好的声功率并附带高频延伸与平滑的好处。此外,虽然各平板刚度的模态频率不同,但各模态频率相对第一模态的比率均相同,如下所列。因此,音圈、质量及悬架的环形位置维持相同。此外,由于第五模态的频率是第一模态的27倍,通过说明前五个模态,可实现涵盖约6个八度音的模态平衡,以加入活塞范围中。
图6a与6b显示使用铝平板的装置的轴上声压与180功率。实线显示含有质量的装置,虚线显示不含质量的装置。如图所示,不含质量的装置无法使用,而加入三个质量可显著改善效能。最大的改善显示于中频带中,尤其是第二模态的频率附近,即2.6kHz。此改善不像使用RohacellTM平板的具体实施例一样显著,因铝平板明显较重且具有较低阻尼。据此,减少所加质量和平板质量的比率,因而减少总灵敏度损失。16kHz的大峰值显示未受所示加入质量的影响,可能因其是由于第六模态的故。
图7a至10图解为图1a与6a的装置选择质量的环形位置及悬架与驱动位置的方法。图7a显示理论活塞状扬声器的声压与声功率级,该扬声器包括由施加于平板中心的无质量点力驱动的自由圆形、平坦、刚性平板。声压随着频率而为固定,且声功率在约1kHz之前为固定,之后则随着频率的增加而逐渐消失。[ka>2]
图7b显示理论扬声器的声压与声功率级,该扬声器包括由施加于平板中心的无质量点力驱动的自由、共振圆形平板。声压基本上仍随着频率而为固定,但现在声功率的下降和图7a所示的声功率下降相比,已经显著改善。现在在分析上已可见平板模态,因模型未使用任何电机阻尼。如果模态为不可见,则自由共振圆形平板将传递固定的轴上声压,以及基本上固定的声功率。
图7c显示和图7b的扬声器一样的实际扬声器的声压与声功率级,只是此扬声器以具有为25mm直径及取决于设计(材料、圈数等)的有限质量的音圈的换能器来驱动。和图7a的声功率下降相比,声功率随着频率的下降仍有所改善。但现在轴上压力与声功率不再随着频率而固定。
由于扬声器为轴对称,故模态可使用简单的模型。图8显示图7b与7c的扬声器的产生器平面中前五个模态的速度剖面。直立长线虚线代表对称轴,点状虚线为产生器平面。两组模态间的相称性不良。图7b的理论的理想模态是以惯性的方式获得平衡至以下的程度:除了“整体位移”或“活塞”模态,模态均具有零平均位移(即,产生器平面上模态形状所围的面积等于该平面下的面积)。
相反地,图7c的实际扬声器的模态并未获得平衡。然而,通过在数学上将节轮廓,因而连同实际扬声器的模态与速度剖面映射至理想的理论扬声器的模态与速度剖面,可说明此行为。这可通过计算导纳Ym处于理论扬声器的模态的极小值的位置并在这些位置安装音圈、悬架及/或质量来实现。
图8中弯曲的长线虚线对应于使用平均导纳极小值或节点所校正的情况。如图8所示,模态的长线虚线组和模态的实线组(即,理论上的理想典型)比点状虚线组和模态的实线组相称。在图8中,垂直长线虚线代表对称轴及水平点状虚线为产生器平面。
阻抗Zm与导纳Ym的实部系从模态总和来计算,因此其值取决于所考虑的模态数。导纳Ym及其对数平均μ(ρ)由于随着半径ρ而有所不同,因此使用以下方程式进行计算:
Ym ( N , ω , ρ ) : = j · ω · Σ i = 0 N y ( i , ρ ) 2 ( λ i ) 4 - ω 2 + j · 5 · % · ω · ( λ i ) 2
S : = ∫ 0.3 2.3 10 φ dφ μ ( ρ ) : = 1 S · ∫ 0.3 2.3 10 φ · log ( Re ( Y m ( 3 , 10 φ , ρ ) ) ) dφ
N=模态数。
S=操作频率范围上的比例因子。
λi=特征值≈(n-1/2)·π/(1-ρ0);ρ0=0.2
ω=频率。
γ(i,ρ)=第i个模态的模态形状。
图9a至9e分别显示一至五个模态的Ym随着平板直径的变化。极小值列表如下:
在具有极少阻尼的平板的情况下,各极小值的宽度相当窄小。这表示在环形位置的安装相当重要,并表示容限可能低至2%。这在只采取第一模态时尤其更是如此。对于具有典型阻尼的平板,如以聚合物膜作为外皮的发泡核心平板,容限可增加至10%,如从图9d与9e及稍后类似图式的图36e与36f所见。
请注意,由于在操作频率范围的上取得平均,因此,在此范围外的频率的模态并不会影响结果。这部分地说明五个与较高的模态通常比其先前模态具有较少的效应。因此,当较高模态在有关的频带的外及平板的切变够硬时,如果映射前四个模态,则可理想映射较高阶次模态。在此并非为真时,则有较高阶次的模态平衡。
此方法有足够的柔性使设计师仅映射特定模态。为前四个或五个模态所计算的环形位置对应于图1a与6a的装置中质量与音圈的位置。
图9f比较这些环形位置与理论扬声器的模态形状。在第一模态处,有两个环形位置50、52在节线54的内侧及两个在外侧的56、58。随着模态阶次增加,在节线54的对侧上配置有环形位置。
图9g显示随着要固定的模态数增加(在此情况中,增加至八个),通过观察,导纳曲线中似乎有看起来像是渐近线的型样。内侧与外侧极小值的比率分别开始固定为约0.13与0.95的值。还有,随着模态阶次增加,阻抗的极小值变得更加接近一起并趋向连续统。
要在极小值处安装的质量还是很小且离散的,并显示为离散的圆圈。音圈与悬架的位置分别如C与S所示。实际上,质量可以是加大的尺寸,并可如图9h所示。此处,将离散的质量显示为加大且几乎接触的矩形。离散的质量可以单一连续的质量来取代,只要此质量不会使平板硬化。
图9i与9j显示使用离散质量M1与M2的扬声器(实线)及使用连续质量的扬声器(虚线)的声学声压与声学声功率。各解决方案具有施加的少量的结构阻尼(5%)。
离散解决方案中的质量的位置:
连续质量解决方案的位置:
将连续质量塑造为极有柔性的薄壳并具有合适的密度但极低的杨氏模量,以避免膜片的任何硬化。虽然图9i与9j显示扬声器的响应并不相同,但连续质量解决方案却提供可接受的结果。其中在总灵敏度上似乎有小损失,且连续质量替代方案实施起来比较简单。不过,离散的质量解决方案仍为特别优选,尤其因为连续质量解决方案的设计由于必须使用线圈与悬架位置的渐近值而受到较多的限制。
如果连续质量具有少量的固有阻尼,则可减少连续质量解决方案中一些不要的峰值的强度。这可通过使用如柔性橡胶片或其类似物的材料来实现,以提供正确的质量及少量的额外阻尼。
作为使用导纳的替代方案,可通过如下的最佳化使净横向模态速度趋向于零。首先,定义模型,如对于圆形膜片,考虑包括相同材料的同心环的圆盘,且在同心环的接合处有圆线体质量,模态频率与模态形状的解答如下:
N-模态固定;μl=环状质量的单位长度的质量
截面0         ψ0=A0·JO(k·r)+C0·IO(k·r)
截面n=1...N  ψn=An·JO(k·r)+Bn·YO(k·r)+Cn·IO(k·r)+Dn·KO(k·r)
边界
连续性        ψ(k·rn)n=ψ(k·rn)n-1
ψ′(k·rn)n=ψ(k·rn)n-1
MR(k·rn)n=MR(k·rn)n-1
MR(k·R)=0
力平衡
QR ( k · r n ) n = QR ( k · r n ) n - 1 + α n · μl · ω 2 k 3 · B · ψ ( k · r n ) n - 1
QR(k·R)=0
其中ψ0为圆形中心截面的模态形状。
ψn为第n个环的模态形状
k为波数
r为半径
μl为环状质量的单位长度的质量
N为要说明的最高模态数
J(0)为第一类Bessel函数,0阶
Y(0)为第二类Bessel函数,0阶
I(0)为修改的第一类Bessel函数
K(0)为修改的第二类Bessel函数
An、Bn、Cn及Dn为常数
MR是弯曲力矩的径向分量
QR是切变力的径向分量
α是环状质量每个长度的质量相对每个长度的参考质量的比率,通常是音圈的参考质量,及所有环的α=1,但通常最外环例外。
净体积位移的计算如下:
∫ 0 R rψ ( kr ) dr
最佳化固定值r的最外侧αN,使净体积位移趋向于零,根据精确值rn,可提供αN在约0.75及0.80之间的值。使用上述导纳方法计算的平均节位置提供αN的最佳值约0.79至0.80。如果使用最后模态的实际节位置,则αN的约0.74至0.76的值显示最佳。
作为范例,使用最佳化方法设计由具有32mm音圈的换能器驱动的92mm直径的平板。使用导纳方法计算的两个模态解决方案提供音圈的径向位置为0.4与0.84。然而,线圈直径相对平板的比率为0.348。
假设B=7Nm,μ=0.45kg/m2,v=1/3,R=0.046m,线圈质量=1.5gm,及通过改变两个模态(即,N=2)的最佳化方法中外环的位置与质量,可得到
rN=0.816764 αN=0.915268 Err 0 = 4.758 × 10 - 10
据此,将直径75.14mm(0.816764×2R=0.816764×92mm)及质量3.224gm(0.915268×75.14/32×1.5gm)的环安装至选定的换能器驱动的平板上,前两个模态的模态残余体积位移几乎已经消失,如图9k所示。第三模态仍未平衡。
作为第二范例,将质量放在第三模态的各节线,然后使用最佳化决定平衡前两个模态的质量的值。结果如下:
位置(半径比):0.257、0.591及0.893
每单位长度的最佳化质量亦按以下所列比率1、0.982及0.744进行缩放。
在本发明的前两个具体实施例中,在最内侧的环形位置(0.2)驱动平板。然而,由于其他环形位置也是平均节线,因此可在这些位置之一或多个驱动平板,而其余位置具有环形质量,以平衡换能器的质量。质量的平衡作用和驱动点及/或平板中心的相对距离有关。例如,对于安装在0.91驱动点的单一的8克换能器,可得到其他位置为良好近似值的质量的值如下:
Figure 2005800114302A00800251
图10a显示包括圆形膜片的扬声器的三个不同范围的频率响应。图10a显示第一模态以下的活塞状范围、第一模态至第二模态的范围及第二模态与以上的范围。可将任何频率的响应视为模态与活塞状贡献的线性总和。操作频率内的所有模态均可促进声学响应。
图10b显示图10a的扬声器在各范围的活塞位移。在这些范围的各范围中,活塞位移相等并同相。图10c显示各范围的第一模态的模态位移。在活塞状范围中第一模态以下,其中没有模态位移。模态未获得平衡且具有过多的负面贡献,因而导致峰值356且在响应的电平358下降,此二者均可听得到。同样地,图10d显示第二模态的位移形状未获得平衡。再一次具有过多的负面贡献,因而导致峰值356且在响应的电平358下降,此二者均可听得到。
图10e显示其中第一与第二模态获得平衡的扬声器的三个不同范围的频率响应。图10f显示扬声器在各范围的活塞位移。和图10b一样,在这些范围的各范围中,活塞位移均相等并同相。
图10f与10g显示各范围的第一与第二模态的模态位移。在活塞状范围中,其中没有模态位移。各模态已获得平衡,即,各模态的平均横位移的总和趋向于零,因此,其净贡献已获得平衡。据此,在响应中没有任何声级变化。留下简单、尖锐的凹口360,但这在心理声学上为良性。
图10i对应于图10e。图10j至101显示三个范围中的极性响应。如图10j所示,在低频处有预期的简单活塞的半球形输出。在中等范围频率处,活塞分量的方向性由于源大小而开始变窄。如图10k所示,第一模态辐射也出现,并加入活塞范围的输出,因此很有用地加宽方向性。在更高的频率处,活塞分量是狭窄的波瓣,其系得自第一弯曲模态的分量的协助,现在又得到具有更宽的如图101所示辐射角的第二模态的额外贡献的加强。因此,模态贡献对于维持频率范围上的宽广方向性具有有利的效应。
图11a显示在上述平衡质量,在0.91比率处,由具有质量8g的换能器驱动的圆形平板的声压与功率随着频率的变化。图11b、11c及11d显示以质量分别为6.06g、3.864g及1.76g的换能器在比率0.69、0.44及0.2处,所驱动的相同平板的声压与功率随着频率的变化。在未驱动的各环形位置处安装上述各值的质量。计算不含任何结构阻尼的各个模拟。较小的音圈重建功率为高频,但较低模态并未获得良好平衡。将外质量降至7g,效能获得改善,如图11e所示。
图12a显示除了圆形平板膜片已为环形平板60所取代的外,均和图1a一样的本发明的替换具体实施例。环形平板60具有为外径的0.2的内径。在平板的中心小孔中安装顺性声学密封61。换能器的音圈62安装在为半径的0.33的环形位置,及环状质量64、66系设在半径的0.62与0.91的环形位置。在0.62位置的环状质量64及音圈62具有相等的质量,及在0.91位置的环状质量66是音圈62的质量的3/4。
图12b显示图12a的变化,其中将音圈62安装在为半径的0.62的环形位置,并将环状质量64、66安装在0.33与0.91位置。音圈与环状质量的相对质量并未变化。
图12c比较图12a与12b的装置的功率响应变化(分别为长线虚线与实线)和相同大小的活塞状环形辐射体的功率响应变化(点状虚线)。第二个情况具有部分抑制的第一模态,因此其功率响应在第二模态下跟随活塞。由于中心驱动不可能,因此无法实现平坦功率。然而,在第二模态的上,两种情况均比活塞辐射更多的声功率。
音圈与质量的环形位置的计算方式相同,并使用上述用于阻抗的方程式。
图13显示图12a与12b的平板的前三个模态(N=3)的响应的对数平均,其随着平板的半径而有所不同。为了计算,任意选择平板的材料,使第一模态发生于400Hz及第四发生于约9.6kHz。由于环形平板的前四个模态具有比率1∶5∶12∶23的频率,说明前三个模态表示装置能够涵盖相当宽的频宽。极小值出现在半径的0.33、0.62及0.91,因此,将音圈及/或质量放在这些位置上。最外侧环形位置对应于图1a的圆形平板的最外侧环形位置。
图14显示包括环形平板72与圆形平板70的装置,环形平板具有为外径的0.20的内径;及圆形平板系按同心的方式安装在环形平板72的小孔内。利用当作声学密封的顺性悬架74,将圆形平板70安装至环形平板72。
环形平板72是由按同心的方式安装的换能器来驱动,换能器具有安装在平板的半径的0.62处的音圈82。环状质量78在半径的0.91的环形位置,安装到环形平板。利用安装在0.91环形位置的环形悬架80,将环形平板72安装在如图1a的底架。
圆形平板70是由按同心的方式安装的换能器来驱动,换能器具有安装在平板的半径的0.62处的音圈84。环状质量86是在半径的0.91的环形位置,按同心的方式安装在环形平板上。
图15至19图解质量与环形位置容限的效应。图15显示具有安装在环形位置0.26处的32mm音圈换能器及安装在0.59与0.89直径比的质量的直径121mm的圆形平板的频率响应。此频率响应标示为“标称”及因材料切变效应所造成的预期频宽约11-12kHz。图15还显示相同装置分别在最内侧环形位置的质量增加及降低10%的频率响应。图16显示图15的标称频率响应以及其中将环形位置增加或降低10%的装置的频率响应。图17a与18a显示在0.59与0.89直径比的质量变化10%与20%的效应,及图17b与18b显示位置本身变化10%与5%的效应。图19显示同时变化最内侧环形位置的质量与环形位置20%的效应。
一般而言,变化质量的容限大于位置变化的容限。此外,位置变化的频率响应的效应在最后平衡模态以上的频率处最严重。总的,变化的最大容限在于最接近质量中心的位置。不仅此位置在直径比或质量上容许相当大的变化,且还观察到在通带中,变化为互补的。只要单位长度的质量并未变化,可应付质量或直径比上多达+/-30%的变化。外侧位置对比率变化比较灵敏,但对质量变化可能较不灵敏。
对于最佳解决方案,相对平均位移ψrel=0。对于两个模态的最佳办法,改变外侧质量的半径从最佳根据下式移动:
d Ψ rel d r 2 ≈ 1.75 ,
其中r2为质量的半径除以薄板半径
换句话说,r2中变化1%造成ψrel中变化1.75%。上述成果显示r2的+/-5%至+/-10%的容限为可接受。这分别对应于介于8%与18%的ψrel的容限。
在图9a至9e及后来类似的图式中,平均阻抗曲线图的的极小值很宽,因此,可预期质量的定位的容限。这可从图15至19获得证明。
在考虑切变柔性时,模态的频率基本上可从薄板理论预测的内容变化。然而,模态的形状大半均未变化。例如,采用常用的材料,直径比减少约0.01至0.02将使模态获得稍微最好的平衡。在前文所述的容限下,这改善主要是理论上的。一种简单的同等补偿是使平板稍微大一点,通常大1或2mm。
平板的大小受限于换能器音圈的大小。在工业标准的线圈大小下,平板的大小受到限制。然而,如上述,装置的频率响应相当容许在最内侧比率处的变化,且此观察可用来获得好处,以容许平板直径变化可能至少表列数值的+/-10%。例如,此方法可通过以下方式来适配:先找到和所需平板/换能器的组合(将换能器的音圈设为最内侧直径比)最接近的平板/换能器的组合,然后缩放所有的直径比和质量,但音圈的例外,以取得正确的平板大小。
或者,可从环形形状的平板着手,让设计师不受平板大小的限制。此论据为如果孔洞很小,则其效应也会很小,因此可能不需孔洞。所列关于环形平板的表格表示具有直径比小于0.1的孔洞大小在环形位置上具有最小效应。因此,可通过设计环形平板而非建立圆形平板来适配此方法。例如,设计具有孔洞比率0.14的环形平板,可实现具有32mm线圈的108mm的平板直径。最接近的圆形设计需要28mm的线圈。图20显示以28mm或32mm音圈换能器驱动的圆形平板及以32mm音圈换能器驱动的环形平板的频率响应。环形平板的通带响应有点崎岖不平,但频带外响应正如可提出证据加以证明的那样较佳。
上述方法任一种,即使用容限或环形形状解除平板大小的限制,也可以用来  “解调谐”通带模态平衡,以利于更完美地偏离较高频率的平坦响应。这很重要,其中所说明的模态数并未完全涵盖预计的频宽,或平板材料中的切变将造成较高阶次模态的频率减少至其出现于频带中的点。频率响应接近这些较高模态时通常变得不规则,尤其在音圈落在或接近这些模态之一的波腹时。使用容限或选择环形形式可改善这些较高阶次模态。
图21显示前两个模态已经平衡且其中安装单一阻尼垫的扬声器的轴上声压级(SPL)与声功率级(SWL)曲线(分别为下方与上方曲线)。扬声器包括具有直径85mm的圆形平板,其是由32mm音圈换能器来驱动。将直径71mm的环安装至平板,并将阻尼垫安装在平板的中心上。阻尼垫为9mm乘以9mm且是以乙丙二烯橡胶(EPDR)制成。
使用中心阻尼圆盘为遵循传统宗旨,因对于圆形平板,这向来是波腹(同样在平板边缘)。然而,这将表示所有模态将具有一些施加的阻尼,但不幸的是,并非所有速度剖面将受到均等阻尼。因此,如21图所示,阻尼垫的效应是阻尼SPL曲线的第三模态,然而,第三模态在声功率响应SWL曲线中的11kHz仍清楚可见。据此,轴上响应看来改善,但功率响应并未改善。
为了了解如何有效阻尼第三模态的此峰值,必须重新参考图9c,具有三个模态的平板的平板导纳曲线。如先前所说明的,在曲线图上呈窄波谷的低速区中加入平衡质量。对于阻尼,其为有关的高速区,因这些区域代表最大平板弯曲。如图9c所示,最大速度的典型位置是平板的中心与边缘,因这些位置是所有模态的极大值。
其中还有两个其他宽广的高速区,其在0.42与0.74的平板直径出现峰值。选择性阻尼可有利地施加在这些区域中。由于这些区域为宽广的导纳,因此阻尼位置不像平衡质量位置那么至关重要。对于图21a所示的扬声器,这些比率是在35.7mm与63mm。然而,换能器音圈是在32mm(因此输出的大峰值也在此),故在35.7mm中加入阻尼并不理想。63mm直径很合适,但为了影响整体模态形状的足够的选择性阻尼,至少需要第二区。在比率0.2与0.27之间的区域也具有高速。虽然此区域开始侵入中心区域,但其为速度上升相当快速的区域,因此表面阻尼材料将在张力中。
图22a显示包括具有直径85mm的圆形平板90的扬声器,其是由32mm音圈换能器92来驱动。将直径71mm的环形平衡环94和直径63mm的阻尼环96与直径9mm的中心阻尼垫一起安装至平板。阻尼环96、98是以乙丙二烯橡胶制成。
图22b显示图22a的扬声器的轴上声压级(SPL)与声功率级(SWL)曲线(分别为下方与上方曲线)。11kHz的任一曲线中均无峰值,因此使用环,可有效阻尼第三模态。
阻尼环的位置由平衡的模态数加以决定。使用图9a至9e,用于阻尼第二至第五模态的阻尼环的环形位置列表如下:
Figure 2005800114302A00800301
例如,如果要阻尼第四模态,则应将阻尼垫安装在直径比0.32、0.52及0.77处。
图23显示截头圆锥形耦合器100。如图24所示,将耦合器100配置于圆形平板膜片102与换能器音圈104之间。为了清楚,已省略换能器的磁铁组件。膜片102是由环形悬架106支撑于底架108上。虚线代表耦合器的夹角θ。
如图25所示,耦合器是在为音圈的直径的第一直径110处耦合至换能器音圈。耦合器是在大于第一直径的第二直径112处耦合至膜片。依此方式,可将为适度成本的小音圈组件适配成较大的驱动圈。此外,耦合器可以以相对较低的成本,将不相称的音圈直径匹配至正确的驱动直径。
图26a至26d显示通过有限元分析所获得的声压与声功率级。图26a显示本发明的扬声器模型(即,附带具有安装在其上的环形质量的平板膜片)的输出。管状耦合器安装在膜片及换能器音圈之间。耦合器为0.5mm厚的圆锥形纸,其具有直径25.8mm,及从膜片至音圈的距离系设为5mm,因此具有夹角零度。
在图26b至26d中,在膜片处保留不变的耦合器的直径,音圈的直径按2mm级距减少,因此,耦合器从管状变成具有逐渐陡峭侧边的截头圆锥形。音圈直径按始于零夹角的级距减少,因此图26b对应于23度的夹角θ,图26c对应于44度的夹角θ,及图26d对应于θ=62度。
在图26a中,模型中极少或没有任何阻尼,且实际上造成合理平滑的轴向频率响应。请注意,从图26b至26d,高频极限处的耦合器共振清楚可见,且此耦合器共振随着线圈直径减少即,耦合器角度增加而降低频率。如果耦合器共振超出扬声器的操作范围,对于效能并不会有不利的效应。据此,可容许直径的小变化,因共振处于频宽的极限。
模型中的耦合器属于薄纸,但根据直径匹配的比率而定,耦合器的允许的耦合器质量及成本、更坚硬的外壳建构均可行,如碳纤维强化树脂及如Vectra的晶向模制热塑性塑料。尽管模型中的耦合器为单一的截头圆锥形截面,但也可将耦合器配置成喇叭状的装置,类似典型的弯曲的扬声器纸盆。
图27a与27b显示图12b的具体实施例的变化,其中膜片120现在为具有158°的圆锥角的圆锥状。如同先前的具体实施例,在半径为0.62的环形位置安装音圈122,及在0.33与0.91位置安装环状质量124、126。
在两个具体实施例中,平板110是以各向同性材料制成,即5mm厚的RohacellTM(膨胀聚甲基酰亚胺),并具有直径100mm的外围与直径20mm的内围。质量的平衡作用和驱动点及/或平板中心的相对距离有关。质量的值平衡如下:
Figure 2005800114302A00800311
图28a与28b分别显示图12b与27a的扬声器的轴上压力与半空间功率。图28b具有夹角158°,且经选定以图解扬声器纸盆的三个质量平衡解决方案的近似的限制情况。两个扬声器仍可达到延伸的离轴频率响应以及聆听区的良好声音品质与可理解性。图28c与28d显示如何针对图27a的三个质量装置的变化,其中圆锥角为减少的174°与166°,改善效能。在图28a至28d的各图中,声功率于第二模态处下降并保留此声功率级至高频极限。
图29a与29b显示图12b的装置的变化,其中选择质量与音圈的位置以补偿四个模态。膜片为具有换能器的环形平坦平板130,换能器具有按同心的方式在0.92的直径比处安装至平板130的音圈132。三个环状(或环形)质量134、136、138按同心的方式使用胶带在0.23、0.46及0.7的直径比处安装至平板130。如上述,质量的值按音圈的值进行缩放,由于音圈具有质量8gm,因此质量分别具有1.76g、3.864gm及6.06gm的值。质量的值朝向平板的中心降低。
图30a与30b显示图29a的具体实施例的变化,其中膜片140现在为具有158°的圆锥角的圆锥状。如同先前的具体实施例,在为半径的0.92的环形位置安装音圈142,及在0.23、0.46及0.70位置安装环状质量144、146、148。音圈与环状质量的相对质量并未变化。
图31显示图29a的平板的前四个模态(N=4)的响应的对数平均,其随着平板的半径而有所不同。极小值出现在半径的0.23、0.46、0.70及0.92,且这些是图29a与29b中使用的音圈与质量的位置。前四个模态的解决方案并非前三个模态的解决方案的延伸。
图32a与32b分别显示图29a与30a的扬声器的轴上压力与半空间功率。两个扬声器均有延伸的离轴频率响应以及聆听区的良好声音品质与可理解性。装置的频率范围可由有限元分析(FEA)所决定的平板的模态分成各频带。各频带具有和其相关联的特定质量,且增加质量将减少该频带的灵敏度,反的亦然。活塞区的灵敏度是由最外侧位置的质量加以控制。在平板的机械阻抗朝向周围出现降低,因此,最外侧位置需要较少的质量。减少下一个位置的质量也会有利。
图32c与32d则分别显示图29a与29b所示装置的变化,其中质量的值有所改变以改善效能。
图32c显示减少换能器的质量至6g及将平坦平板上0.7位置的质量的值从6.06gm减为5.8gm的效应。图32d显示减少换能器的质量至5.4g及将158°扬声器纸盆上0.7位置的质量的值从6.06gm减为5.6gm的效应。灵敏度如预期增加且两个具体实施例的响应大致获得改善。在图32d中,其中有宽广的波谷始于3kHz处,其可能为圆锥形凹处的效应。一般而言,和只考虑三个模态的装置相比,两个具体实施例的效能已经改善。
图33a与33b显示可并入先前具体实施例的替代的膜片。在图33a与33b中,膜片为具有内围170与外围172的环形。在图33a中,从内外围之间的上方观看时,膜片174具有凸面曲率,及在图33b中,从上方观看时,膜片176在内外围之间具有凹面曲率。
在各上述具体实施例中,环形质量为安装至平板的离散质量。质量的宽度面积广度显然并非关键,如果质量中心是正确的环形位置的话。此外,不需要将质量安装在平板和音圈相对置的表面上。可在环形位置通过增加这些位置的平板密度来提供额外的质量。平板可以进行射出成型的在所述环形位置具有额外质量。
图34a与34b显示包括横梁状平板220的形式的膜片及安装在其中的两个换能器的扬声器。两对质量228、226安装在从平板的对称线(或中心)至边缘(即,在平板的一半长度上)的距离的0.19与0.88的位置。各换能器的音圈222、224安装在离平板中心0.55的位置。平板220经由安装在0.88位置的悬架223安装至底架221。
音圈222、224与在0.19的质量228具有相等质量。由于横梁属于固定的宽度,每单位长度的质量和质量成正比但和位置无关。然而,由于边缘效应,最接近平板边缘的这些质量最好为较小的值,通常小约30%。
图35a与35b显示图34a的含有两对质量(实线)、只含有一对质量(点状虚线)及不含任何质量(长线虚线)的扬声器的轴上声压与半空间功率。在不含任何质量的装置中,换能器安装在平板的节点。对于模型,选择长度200mm的平板,及约280Hz的第一模态。音圈安装在离中心55mm处,及各对质量分别安装在离中心19mm与88mm处。在55mm的音圈与内侧质量各为550mg,及外侧质量为400mg。
如图35a与35b箅示,不含质量的平板只有约1500Hz的频宽,即,达到第二模态。相反地,含有两对质量的平板具有延伸的离轴频率响应且已改善声音品质与可理解性达约7kHz,即,达到第四模态。
图36a至36g图解为图34a的装置选择质量位置与驱动位置的方法。图36a显示理论活塞状扬声器的声压与声功率级,该扬声器包括由施加于平板中心的无质量点力驱动的自由横梁状、平坦、刚性平板。声压随着频率为固定,且声功率在约1kHz之前为固定,之后则随着频率的增加而逐渐消失。
图36b显示理论扬声器的声压与声功率级,该扬声器包括由施加于平板中心的无质量点力驱动的自由、共振横梁状平板。声压基本上仍随着频率而为固定,但现在声功率的下降和图36a所示的声功率下降相比,已经显著改善。现在在分析中已可见平板模态,因模型未使用任何电机阻尼。如果这些模态为不可见,则自由共振平板将传递固定的轴上声压,以及基本上固定的声功率。
图36c显示和图36b的扬声器一样的实际扬声器的声压与声功率级,只是此扬声器以具有25mm直径的音圈的换能器及取决于音圈的设计(材料、圈数等)的有限质量来驱动。和图36a的声功率下降相比,声功率随着频率的下降仍有所改善。但现在轴上压力与声功率不再随着频率而为固定。
由于扬声器系类似一维,故模态可使用简单的模型。其结果和图8所示的一样,其中图36b的理论上理想的模态以惯性的方式获得平衡至以下的程度:除了“整体位移”模态,模态均具有零平均位移。相反地,图36c的实际扬声器的模态并未获得平衡。然而,如上述,通过在数学上将节轮廓,因而连同实际扬声器的模态与速度剖面映射至理想的理论扬声器的模态与速度剖面,可应付此行为。
如上述,该(等)位置是在平均低速(即,导纳极小值)的位置。对于横梁状平板,随着半长度ξ而有所不同的导纳Ym及对数平均μ(ξ)系使用以下方程式进行计算:
Ym ( N , ξ , ω ) : = j · ω · Σ i = 0 N y ( i , ξ ) 2 ( λ i ) 4 - ω 2 + j · ξ · ( λ i ) 2 · ω ζ≡5·%
S : = ∫ 0.3 2.3 10 φ dφ μ ( ξ ) : = 1 S · ∫ 0.3 2.3 10 φ · log ( Re ( Ym ( 4 , ξ , 10 φ ) ) ) dφ
N=模态数。
S=操作频率范围上的比例因子。
λi=特征值≈(n-1/4)·π
ω=频率
γ(i,ξ)=第i个模态的模态形状
图36d显示图34a的平板的前两个模态(N=2)的对数平均导纳,其随着平板的对称线(或中心)与边缘间的距离(即,在平板的一半长度上)而有所不同。极小值出现在半长度的0.29与0.81,因此,可将音圈及/或质量放在这些位置上。
图36e显示图34a的平板的前三个模态(N=3)的对数平均导纳,其随着平板的对称线(或中心)与边缘间的距离(即,在平板的一半长度上)而有所不同。由于横梁状平板的前五个模态具有比率1∶5.4∶13∶25∶40的频率,说明前三个模态表示装置能够涵盖相当宽的频宽。极小值出现在半长度的0.19、0.55及0.88,因此,可将音圈及/或质量放在这些位置上(如图34a与34b所示)。
图36f显示图34a的平板的前四个模态(N=4)的对数平均导纳,其随着平板的对称线(或中心)与边缘间的距离(即,在平板的一半长度上)而有所不同。极小值出现在半长度的0.15、0.40、0.68及0.91。因此,前四个模态的解决方案并非前三个模态的解决方案的延伸。
当较高模态在有关的频带以外及平板的切变够硬时,如果映射前四个模态,则可理想映射较高阶次模态。当这并非为真时,则可以有较高阶次的模态平衡;如,五个或更多模态。
图36g显示图34a的平板的前五个模态(N=5)的对数平均导纳,其随着平板的对称线(或中心)与边缘间的距离(即,在平板的一半长度上)而有所不同。在考虑五个模态时,导纳Ym的极小值分别在0.11、0.315、0.53、0.74及0.93。
各种极小值限制了换能器在任何平板上的位置,因此总平板大小可由工业标准音圈大小来决定。然而,在平板上可以具有多于一的换能器,因此,解除了平板大小的限制。在呈现交叉模态时的换能器直径与平板宽度的比率的效应极深,且对此比率,约0.8的值可以有利的方式抑制最低交叉模态。
图36h比较具一对安装在其上的换能器的膜片(虚线)和具有该对换能器与安装在频率范围中两个模态的平均节位置的一对质量的相同膜片(实线)的输出。在任一情况中因换能器的位置而未见第一模态。第二模态通过加入质量而获得平衡。平均节位置为0.29与0.81并使用上述相同方法进行计算。节位置在表示为膜片长度的分数时转变成0.095、0.355、0.645及0.905的位置。
图36i比较其上仅安装换能器的膜片(虚线)和具有该对换能器与安装在频率范围中五个模态的平均节位置的一对质量的相同膜片(实线)的输出。平均节半径为0.11、0.315、0.53、0.74及0.93,其转变成0.035、0.13、0.235、0.3425、0.445、0.555、0.6575、0.765、0.87及0.965的位置(为膜片长度的分数)。
图37显示本发明的替换具体实施例,其中将单一的换能器安装至如图34a的装置中所用的横梁状平板。换能器具有大音圈242,其安装在平板的中心,因此驱动基本上处于0.19位置。两对质量244、246安装在0.55与0.88位置。音圈质量因双重位置而变成一半,因此将质量设为线圈质量的一半。像图34a的装置,选择质量与音圈的位置以补偿三个模态。
图38显示图34a的装置的另一种变化,其中选择质量与音圈的位置以补偿四个模态。横梁状平板230具有四个安装在其中的换能器,且各换能器的音圈231、232、233、234成对安装在离平板中心0.40的对称位置。对称放置的成对质量235、238、240系设在离平板中心的0.15、0.68及0.91处。其质量等于个别音圈质量的两倍,除了在0.91位置的质量,其中边缘效应代表少达30%的较低值比较有用。因此,例如,如果音圈质量为225mg,则除了0.91位置的减少为400mg的质量以外,质量为550mg。
图39a与39b显示图38的含有全部三对质量(实线)及不含任何质量(虚线)的扬声器的轴上压力与半空间功率。在不含任何质量的装置中,换能器安装在平板的节点。图38的扬声器的频宽和图34a的频宽相比时增加4kHz。然而,在高频处,平板因音圈大小现为关键而开始行为成二维物体。另一个从三个模态延伸为四个模态的解决方案可使用横杠耦合器而非分割的换能器,然后第四模态也可获得平衡。通过分割最外侧质量,使其落在最低交叉模态的节线,亦可获得进一步的改善。如图39a与39b所示,固定第四模态看来当然可对压力响应提供第五模态。
图40a与40b显示本发明的替换具体实施例,其中横梁状平板250具有随着长度而有所不同的厚度。平板250的总长度为306mm,及厚度从各边缘的t1=2mm线性增加至中心的t2=5mm。各换能器的音圈252、254安装在为离横梁中心0.08的位置。成对质量256、258、260安装在距离平板的对称线至边缘的0.28、0.53及0.80的位置。安装在0.28与0.53的质量在质量上等于音圈252、254,在0.80的成对质量260已减少质量。因此,为了模型的故,安装位置为12mm、45mm、85mm及128mm。音圈与内侧两对质量各为550mg,及外侧质量为400mg。
由于平板为对称,图41a显示图40a中所用具体实施例的平板的各半的前四个模态的形状。图41b显示这四个模态的傅立叶变换。λa=k.a.sin(θ),其中k是声学波数,a是平板的半长度,及θ是从平板主轴所测量的辐射角。请注意,除了刚性体模态FTC(0,λa),λa=0的变换全部消失。这对应于零频率或零角度,即,轴上。
图41c与41d显示图40a的平板的前四个模态(N=1…4)的响应的对数平均,其随着平板的对称线(或中心)至边缘(即,在半长度上)的距离而有所不同。极小值列表如下:
如以上参照图9a至9e所述,本方法具有足够的弹性,可使设计师仅映射特定模态。为前四个模态所计算的位置对应于图40a的装置中质量与音圈的位置。
下表针对变化于1与4.5mm间的最小宽度t1,显示图40a的楔形之前五个自由对称模态的频率。中心厚度维持在5mm。
前四个模态的节线的大约位置列表如下。由于平板为对称,因此仅显示一半平板的节线;在″x″的线条表示在″200-x″的线条。
Figure 2005800114302A00800373
Figure 2005800114302A00800381
Figure 2005800114302A00800382
比较其结果和图41c与41d的结果,对于t1=2,第二模态的节线的位置是在0.16与0.68,及两个模态的平均节位置是在0.16与0.65。第三模态的节线的位置在0.10、0.41及0.79,及三个模态的平均节位置在0.11、0.39及0.75。据此,如上述所示,平均节位置接近所考虑的最高模态的节线。
图42a显示理论扬声器的声压与声功率级,该扬声器包括由施加于平板中心的无质量点力驱动的自由对称楔形、刚性平板。平板为200mm长及20mm宽,从中心的5mm厚至各端的2mm厚逐渐变薄。声压与声功率通常随着频率而为固定达约10kHz,尽管在4.8kHz与9.5kHz有模态的突破点。然而,远场、轴上压力应为平坦,压力系模拟于200mm处,因而其中有变化。
图42b显示包括以具有25mm直径的音圈及取决于音圈的设计(材料、圈数等)的有限质量的换能器来驱动的自由、楔形平板的实际扬声器的声压与声功率级。声压与声功率和图42a所示的相比已经显著减弱。
图42c显示和图42b一样的实际扬声器的声压与声功率级,但其已映射为图42a所示的理想状况。因此已如图40所说明的施加上平衡质量。和图42b相比,效能有所改善。此外,由于此声压系模拟于200mm而非远场,因此装置可能比图42c显示的良好。
在图42a至42c的各图中,声压级(re20.4μPa)模拟于200mm且声功率级(re 1W)具有输入=1N。测量取自轴上、沿着横梁长轴的90°离轴及沿着横梁短轴的90°离轴。
图43a显示本发明的替换具体实施例,其中横梁状平板270具有随着长度而有所不同且非对称的厚度。平板270的总长度为153mm,且厚度随着从一端的2mm至相对端的5mm的平方根相依而增加。各换能器的音圈274、272安装在离平板较薄端的0.23与0.43的位置。成对质量276、278、279安装在距离平板的较薄端的0.06、0.66及0.88的位置。安装在0.66与0.88的质量在质量上等于音圈272、274,在0.06的成对质量280已减少质量。因此为了模型的故,安装位置为9mm、35mm、66mm、101mm及134mm。音圈与内侧两对质量各为550mg,及外侧质量为400mg。
图43b显示图43a所用具体实施例的平板的前四个模态的形状。图43c与43d显示前四个模态(N=1…4)的对数平均导纳,其沿着平板的长度而有所不同(从较薄端至较厚端)。极小值列表如下:
如以上关于图9a至9e所述,本方法具有足够的柔性,可使设计师仅映射特定模态。为前四个模态所计算的位置对应于图43a的装置中质量与音圈的位置。
下表显示图43a的楔形的前五个自由对称模态的频率,针对变化于1与4.5mm间的最小宽度t1。在5mm的最大宽度并未变化。平板材料是实际的材料,即RohacellTM发泡塑料。
Figure 2005800114302A00800401
前四个模态的节线的大约位置列表如下。
Figure 2005800114302A00800402
Figure 2005800114302A00800403
Figure 2005800114302A00800411
Figure 2005800114302A00800412
比较其结果和图43c与43d的结果,对于t1=2,第二模态的节线的位置是在0.115、0.46及0.85,及两个模态的平均节位置是在0.12、0.44及0.80。第三模态的节线的位置是在0.08、0.31、0.60及0.89,三个模态的平均节位置是在0.08、0.30、0.56及0.84。据此,如上述所示,平均节位置接近所考虑的最高模态的节线。两组比率均可能产生所需的趋向于零的净平均位移的效应。
图43a显示横梁厚度在线性上随着长度x而有所不同。如果考虑窄片的横梁,沿x的宽度取得,便有另一种均匀特性的概念横梁。如图44a所示,横梁的宽度按线性随着x而有所不同。模态频率比较如下:
Figure 2005800114302A00800421
不同宽度横梁的模态形状如图44b所示。从图中可见两个具体实施例的模态形状与模态频率实际上非常相似。这可用来表示,对于实际的实施,在解决方案组中有一些可用的容限,因而在设计规则的解读中,允许一些“艺术自由”。同时也允许设计师将“概念的”交叉模态设定为固定的频率。由于这和成正比,其中B随着xp+2而有所不同,其中宽度随着长度平方根而有所不同的平板将满足此标准。
各模态的平均体积速度Vn列表如下,其中V0是“活塞”模态的平均体积速度。
在两种情况中,所有弯曲模态的平均体积速度为零(在计算的容限内),因此两个具体实施例可用作理论上的理想典型,其中可对其映射实际声学装置的不平衡模态。
图45显示包括由施加于其中心的无质量点力驱动的自由矩形活塞的理论扬声器的声压与声功率级。声压随着频率为固定,且声功率在约k乘以L之前为固定,之后则随着频率的增加而逐渐消失。图46显示包括由施加于平板中心的无质量点力驱动的自由、矩形平板的扬声器的声压级(虚线)。实线显示现在由具有和音圈设计(材料、圈数等)相依的有限质量的实际25mm直径马达驱动的相同平板。
图47显示对应于图46声压级的声功率级。和图45的声功率下降相比,声功率随着频率的下降显著有所改善。然而,在实际的情况中,轴上压力与声功率均不再随着频率而为固定。(请注意,在较高频率处,模态密度增加,因此,用于模态插入及最佳驱动点耦合的分布模态宗旨将有利于效能)。
图48a与48b显示包括矩形平板280的形式的膜片及安装在其中的两个换能器282的扬声器。平板是以具有皮,轻量核心的合成材料制成。两对质量288、286安装在平板中心至一个角落(即,在平板的半对角线上)的距离的19%与88%的位置。各换能器282的音圈安装在离平板沿着半对角线的中心的55%的位置。平板通过悬架283安装至底架281并密封在障板(未显示)中。
换能器与质量的位置是按和先前各具体实施例相同的方式进行计算。x轴与Y轴的模态形状是分开考虑,并可从平板的弯曲刚度与表面积质量来计算。从阻抗的极小值可计算平均节位置。在所示的具体实施例中,质量与换能器的位置在考虑各位置的前三个模态时为XY二轴的平均节位置。如果考虑四个模态,则沿着对角线有额外有效位置。对于460mm乘以390mm的平板,各质量与换能器的(x,y)位置给定如下:
音圈各具有质量4g,所述质量的值按音圈的值进行缩放如下:
在获得平衡质量的值时,并未加总线圈质量,因各换能器仅关联其所驱动的轴。
图49与50显示图48a的扬声器的声压与声功率级。和图47没有平衡质量的扬声器相比时,在低至40Hz的低频均匀性有实质的改善。通过施加用于低频模态的阻尼,如经由悬架特性,可进一步使响应平顺。通过改变位置座标达±5%(或甚至±8%),亦可微调质量。微调可最佳化低频范围中声学输出的特定方面。
在外侧悬架具有显著质量时,设计师即有机会选择周围材料来分布此质量,请注意,其分布接近平板圆周。其优点是可经由阻尼及载入不受单一轴模态平衡技术影响的较高阶,例如,2D耦合模态进行额外控制。
图51a与51b显示图48a的扬声器的变化的声压与声功率级。外侧质量不再为离散,已经通过在悬架中均匀分布其总质量来取代。内侧质量的值够小,使其足以完全省略且几乎没有效应。
下表显示图48a的矩形平板的模态;第一模态是在72.3Hz:
适度模态密度出现在250Hz以上,其中所选平板参数如纵横比另外在这些较高频率处赋予分布模态操作。如果不需要此类型的具体实施例为全范围,则单是模态平衡即足以从共振平板膜片提供较低频率范围中的延伸活塞同等效能。
如果也需要膜片在较高频率处具有有用的模态行为,例如,分布模态,则在进一步改善时,可就相对于较高频率耦合的良好模态的最好驱动点重复平衡驱动位置的可用选项。后一个宗旨指出偏离中心及偏离横轴位置的偏好设定。通过检验平板面积上模态分布随频率的分析,可找到此类组合位置。
如果需要扬声器的更多输出,则可使用四个激励器,运用第二对角线,且现在使用八个质量进行运作。通常会将所有激励器接成对信号源的同相连接。
图52a与52b显示配置于横梁状平板膜片302与换能器音圈304之间的耦合器300。为了清楚的故,已省略换能器的磁铁组件。如图52b所示,显示耦合器为一个尺寸306,即圆形形状,其中其耦合至换能器音圈,并为第二尺寸308,即矩形形状,其中其耦合至膜片。矩形形状为显著比圆形形状大的尺寸,因此将小音圈组件经适配成较大的驱动。此外,耦合器将不当的音圈直径匹配至正确的驱动点。依此方式,可将适度成本的标准尺寸换能器适配到本发明。
图53a与53b显示配置于横梁状平板膜片302与换能器音圈304之间的耦合器310。为了清楚的故,已省略换能器的磁铁组件。如图53b所示,显示耦合器轮廓为一个尺寸312,即圆形形状,其中其耦合至换能器音圈,并为第二尺寸314,即蝴蝶结形状,其中其耦合至膜片。蝴蝶结形状为显著比圆形形状大的尺寸,因此将小音圈组件经适配成较大的驱动。此外,耦合器将不合适的音圈直径匹配至正确的驱动点。
在图52a与53a中,耦合器为中空的外壳,其为0.5mm厚的圆锥形纸。根据第一和第二尺寸的比率,耦合器的允许的耦合器质量及成本、更坚硬的外壳建构均可行,如碳纤维强化树脂及如Vectra的晶向模制热塑性塑料。
图54为换能器的音圈有效净力F相对音圈半径ρ的曲线图。F的计算通过在线圈圆周周围积分模态形状的位移所加权的力,或明确对线圈半径ρ进行积分,
Figure S05811430220061020D000451
其中y(n,ξ)为第n个模态的模态形状。
为了避免激化特定模态,对应的平均净力应会消失。换句话说,要函数F(n,ρ)的零交叉,即,节线的有效驱动。其结果列表达四个模态及最接近原点的节线。从这些结果显示,音圈的实际直径约音圈的有效驱动直径的1.5倍。
Figure 2005800114302A00800452
此外,请注意,F(1)在约0.8具有零交叉。因此安装具有和平板宽度的比率为0.8的直径的音圈可抑制最低交叉模态。
以上宗旨建议在膜片的周围以外安装悬架。图55a与55b显示比较实际的具体实施例,其中在膜片的边缘安装滚边的形式的悬架316、320。额外的悬架平衡质量318、322安装接近节线,致使边缘悬架与悬架平衡质量的结合效应等同于安装在平板周围内侧的悬架。
图55c显示四分之一膜片的横截面,其中,M1为安装接近节线的质量,Ms为悬架的胶粘区的质量,Md为悬架的主动部分的质量,ξ0与ξ1分别为膜片中心至节线及接近节线的质量的距离,及1-ξ2为胶粘区的宽度。有三个基本方式可确保悬架平衡质量与边缘悬架等同于内侧悬架。
最简单的方式是在考虑将胶粘区的质量和悬架主动部分的质量集总。对于横梁,这表示解答:
F(n,ξ1)=M1y(n,ξ1)+(Md+Ms)y(n,1)=0
其中y(n,ξ1)为模态形状。
例如,从具有直径32mm与质量1.5g的音圈的换能器开始,膜片具有40mm与156.8mm的宽度。选择宽度,使音圈直径为宽度与长度的80%,因此第四模态的有效净力为零,即,F(4)=0。
模态4的节线列表如下,其中还有来自教科书的对应的位置与质量。
Figure 2005800114302A00800461
悬架具有以下特性:
Ms+Md=1.8g/m×40mm=72mg。
Ks(刚度)=443.5N/m/m
Rs(阻尼)=0.063Ns/m/m
宽度(1-ξ2).L/2=4.0mm,使ξ2=0.949
据此,M1=M-Md-Ms=528mg。使用上述集总近似值使ξ1=0.897,即,悬架平衡质量的位置是在从膜片一端所测量的8.1mm与148.7mm。不用集总简化,位置的计算为7.9mm与148.9mm(即,非常相似)。在两种情况中,附着点比节线离膜片边缘至少远1mm。
图56a与56b分别显示不含及含有悬架平衡质量的扬声器响应。图56c比较不含及含有悬架平衡质量的功率响应。在两个测量中,使用悬架平衡质量显著改善了扬声器。
圆形膜片的方程式为:
F ( n , ξ 1 ) = 1 ξ M 1 y ( n , ξ 1 ) + ( Md + Ms ) y ( n , 1 ) = 0
这可通过保留总质量或单位长度的总质量加以解答。如果第四模态的ξ0(即,节线的位置)是0.919,则保留总质量将使ξ1=0.8947及M1=3.4。保留单位长度的质量将获得相似的结果,即ξ1=0.8946及M1=3.387。
也可以通过确保悬架平衡质量接合至胶粘区以并入悬架平衡质量作为悬架的部分。方程式现在更加复杂,例如,对于横梁膜片:
F(n,ξ1)=M1(ξ1)y(n,ξ1)+μl(yi(n,1)-yi(n,ξ1))+Mdy(n,1)=0
其中μl是胶粘区的单位长度的质量,及M是需要的总质量。
图57a与57b显示大致和图1a与1b的扬声器一样的话筒。话筒包括:膜片,其为圆形平板324的形式;及换能器,其具有于0.2比率处按同心的方式安装至平板324的音圈332。三个环状(或环形)质量326、330、332是在比率0.44、0.69及0.91处按同心的方式安装至平板324。平板与换能器系支撑于圆形底架336,底架则通过圆形悬架334附着至平板324。悬架334附着于0.91比率处。换能器接地至底架336。
入射声学能量338使平板振动,且由换能器检测此振动并将其转换成电信号。信号经由接线与话筒输出连接340输出。
图58显示具有圆角的矩形平板342,因而平板没有固定的宽度。平板为100mm长乘以36mm宽、3.2mm厚,并以经济树脂粘接的纸合成物制成,例如,Honipan HHM-PGP。换能器具有安装在具有28mm的轻量耦合环344的平板的直径25mm的音圈。换能器因此有效驱动两个对置位置(或驱动横跨平板宽度上的直线),其离中心为13mm,即,在0.26的比率处。带状质量346的形式的机械阻抗构件设在离中心41.5mm的对置位置,即,在0.83的比率处。操作频率范围中有两个模态,其可通过换能器与机械阻抗构件的位置来说明。
音圈具有1g的质量,但在分开位置的驱动代表各位置的有效质量已经减半。质量346为具有平衡各位置的音圈的有效质量(即,0.5g)的质量的普通橡胶的带状物。
平板通过低机械阻抗的悬架348而支撑于模制塑料框架350中,借此平板基本上可自由共振。此类扬声器适于较高品质的平面电视与监视器应用,并具有含均匀频率与良好功率响应的标称100Hz至20kHz频宽。
图59显示浅环形圆锥形352的形式的膜片,其中中心小孔已填满平面截面354。平面截面基本上在声学上密封中心小孔,且不会在中心造成过硬的尖头,而这在使圆锥形连续成为一点时便会如此。
平面截面354的半径r和圆锥形352的外径R的比率是额外膜片参数,可调整此参数以实现所需的声学响应。利用若干中级目标可实现此调整。例如:
1)可调整比率使圆锥形为另一种理论上的理想典型,对其可映射实际声学装置的不平衡模态。可计算此理论上理想典型的平均节位置,然后用来建议线圈与质量的放置。
2)可加入质量的形式的机械阻抗以实现趋向于零的净横向模态速度。
可有所变化的额外参数为凹下部分的高度h、形状及角度,已发现所有这些项目共同和平面截面有关。例如,已发现后者可平衡驱动在节线上的模态。然后可发现只有一个额外平衡器的解决方案。驱动与平衡机械阻抗或阻抗的位置则未显示。根据其他参数与预计的操作范围,可增加机械阻抗。

Claims (89)

1.一种声学装置,其包括:一膜片,其具有一面积且具有一操作频率范围,且该膜片为致使其在该操作频率范围中具有共振模态;一机电换能器,其具有耦合至该膜片且经适配可和该膜片交换能量的一驱动零件;及至少一机械阻抗构件,其耦合至该膜片或和该膜片整合;该换能器的驱动零件及该至少一机械阻抗构件的定位与质量为致使该膜片面积上的净横向模态速度趋向于零。
2.根据权利要求1所述的声学装置,其中膜片参数为致使在该操作频率范围中有两个膜片模态。
3.根据权利要求1或2所述的声学装置,其中该操作频率范围包括活塞至模态转变且其中该换能器系经适配可移动平移中的膜片。
4.根据权利要求1所述的声学装置,其中该换能器的驱动零件是在该操作频率范围中模态的一平均节位置处耦合至该膜片。
5.根据权利要求1所述的声学装置,其中该至少一机械阻抗构件是在该操作频率范围中模态的一平均节位置处耦合至该膜片或和其整合。
6.根据权利要求1所述的声学装置,其中该换能器为具有形成该驱动零件的一音圈与一磁铁系统的动圈装置,且包括在该操作频率范围中模态的一平均节位置处将该音圈耦合至该膜片的构件。
7.根据权利要求6所述的声学装置,包括一底架及将该膜片耦合至该底架的一弹性悬架,该悬架是在该操作频率范围中模态的一平均节位置处耦合至该膜片。
8.根据权利要求7所述的声学装置,其中该磁铁系统接地至该底架。
9.根据权利要求7所述的声学装置,其中该换能器驱动零件耦合至该膜片的位置为和该悬架耦合至该膜片的位置的一不同位置。
10.根据权利要求9所述的声学装置,其中该膜片具有一大致圆形周围及一质量中心。
11.根据权利要求10所述的声学装置,其中该膜片的该等参数为致使该第一膜片的波数与半径之积ka低于2,其中k为波数及a为该膜片半径。
12.根据权利要求10所述的声学装置,其中该平均节位置或各平均节位置是在一环形面且该环形面的直径和该膜片的直径的该比率取决于该操作频率范围中的模态数。
13.根据权利要求12所述的声学装置,其中另外考虑轴向模态。
14.根据权利要求11所述的声学装置,其中该换能器的该驱动零件系按同心的方式和该膜片的该质量中心耦合。
15.根据权利要求11所述的声学装置,其中该悬架按同心的方式和该膜片的该质量中心耦合并远离其周围。
16.根据权利要求11所述的声学装置,其中该至少一机械阻抗构件为一环形质量的形式。
17.根据权利要求16所述的声学装置,其包括若干环形质量,其是在该操作频率范围中模态的平均节位置处耦合至该膜片或和该膜片整合。
18.根据权利要求4所述的声学装置,其中该膜片大致为矩形且具有一质量中心。
19.根据权利要求18所述的声学装置,其中该膜片的该等参数为致使该第一膜片的波数与膜片的半长度之积kl低于1,其中k为波数,及l为该膜片的半长度。
20.根据权利要求18所述的声学装置,其中该平均节位置或各平均节位置是在一对对置位置,且各对置位置离该膜片的该质量中心的距离与该膜片的半长度的比率取决于该操作频率范围中的该模态数。
21.根据权利要求20所述的声学装置,其包括一对换能器,该对换能器中的各换能器安装在该等对置位置之一。
22.根据权利要求20所述的声学装置,其中该换能器安装在该膜片中心,致使其驱动零件驱动该等两个对置位置。
23.根据权利要求20所述的声学装置,其中该悬架设在该等对置位置处。
24.根据权利要求20所述的声学装置,其中该机械阻抗构件为一对质量的形式,其中每一质量设在该等对置位置之一。
25.根据权利要求24所述的声学装置,其包括若干成对质量,其耦合至该膜片或和该膜片整合。
26.根据权利要求18所述的声学装置,其中该膜片为横梁状且其中该等模态沿着该横梁的长轴。
27.根据权利要求26所述的声学装置,其中该换能器构件的该驱动零件及该至少一机械阻抗构件沿着该横梁的该长轴而耦合至该膜片。
28.根据权利要求18所述的声学装置,其中该换能器驱动零件的直径和该膜片的宽度的比率可抑制最低交叉模态。
29.根据权利要求28所述的声学装置,其中该换能器驱动零件的直径和该膜片的宽度的比率为0.8+/-10%。
30.根据权利要求16或25所述的声学装置,其中该等质量的值朝向该膜片的中心减少。
31.根据权利要求16或25所述的声学装置,其中该等质量按该换能器驱动零件质量进行缩放。
32.根据权利要求1所述的声学装置,其中该膜片对于弯曲刚度为各向同性。
33.根据权利要求10所述的声学装置,其包括阻尼构件,其是在高膜片速度的一位置处安装在该膜片或和该膜片整合,以阻尼一模态。
34.根据权利要求33所述的声学装置,其中该阻尼构件为按同心的方式而和该膜片的该质量中心耦合的一环形衬垫。
35.根据权利要求1所述的声学装置,其包括一轻量刚性耦合器的形式的一尺寸适配器,其将该换能器耦合至该膜片。
36.根据权利要求35所述的声学装置,其中该耦合器是在一第一直径处耦合至该换能器及于一第二直径处耦合至该膜片。
37.根据权利要求35或36所述的声学装置,其中该耦合器为截头圆锥形。
38.根据权利要求1所述的声学装置,其中该膜片包括一小孔。
39.根据权利要求38所述的声学装置,其包括:一第二膜片,其安装在该小孔内,该第二膜片具有一面积与一操作频率范围且该第二膜片为致使其在该操作频率范围中具有共振模态;一机电换能器,其具有一驱动零件且系耦合至该膜片,并经适配可和该膜片交换能量;及至少一机械阻抗构件,其耦合至该膜片或和该膜片整合;该换能器的该驱动零件的该定位与质量及该至少一机械阻抗构件的该定位与质量为致使该第二膜片的该面积上的该净横向模态速度趋向于零。
40.根据权利要求38所述的声学装置,其包括一部件,其安装在该小孔中,借此该小孔在声学上基本上为密封。
41.根据权利要求1所述的声学装置,其中该膜片基本上为平面。
42.根据权利要求7所述的声学装置,其中该悬架的质量按该换能器驱动零件的质量进行缩放。
43.根据权利要求1所述的声学装置,其中该声学装置为一扬声器且该换能器经适配可响应施加于该换能器的一电信号将弯曲波的能量施加于该膜片,且其中该膜片经适配可在一辐射面积上辐射声学声音。
44.根据权利要求43所述的声学装置,其包括一障板,其围绕该膜片的该辐射面积。
45.一种制作一声学装置的方法,该声学装置含有具有一面积且具有一操作频率范围的一膜片,该方法包括:选择该膜片参数使该膜片在该操作频率范围中具有共振模态;将一机电换能器的一驱动零件耦合至该膜片,以和该膜片交换能量;在该膜片中加入至少一机械阻抗构件;及选择该换能器的驱动零件的定位与质量及至少一机械阻抗构件的定位与参数,致使该面积上的净横向模态速度趋向于零。
46.根据权利要求45所述的方法,其包括映射一自由振动膜片的速度剖面至该膜片的速度剖面。
47.根据权利要求45或46所述的方法,其包括配置膜片参数致使在该操作频率范围中有两个膜片模态。
48.根据权利要求45所述的方法,其包括配置该操作频率范围以包括活塞至模态转变及配置该换能器以移动平移中的该膜片。
49.根据权利要求45所述的方法,其包括在该操作频率范围中的模态的一平均节位置处,将该换能器驱动零件耦合至该膜片。
50.根据权利要求45所述的方法,其包括配置该至少一机械阻抗构件在位于该操作频率范围中该膜片的模态的一平均节位置处。
51.根据权利要求45所述的方法,其中该换能器为具有形成该驱动零件的一音圈与一磁铁系统的动圈装置,且包括在该操作频率范围中模态的一平均节位置将该音圈耦合至该膜片。
52.根据权利要求51所述的方法,其包括在该操作频率范围中的模态的一平均节位置处,将一弹性悬架耦合至该膜片及将该悬架耦合至一底架。
53.根据权利要求52所述的方法,其包括将该磁铁系统耦合至该底架。
54.根据权利要求52所述的方法,其包括在和该悬架耦合至该膜片的位置的一不同位置处,将该换能器驱动零件耦合至该膜片。
55.根据权利要求52所述的方法,其包括按该换能器驱动零件的质量缩放该悬架的质量。
56.根据权利要求50所述的方法,其包括配置该膜片以具有一基本上圆形周围及一质量中心。
57.根据权利要求56所述的方法,其包括配置该膜片的该等参数致使该第一膜片的波数与半径之积ka低于2,其中k为波数及a为该膜片半径。
58.根据权利要求56或57所述的方法,其包括:通过改变该膜片在其中心与其周围间的驱动直径来平衡该膜片模态;随着该驱动直径的改变计算平均驱动点导纳;及在该导纳极小值所给定的位置中加入机械阻抗。
59.根据权利要求56所述的方法,其包括:配置该平均节位置或各平均节位置处于一环形面处;及从该操作频率范围中的径向模态数决定该环形面的直径和该膜片的直径的比率。
60.根据权利要求59所述的方法,其包括考虑轴向模态。
61.根据权利要求56所述的方法,其包括以该膜片的该质量中心按同心的方式将该换能器该驱动零件耦合至该膜片。
62.根据权利要求56所述的方法,其包括关于该膜片的该质量中心按同心的方式耦合该悬架并远离其周围。
63.根据权利要求56所述的方法,其包括配置该至少一机械阻抗构件作为一环形质量。
64.根据权利要求63所述的方法,其包括提供若干环形质量。
65.根据权利要求52所述的方法,其包括配置该膜片成为大致矩形且具有一质量中心。
66.根据权利要求65所述的方法,其包括选择该膜片的该等参数,致使该第一膜片波数与膜片的半长度之积kl低于1,其中k为波数,及l为该膜片的半长度。
67.根据权利要求65或66所述的方法,其包括配置该平均节位置或各平均节位置处于一对对置位置;及从该操作频率范围中的该模态数决定各对置位置离该膜片的该质量中心的距离与该膜片的半长度的比率。
68.根据权利要求67所述的方法,其包括在各对置位置安装一换能器。
69.根据权利要求67所述的方法,其包括以该膜片为中心安装一换能器,致使其驱动零件驱动该等两个对置位置。
70.根据权利要求67所述的方法,其包括在该等对置位置处设置该悬架。
71.根据权利要求67所述的方法,其包括加入一对质量的形式的机械阻抗构件及在该等对置位置的一处设置各质量。
72.根据权利要求71所述的方法,其包括在该膜片中加入若干成对质量。
73.根据权利要求65所述的方法,其包括配置该膜片成为横梁状且具有沿着该膜片的长轴的模态。
74.根据权利要求73所述的方法,其包括沿着该膜片的该长轴耦合该换能器构件的该驱动零件及该至少一机械阻抗构件。
75.根据权利要求65所述的方法,其包括选择该换能器驱动零件的直径与该膜片的宽度的比率,以抑制最低交叉模态。
76.根据权利要求75所述的方法,其包括选择该换能器驱动零件的直径和该膜片的宽度的比率以成为0.8+/-10%。
77.根据权利要求64所述的方法,其包括配置使该等质量的值朝向该膜片的中心减少。
78.根据权利要求64,72或77所述的方法,其包括按该换能器驱动零件的质量缩放该等质量。
79.根据权利要求45所述的方法,其包括配置该膜片对于弯曲刚度为各向同性。
80.根据权利要求56所述的方法,其包括:选择要阻尼的一模态;及在高膜片速度的一位置处,在该膜片中加入阻尼构件,借此阻尼该选定的模态。
81.根据权利要求80所述的方法,其包括以该膜片的该质量中心按同心的方式耦合至一环形阻尼垫的形式的阻尼构件。
82.根据权利要求45所述的方法,其包括使用一轻量刚性适配器的形式的一尺寸适配器将该换能器耦合至该膜片。
83.根据权利要求82所述的方法,其包括在一第一直径处,将该耦合器耦合至该换能器,及在一第二直径处,将该耦合器耦合至该膜片。
84.根据权利要求45所述的方法,其包括在该膜片中提供一小孔。
85.根据权利要求84所述的方法,其包括在该膜片中的该小孔内配置一第二膜片,其中该第二膜片具有一面积及一操作频率范围且包括:选择该第二膜片参数,使其在该操作频率范围中具有共振模态;将一换能器驱动零件耦合至该第二膜片以在其中交换弯曲波的能量;及将至少一机械阻抗构件施加至该膜片上。
86.根据权利要求84所述的方法,其包括在该小孔中安装一密封部件,借此该小孔在声学上基本上为密封。
87.根据权利要求45所述的方法,其包括配置该膜片成为基本上平面。
88.根据权利要求45所述的方法,其包括按该换能器驱动零件的质量缩放该悬架的质量。
89.根据权利要求16或25所述的声学装置,其中该等质量按该换能器驱动零件质量进行缩放。
CN2005800114302A 2004-04-16 2005-04-08 声学装置及制作声学装置的方法 Active CN1973573B (zh)

Applications Claiming Priority (15)

Application Number Priority Date Filing Date Title
GB0408499.2 2004-04-16
GB0408464.6 2004-04-16
GB0408519A GB0408519D0 (en) 2004-04-16 2004-04-16 Loudspeakers
GB0408499A GB0408499D0 (en) 2004-04-16 2004-04-16 Loudspeakers
GB0408464A GB0408464D0 (en) 2004-04-16 2004-04-16 Loudspeakers
GB0408519.7 2004-04-16
GB0415631A GB0415631D0 (en) 2004-07-13 2004-07-13 Loudspeaker
GB0415631.1 2004-07-13
GB0425921.4 2004-11-25
GB0425923A GB0425923D0 (en) 2004-11-25 2004-11-25 Panel-form bending wave loudspeaker
GB0425923.0 2004-11-25
GB0425921A GB0425921D0 (en) 2004-11-25 2004-11-25 Panel-form bending wave loudspeaker
GB0500161A GB0500161D0 (en) 2005-01-06 2005-01-06 Panel-form bending wave loudspeakers
GB0500161.5 2005-01-06
PCT/GB2005/001352 WO2005101899A2 (en) 2004-04-16 2005-04-08 Acoustic device & method of making acoustic device

Publications (2)

Publication Number Publication Date
CN1973573A CN1973573A (zh) 2007-05-30
CN1973573B true CN1973573B (zh) 2011-09-21

Family

ID=32320913

Family Applications (1)

Application Number Title Priority Date Filing Date
CN2005800114302A Active CN1973573B (zh) 2004-04-16 2005-04-08 声学装置及制作声学装置的方法

Country Status (2)

Country Link
CN (1) CN1973573B (zh)
GB (1) GB0408464D0 (zh)

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CA2748252C (en) * 2008-12-26 2014-05-27 Panasonic Electric Works Co., Ltd. Piezoelectric speaker, piezoelectric audio device employing piezoelectric speaker, and sensor with alert device attached
CN102957990A (zh) * 2011-08-29 2013-03-06 何永平 电声转换装置及其音质调节方法
CN102740184B (zh) * 2011-12-20 2014-07-16 西北工业大学 一种分频段确定加筋板壳结构机械导纳的方法
CN103217309B (zh) * 2013-04-03 2015-06-17 哈尔滨工程大学 非对称管道消声器传递损失测量方法
US10123764B2 (en) 2017-03-28 2018-11-13 Coleridge Design Associates Llc Vibro-acoustic transducer
CN109618271B (zh) * 2017-09-26 2021-08-27 惠州迪芬尼声学科技股份有限公司 对扬声器的声负载产生预测曲线的方法
CN110283389A (zh) * 2019-06-14 2019-09-27 歌尔股份有限公司 一种发声装置的振膜以及发声装置

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5304746A (en) * 1990-06-19 1994-04-19 Purvine Harold O Reduction of standing waves and intermodulation distortion in electro-acoustic transducer

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5304746A (en) * 1990-06-19 1994-04-19 Purvine Harold O Reduction of standing waves and intermodulation distortion in electro-acoustic transducer

Also Published As

Publication number Publication date
CN1973573A (zh) 2007-05-30
GB0408464D0 (en) 2004-05-19

Similar Documents

Publication Publication Date Title
EP1736030B1 (en) Acoustic device & method of making acoustic device
CN1973573B (zh) 声学装置及制作声学装置的方法
US4654554A (en) Piezoelectric vibrating elements and piezoelectric electroacoustic transducers
US8391540B2 (en) Bending wave acoustic device and method of making thereof
EP1654908B1 (en) Loudspeaker with undulated membrane
EP1283002B1 (en) Loudspeaker having an acoustic panel and an electrical driver
JPS6310900A (ja) 広帯域スピ−カ
EP1797741B1 (en) Loudspeaker with an acoustic membrane
TWI835518B (zh) 一種揚聲器
GB2574591A (en) Product with integrally formed vibrating panel loudspeaker
KR20210132304A (ko) 산업용음향 장치 및 음향 장치를 제조하는 방법
JPH0568159B2 (zh)
WO2024029308A1 (ja) 電気音響変換器及びヘッドホン
JP3092691U (ja) 平板式スピーカーとその放射パネル
CN111567062B (zh) 平板扬声器
US20080273739A1 (en) Ribbon transducer with improved excursion and dispersion characteristics
JPH0233300A (ja) 圧電スピーカ
JPH08307989A (ja) 二制動水波式共振板
JP2000295691A (ja) 平板スピーカ

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C14 Grant of patent or utility model
GR01 Patent grant