CN1973414A - 用于接地故障电路中断器的利用单个传感器的基于微控制器的方法 - Google Patents

用于接地故障电路中断器的利用单个传感器的基于微控制器的方法 Download PDF

Info

Publication number
CN1973414A
CN1973414A CNA2004800375312A CN200480037531A CN1973414A CN 1973414 A CN1973414 A CN 1973414A CN A2004800375312 A CNA2004800375312 A CN A2004800375312A CN 200480037531 A CN200480037531 A CN 200480037531A CN 1973414 A CN1973414 A CN 1973414A
Authority
CN
China
Prior art keywords
threshold value
ground
neutral
microcontroller
grounded
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CNA2004800375312A
Other languages
English (en)
Other versions
CN1973414B (zh
Inventor
P·A·赖德
R·J·加斯
S·M·米莱德
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Schneider Electric USA Inc
Original Assignee
Square D Co
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Square D Co filed Critical Square D Co
Publication of CN1973414A publication Critical patent/CN1973414A/zh
Application granted granted Critical
Publication of CN1973414B publication Critical patent/CN1973414B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02HEMERGENCY PROTECTIVE CIRCUIT ARRANGEMENTS
    • H02H3/00Emergency protective circuit arrangements for automatic disconnection directly responsive to an undesired change from normal electric working condition with or without subsequent reconnection ; integrated protection
    • H02H3/16Emergency protective circuit arrangements for automatic disconnection directly responsive to an undesired change from normal electric working condition with or without subsequent reconnection ; integrated protection responsive to fault current to earth, frame or mass
    • H02H3/167Emergency protective circuit arrangements for automatic disconnection directly responsive to an undesired change from normal electric working condition with or without subsequent reconnection ; integrated protection responsive to fault current to earth, frame or mass combined with other earth-fault protective arrangements
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R31/00Arrangements for testing electric properties; Arrangements for locating electric faults; Arrangements for electrical testing characterised by what is being tested not provided for elsewhere
    • G01R31/50Testing of electric apparatus, lines, cables or components for short-circuits, continuity, leakage current or incorrect line connections
    • G01R31/52Testing for short-circuits, leakage current or ground faults
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02HEMERGENCY PROTECTIVE CIRCUIT ARRANGEMENTS
    • H02H3/00Emergency protective circuit arrangements for automatic disconnection directly responsive to an undesired change from normal electric working condition with or without subsequent reconnection ; integrated protection
    • H02H3/26Emergency protective circuit arrangements for automatic disconnection directly responsive to an undesired change from normal electric working condition with or without subsequent reconnection ; integrated protection responsive to difference between voltages or between currents; responsive to phase angle between voltages or between currents
    • H02H3/32Emergency protective circuit arrangements for automatic disconnection directly responsive to an undesired change from normal electric working condition with or without subsequent reconnection ; integrated protection responsive to difference between voltages or between currents; responsive to phase angle between voltages or between currents involving comparison of the voltage or current values at corresponding points in different conductors of a single system, e.g. of currents in go and return conductors
    • H02H3/33Emergency protective circuit arrangements for automatic disconnection directly responsive to an undesired change from normal electric working condition with or without subsequent reconnection ; integrated protection responsive to difference between voltages or between currents; responsive to phase angle between voltages or between currents involving comparison of the voltage or current values at corresponding points in different conductors of a single system, e.g. of currents in go and return conductors using summation current transformers
    • H02H3/331Emergency protective circuit arrangements for automatic disconnection directly responsive to an undesired change from normal electric working condition with or without subsequent reconnection ; integrated protection responsive to difference between voltages or between currents; responsive to phase angle between voltages or between currents involving comparison of the voltage or current values at corresponding points in different conductors of a single system, e.g. of currents in go and return conductors using summation current transformers responsive to earthing of the neutral conductor
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y04INFORMATION OR COMMUNICATION TECHNOLOGIES HAVING AN IMPACT ON OTHER TECHNOLOGY AREAS
    • Y04SSYSTEMS INTEGRATING TECHNOLOGIES RELATED TO POWER NETWORK OPERATION, COMMUNICATION OR INFORMATION TECHNOLOGIES FOR IMPROVING THE ELECTRICAL POWER GENERATION, TRANSMISSION, DISTRIBUTION, MANAGEMENT OR USAGE, i.e. SMART GRIDS
    • Y04S10/00Systems supporting electrical power generation, transmission or distribution
    • Y04S10/50Systems or methods supporting the power network operation or management, involving a certain degree of interaction with the load-side end user applications
    • Y04S10/52Outage or fault management, e.g. fault detection or location

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Emergency Protection Circuit Devices (AREA)
  • Testing Of Short-Circuits, Discontinuities, Leakage, Or Incorrect Line Connections (AREA)
  • Locating Faults (AREA)
  • Breakers (AREA)

Abstract

本发明提出一种用于接地故障电路中断器的基于微控制器的温度补偿电路以便符合UL 943要求,其使用单个传感器来检测全波和半波AC电源中的接地故障状态和接地中线故障状态,所述全波和半波AC电源是接地故障断路器或插座装置的一部分。

Description

用于接地故障电路中断器的利用单个传感器的 基于微控制器的方法
发明背景
为了满足UL943的要求,接地故障保护装置(例如断路器和插座)的现有涉及一般使用模拟电路和两个电流传感器。一个传感器需要被用于检测表征接地故障的电流不平衡,第二传感器被用作休眠振荡器电路的一部分,该休眠振荡器电路用于检测可能降低所述接地故障检测能力的接地中线(grounded-neutral)状态。由于模拟电路仅提供极小的补偿或校准能力,因此这些传感器需要在很宽的温度范围内具有高精确度并且具有较低的部件间差异。此外,由于没有非易失性存储器功能可用,所以如果电源是断续的,则该模拟方法可能不会工作得很好。
发明概要
简要地说,本发明利用单个廉价电流传感器和小型廉价微控制器的组合来满足UL943的全部要求,同时解决了现有技术中存在的问题,其中该组合被设计成用作接地故障断路器或者插座装置的一部分。
根据本发明的另一个实施例,通过将接地故障检测和接地中线检测的功能组合到一个传感器中,与两个传感器的方法相比减少了成本。
根据本发明的另一个实施例,用来校正传感器在温度上的非线性的简单的温度测量和补偿方案允许将传感器设计成能利用低成本的材料和简单的制造工艺。
本发明的另一个实施例利用在电路组装过程中提供基于软件的校准的可编程装置来克服传感器电路中的部件间差异。这使得各传感器电路组件具有更宽的可接受容差范围,并且减少了不合格组件材料的数量。
根据本发明的另一个实施例,提供模拟存储器功能,从而如果在脱扣电路(trip circuit)有时间激活之前暂时失去电力,则在检测出故障时恢复电路脱扣状态。该特征允许本发明的电路利用经过半波整流的电源或者其他断续电源来操作。
附图简述
在附图中:
图1是具体实现本发明的接地故障电路中断器的示意图;
图2是示出图1的电路中的存储电容器的使用的时序图;
图3示出利用半波电源的接地故障检测的一系列波形;
图4示出利用全波电源的接地故障检测的一系列波形;
图5a和5b示出对于不存在接地中线的状态的检测;以及
图6a和6b示出对于接地中线状态的检测。
说明性实施例的详细描述
参见附图,开始参见图1,其中数字的、基于微控制器的接地故障电路中断器(GFCI)电路10被设置成利用作为传感器的单个变流器T1来分别检测火线(line conductor)30和中性线32上的接地故障状态和接地中线状态。
该数字微控制器U1是例如PIC12CE673微控制器、数字信号处理器或ASIC装置之类的装置,其例如具有以下特征:板上RAM、非易失性存储器、内部定时器、内部模数(A/D)转换器以及模拟和数字端口。
供给GFCI电路10的DC功率由电源电路20和基准电路22提供,该电源电路从火线30和中性线32吸取功率,该基准电路产生所需要的经过调节的DC电压电平。该完整的电源由脱扣螺线管L1、变阻器MOV1、整流器CR1、电容器C1、降压电阻器R1、二极管串CR2-CR5、参考二极管CR6和输出电容器C3组成。所述脱扣螺线管L1、电容器C1和变阻器MOV1执行输入滤波和电涌限制。该脱扣螺线管L1通过提供输入滤波器来执行多种功能,例如用于电涌和噪声抑制的串联阻抗、用于在电源出现短路故障时打开各主接触件(未示出)的装置、或者在检测到接地故障或接地中线状态的情况下用于预定脱扣功能的装置。该整流器CR1对输入的AC电流进行整流,电容器C1提供附加的能量存储和对高频瞬变的抑制。该降压电阻器R1的规格被设定成适于维持足够的电流以便对该电压基准电路22中的二极管串CR2-CR6进行正向偏置,并且以最小输入电压为该电路提供所需要的操作电流。对于该微控制器和其他电路的操作所需要的DC电压电平受到二极管串CR2-CR6的调节。对于感测电路24的稳定操作所需要的基准电压由CR6和C3提供。电容器C3提供在瞬变状态下的少量的能量存储。该经调节的Vref输出在~66到~132VAC的输入范围内可用。如本领域技术人员所熟知的那样,该输出电压Vref和输入范围可以通过改变组件值来调节。
电容器C2和硅控整流器(SCR)Q1执行脱扣功能。当通过微控制器U1检测到故障时,微控制器U1的数字输出“脱扣”引脚被设置,其导通SCR Q1并且建立通过螺线管L1、整流器CR1和SCR Q1的电流通路。所产生的电流的电平足以激活该脱扣螺线管L1并且打开各主接触件(未示出)。电容器C2为SCR Q1的栅极提供噪声抑制,并且在脱扣操作期间存储电压以便将Q1的“导通”状态维持更长的时间。
手动检测电路18由手动按压检测(push-to-test)开关PTT以及一对电阻器R11和R12组成。当开关PTT被按下,就会产生足够的电流以使得该GFCI电路10检测到故障并且利用所述脱扣功能来打开各主接触件(未示出)。
电流感测电路24由耦合到火线30的变流器T1、中性线32以及包括运算放大器U2和一对电阻器R7、R8的放大器电路组成。偏压电阻分压器电路由一对电阻器R3和R4形成,其建立的电路电压是Vref的1/2。这样确保传感器电路24输出的“零”电平位于微控制器U1的A/D输入端的轨线的中间以便于包络检测。
变流器T1的磁导率受到环境温度变化的影响,优选地在接地故障阈值电平和接地中线阈值电平中对环境温度的变化进行补偿。
可选的温度感测电路26利用小信号双极型结型晶体管Q3的基极-发射极电压来提供对变流器T1附近的周围温度状态的读取。晶体管Q3的结偏置电流由连接到基准电源电压Vref的电阻器R13设置。通过微控制器U1对基准电压Vref和晶体管Q3的基极上的电压进行采样,并且所述采样值被用于调节接地故障阈值和接地中线检测基准值,以便补偿变流器T1的性能随温度的变化。
在制造过程期间,所述微控制器可以被编程来计算在给定温度下的接地故障阈值和接地中线阈值,并且将所述阈值存储在非易失性存储器中。另一种温度补偿方法将在下面参考图5和6进行论述。
模拟短时存储器电路28由电容器C6、负载电阻器R9和泄漏(bleed)电阻器R10组成。微控制器U1利用双向引脚Mern_cap作为模拟输入端以便读取存储器电路28的电压,并且将其作为数字输出端以便对存储器电路28的电容器C6充电。如果检测到故障,则在微控制器U1中运行的软件使得电荷被放置在电容器C6上。如果在脱扣螺线管能够打开所述接触件之前失去电力,则该脱扣存储器(即电容器C6上的电压)将保持较短时间,并且在电源电压恢复之后重新激活所述脱扣功能(通过微控制器U1)。存储器电路28允许GFCI电路10利用经过半波整流的电源或者其他断续电源进行操作。
现在参见图2,该时序图显示在正常操作(没有检测到故障)期间的模拟存储器电路28的使用,其用于定时的目的,以便确定何时执行接地中线检查和接地故障检查。存储器电路28允许即使在使用经过半波整流(断续)的电源的情况下仍然允许接地中线检查的定时保持一致。当该存储器电路的电压达到接近放电的状态时,微控制器U1将电容器C6充电到小于如上所述的指示待定脱扣所需要的量的电压电平,并且在该时间间隔期间执行连续的接地故障检测,直到该电压电容器C6再次达到接近放电的状态。当由微控制器U1采样的存储器电路28的电压达到接近放电的状态时,在该中间的时间或空间间隔期间执行接地中线检查。这一循环如图所示地那样每秒发生几次,并且能够通过改变存储电容器C6和泄漏电阻器R10的值而对其进行调节。
现在转到图3,其中示出基于经半波整流的电源的、从通电到电路脱扣的接地故障检测的操作。在100a,电源启动,在102a,该微控制器U1被初始化,并且该存储电容器C6被读取以便如上所述地确定是否从前一循环存在未实现的脱扣状态。在104,接地故障感测功能接通开关Q2,从而将低阻抗负载电阻器R6置于T1的次级两端的电路中。运算放大器U2将该电阻器R6两端的电压放大到允许微控制器U1的板上A/D转换器读取5mA的接地故障电流的电平。在软件中将所述结果与基准接地故障阈值进行比较,以便确定是否超过了脱扣阈值,从而指示故障。如果故障确实存在,那么在106对存储电容器C6充电以便指示待定脱扣状态,并且在108a激活所述脱扣功能以便试图在剩余的时间中引起电路脱扣。然而,在110,该半波电源关闭。在100b,该电源再次启动,并且在102b该微处理器U1被重新初始化,但是存储电容器C6上的电荷指示待定脱扣状态,所以在108b激活该脱扣功能以便立即引起电路脱扣。
如图4所示,当利用全波电源连续供电时,由于在负半线周期期间也有功率可用来激活所述脱扣功能,因此电路脱扣可以更快地发生。当利用全波电源时,图3中的启动周期100和102仅在通电/复位时被执行一次,并且没有在图4中示出。在接地故障感测期间,微控制器U1接通开关Q2,从而将低阻抗负载电阻器R6置于T1次级两端的电路中。运算放大器U2将该信号放大到允许微控制器U1的板上A/D转换器读取5mA的接地故障电流的电平。在软件中将所述结果与基准接地故障阈值进行比较,以便确定是否超过了脱扣阈值。如果故障确实存在,那么在106对该存储电容器进行充电以便指示待定脱扣状态,并且在108激活所述脱扣功能以便立即引起电路脱扣。如果在电路脱扣之前干线电路被中断,那么所述存储器功能在短时间内可以有助于在恢复电力时立即执行脱扣。
现在转向图5-6,当不存在接地中线状态以及当存在1欧姆接地中线时,对于接地中线检测功能的操作示出电流感测电路24的输出波形。
当存储电容器C6上的电压达到接近放电的状态时,进入接地中线检测模式。这在电路首次通电时发生以及在那之后的每几百毫秒发生,正如存储器电路28对于全波和半波电源所确定的那样。在接地中线感测模式中,通过微控制器U1的Ping输出端来关断开关Q2,其将开关Q2的栅极电压从高切换到低,并且通过电容器C5在变流器T1的次级上产生扰动。随着R6被从电路中切换出去,变流器T1的次级和电容器C4被允许以由高阻抗负载电阻器R5提供的少量阻尼谐振,如图5b所示。接地中线状态改变了变流器T1的次级绕组的阻抗,并且急剧地衰减了振荡,如图6b所示。该阻尼振荡波形的包络或者峰-峰振幅随着时间的改变由运算放大器U2被放大,并且在预设的延迟之后由微控制器U1的A/D输入端测量。
将通过微控制器U1测量的所述波形(或包络)的峰-峰振幅与对应于接地中线状态的所存储的阈值进行比较。如果该峰-峰振幅大于该阈值,那么所述初级阻抗就高于该接地中线阈值水平,例如>2.5欧姆。在这种情况下,存储电容器C6在下一个定时间隔内被充电,通过开关Q2将低阻抗负载电阻器R6切换回该电路中,并且软件程序开始检查接地故障状态。如果所测量的该峰-峰振幅小于接地中线阈值,则存在接地中线状态,存储电容器C6被充电以指示待定脱扣状态,并且所述脱扣功能被激活。图6b示出由1欧姆接地中线造成的接地中线34状态的阻尼效应,其导致振荡波形的包络与图5b所示的包络比较起来快速地衰减,在图5中示出的是没有接地中线状态的情况。
上述的阻尼振荡能够以下面的指数等式乘以正弦曲线的形式表示:
Asin(ωτ)×e-αt
“A”表示该正弦曲线的初始振幅,ω表示振荡频率,τ表示时间,α是衰减因数。该α是导致振荡衰减的元件的组合。中线到地电阻与该α直接相关。当中线到地电阻下降时,α增大,从而使得衰减变快。为了确定中线到地电阻的预定值的存在,可以通过多种方法计算或估计该α参数。每种方法在处理要求和对噪音的敏感性方面都有其益处和折衷。一旦进行估计之后,可以将该估计值与用于检测接地中线故障的设定点进行比较。下述方法当中的每一种可以只利用振荡周波的正值、只利用振荡周波的负值、利用振荡周波的正值和负值或者利用振荡周波的绝对值来实现。这些方法被描述如下:
方法1:峰值包络——由于看到描述该减幅振荡的表达式包含正弦曲线和指数函数,因此本方法试图找出该包络指数函数。通过对该信号进行高速率采样来定位该振荡的峰值。可以测量该峰-峰振幅,以便确定该波形的包络。在距离该振荡波形开头的特定时间处测量的包络随后可以被用来测量该指数函数的衰减速率。
方法2:峰值的多项式包络——本方法与方法1类似,但是使用具有y=Ax2+Bx+C的形式的二阶函数估计。A用来估计α。也可以使用多阶多项式。
方法3:线性包络估计——本方法也与方法1类似,其不同之处在于找出对各峰值的线性拟合。所得到的最佳拟合线的斜率被用来估计α。
方法4:周波的面积——本方法与方法1类似,但是其利用在信号波形下的面积进行估计,而不是利用峰值进行估计。所得到的各点被拟合到一个模型。该模型的参数被用于估计α。本方法可以使用上述方法1、2和3中的指数、线性或多项式模型。
方法5:半周波的斜率——本方法通过测量两个或更多的点来估计半周波的前沿或后沿的斜率。其中的参数-基准判定(parameter-to-base decision)可以是半周波N的斜率,其中N是1,2,3,4....
方法6:半周波斜率的函数——本方法需要计算M个半周波的斜率,然后利用一个参数,该参数例如是所得到的M个半周波斜率的斜率。
方法7:半周波斜率的阈值——本方法需要计算M个半周波的斜率,然后利用一个阈值对超过预选阈值的半周波的数目进行计数。具有超过该阈值的斜率的半周波的数目被用作判定参数。
方法8:对超过阈值的峰值进行计数——对固定数目的半周波或者固定的时间周期进行监控。在此时间内,对超出预选阈值的半周波的数目进行计数。使用基于超过该阈值的峰值数目的判定参数。
根据本发明的另一个实施例,在接地中线故障检测期间,通过测量变流器T1的阻尼振荡波形,可以确定温度对于变流器T1的性能的影响。通过利用已知电容值测量谐振频率,频率的改变可以与变流器T1的电感的改变直接相关。电感的改变直接指示变流器铁芯材料的磁导率的变化,并且与变流器T1的输出特性相关。
根据本发明的一个实施例,在基线温度下的制造过程中,所述微控制器被编程来启动阻尼振荡波形的产生,从而产生基准频率值,并且在非易失性存储器中存储该基准频率值。所获得的基准频率值与基线温度下的变流器T1的电感直接相关。在本发明的正常操作期间,将该基准频率值与操作中测量的谐振频率进行比较,以便计算出供故障检测处理使用的修改后的接地故障阈值和接地中线阈值。因此,能够通过根据可选的温度感测电路26的谐振频率观测而获得变流器T1在一个温度范围内的性能变化。
虽然已经示出和描述了本发明的具体实施例和应用,但是可以理解,本发明不限于此处公开的精确构造和组成,在不背离由所附权利要求书限定的本发明的主旨和范围的情况下,对前述描述的各种修改、改变和变化都是显而易见的。

Claims (8)

1、一种用于在具有火线和中性线的配电系统中检测接地故障状态和接地中线状态的基于微控制器的系统,包括:
传感器电路,其包含单个变流器,该变流器响应于该配电系统的所述火线和中性线中的电流产生输出信号;
微控制器,其接收所述传感器输出信号并且在检测到所述配电系统中的所述接地故障或所述接地中线状态时启动脱扣信号的产生,所述微控制器被编程来:
在间隔开的各时间间隔内,利用所述传感器输出信号检测接地故障状态;以及
在所述各间隔开的时间间隔之间的中间的时间间隔内,利用所述传感器输出信号检测接地中线状态,
电路中断器,其响应于所述脱扣信号中断所述配电系统中的电流;以及
模拟存储器电路,其适于利用全波电源和半波电源进行操作以便提供:
定时功能,用来控制所述间隔开的时间间隔和所述中间的时间间隔;以及
存储器功能,其响应于检测到接地故障或接地中线状态而被设置,以便在所述电路中断器激活之前暂时失去电力的情况下恢复电路脱扣。
2、一种用于在具有火线和中性线的配电系统中检测接地故障状态和接地中线状态的基于微控制器的系统,包括:
传感器电路,其包含单个变流器,该变流器随温度非线性地变化,并且响应于该配电系统的火线和中性线中的电流产生输出信号;
微控制器,其接收所述传感器输出信号,并且在检测到所述配电系统中的所述接地故障或所述接地中线状态时启动脱扣信号的产生;以及
非易失性存储器,其与所述微控制器相关联,
其中,所述微控制器在制造期间被编程来接收给定温度下的所述传感器输出信号以及:
基于所述传感器输出计算预定的接地故障阈值,并且将所述预定的接地故障阈值存储在所述非易失性存储器中;以及
基于所述传感器输出计算预定的接地中线阈值,并且将所述预定的接地中线阈值存储在所述非易失性存储器中。
3、一种用于在具有火线和中性线的配电系统中检测接地故障状态和接地中线状态的基于微控制器的系统,包括:
传感器电路,其包含单个变流器,该变流器响应于该配电系统的火线和中性线中的电流产生输出信号,所述变流器具有随温度变化的电感;
环境温度感测电路,其被放置在所述变流器附近,并且产生随周围温度状态线性变化的电压;
可编程微控制器,其具有存储在非易失性存储器中的预定的接地故障阈值和预定的接地中线阈值,所述微控制器被编程来:
基于所述预定的接地故障阈值和所述环境温度感测电路的输出计算修改后的接地故障阈值;
基于所述预定的接地中线阈值和所述环境温度感测电路的输出计算修改后的接地中线阈值;
利用所述修改后的接地故障阈值检测接地故障状态;
利用所述修改后的接地中线阈值检测接地中线状态;以及
在检测到所述配电系统中的所述接地故障或所述接地中线状态时启动脱扣信号的产生;以及
电路中断器,其响应于所述脱扣信号中断所述配电系统中的电流。
4、一种用于在具有火线和中性线的配电系统中检测接地故障状态和接地中线状态的基于微控制器的系统,包括:
传感器电路,其提供输出信号,所述传感器电路包括:
变流器,其具有随温度变化的电感;以及
谐振电路,
可编程微控制器,其具有存储在非易失性存储器中的预定的接地故障阈值和预定的接地中线阈值,所述微控制器被编程来:
在接地中线测试期间启动脉冲信号,以便在所述传感器谐振电路中产生谐振振荡;
测量所述谐振振荡的频率以便确定所述变流器的电感的变化;
基于所述预定的接地故障阈值和所述变流器的电感变化计算修改后的接地故障阈值;
基于所述接地中线阈值和所述变流器的电感变化计算修改后的接地故障阈值;
利用所述修改后的接地故障阈值检测所述接地故障状态;
利用所述修改后的接地中线阈值检测所述接地中线状态;以及
在检测到所述配电系统中的所述接地故障或所述接地中线状态时启动脱扣信号的产生;以及
电路中断器,其响应于所述脱扣信号中断所述配电系统中的电流。
5、一种用于在具有火线和中性线的配电系统中检测接地故障状态和接地中线状态的方法,包括:
响应于该配电系统的火线和中性线中的电流、利用单个变流器产生信号;
将所述信号提供给微控制器,该微控制器被编程来利用所述信号在所述配电系统中检测接地故障或接地中线状态,并且在检测到所述接地故障或接地中线状态时启动脱扣信号的产生;
响应于所述脱扣信号中断所述配电系统中的电流;以及
利用模拟存储器来提供:
定时功能,其控制用于测试接地故障或接地中线状态的时间间隔;以及
存储器功能,其响应于检测到接地故障或接地中线状态而被设置,以便在所述配电系统中的所述电流被中断之前暂时失去电力的情况下恢复脱扣状态。
6、一种用于在具有火线和中性线的配电系统中检测接地故障状态和接地中线状态的方法,包括:
响应于所述配电系统的火线和中性线中的电流、利用单个变流器产生信号,该变流器随温度非线性地变化;以及
将所述信号提供到微控制器,该微控制器在制造期间被编程来:
接收基准温度下的所述信号,基于所述基准温度计算预定的接地故障阈值,并且将所述预定的接地故障阈值存储在与所述微控制器相关联的非易失性存储器中;以及
接收基准温度下的所述信号,基于所述基准温度计算预定的接地中线阈值,并且将所述预定的接地中线阈值存储在与所述微控制器相关联的非易失性存储器中。
7、一种用于在具有火线和中性线的配电系统中检测接地故障状态和接地中线状态的方法,包括:
响应于所述配电系统的火线和中性线中的电流、利用传感器产生信号,该传感器随温度非线性地变化;
产生所述传感器的环境温度读数;以及
将所述信号提供给具有预定的接地故障阈值和预定的接地中线阈值的微控制器,所述微控制器被编程来:
利用所述环境温度读数,基于所述预定的接地故障阈值计算修改后的接地故障阈值;
利用所述环境温度读数,基于所述预定的接地中线阈值计算修改后的接地中线阈值;
利用所述信号,基于所述修改后的接地故障阈值检测接地故障状态;
利用所述信号,基于所述修改后的接地中线阈值检测接地中线状态;
在检测到接地故障或接地中线状态时启动脱扣信号的产生;以及
响应于所述脱扣信号中断所述配电系统中的电流。
8、一种用于在具有火线和中性线的配电系统中检测接地故障状态和接地中线状态的方法,包括:
响应于该配电系统的火线和中性线中的电流、利用传感器产生信号,该传感器包括谐振电路和变流器,该变流器的电感随温度而变化;
将所述信号提供给具有预定的接地故障阈值和预定的接地中线阈值的微控制器;以及
所述微控制器被编程来:
在接地中线测试期间启动脉冲信号,以便在所述传感器输出信号中产生谐振振荡;
测量所述谐振振荡的频率以便确定所述变流器的电感的变化;
基于所述预定的接地故障阈值和所述变流器的所述电感变化计算修改后的接地故障阈值;
基于所述接地中线阈值和所述变流器的所述电感变化计算修改后的接地故障阈值;
利用所述修改后的接地故障阈值检测接地故障状态;
利用所述修改后的接地中线阈值检测接地中线状态;以及
在检测到所述配电系统中的所述接地故障或所述接地中线状态时启动脱扣信号的产生。
CN2004800375312A 2003-10-16 2004-10-08 用于接地故障电路中断器的单传感器微控制器系统及方法 Active CN1973414B (zh)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
US10/687,068 US7193827B2 (en) 2003-10-16 2003-10-16 Single-sensor microcontroller-based approach for ground fault circuit interrupters
US10/687,068 2003-10-16
PCT/US2004/033236 WO2005041376A2 (en) 2003-10-16 2004-10-08 Single-sensor microcontroller-based approach for ground fault circuit interrupters

Publications (2)

Publication Number Publication Date
CN1973414A true CN1973414A (zh) 2007-05-30
CN1973414B CN1973414B (zh) 2010-09-15

Family

ID=34520858

Family Applications (1)

Application Number Title Priority Date Filing Date
CN2004800375312A Active CN1973414B (zh) 2003-10-16 2004-10-08 用于接地故障电路中断器的单传感器微控制器系统及方法

Country Status (7)

Country Link
US (1) US7193827B2 (zh)
EP (3) EP2602892A3 (zh)
JP (1) JP4531052B2 (zh)
CN (1) CN1973414B (zh)
CA (1) CA2542724C (zh)
ES (2) ES2560845T3 (zh)
WO (1) WO2005041376A2 (zh)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101556301B (zh) * 2008-04-07 2013-07-17 西门子工业公司 多功能住宅电路断路器
CN110618345A (zh) * 2019-11-04 2019-12-27 业成科技(成都)有限公司 检测线路受损的方法和装置
CN111819651A (zh) * 2018-03-14 2020-10-23 Ls电气株式会社 断路器开闭辅助装置

Families Citing this family (42)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7529069B1 (en) * 2002-08-08 2009-05-05 Weems Ii Warren A Apparatus and method for ground fault detection and location in electrical systems
US20080088992A1 (en) * 2005-11-14 2008-04-17 Jp Nolan & Company Ground fault circuit interrupt device
CN100449670C (zh) * 2006-03-07 2009-01-07 张世兴 多量程时间程序控制断路器
US7499250B2 (en) * 2006-04-19 2009-03-03 Siemens Energy & Automation, Inc. Systems, devices, and methods for temperature compensation in arc fault detection systems
US7788055B2 (en) * 2006-07-14 2010-08-31 Square D Company Method and system of calibrating sensing components in a circuit breaker system
US8275559B2 (en) * 2007-03-29 2012-09-25 Linage Power Corporation Fault detector for a tip and ring circuit, a method of protecting such a circuit and a power supply including the fault detector
US8058751B2 (en) * 2007-10-24 2011-11-15 Eaton Corporation Circuit interrupter and method of processor phase synchronization
US8212570B1 (en) * 2008-05-09 2012-07-03 Welding Technology Corporation Amplifier circuit for a current transformer
US20100067153A1 (en) * 2008-09-11 2010-03-18 Robert Price Vellines System utilizing a ground fault circuit interrupter (GFCI) as a remote controlled protection device
US7944654B2 (en) * 2008-11-10 2011-05-17 Scott Gary W Multiple-pole circuit breaker with shared current sensor for arcing fault detection
US8106670B2 (en) * 2008-11-24 2012-01-31 Schneider Electric USA, Inc. Two pole circuit breaker voltage monitoring integration
US8649143B2 (en) * 2008-11-24 2014-02-11 Schneider Electric USA, Inc. Improper voltage detection for electronic circuit breaker
US8054593B2 (en) * 2008-12-29 2011-11-08 Reid Paul A Apparatus and method for measuring load current using a ground fault sensing transformer
US8278934B2 (en) * 2009-02-13 2012-10-02 Bae Systems Controls Inc. Robust AC chassis fault detection using PWM sideband harmonics
US9330875B2 (en) 2009-10-02 2016-05-03 Semiconductor Components Industries, Llc Method for determining a circuit element parameter
US9331469B2 (en) 2009-10-02 2016-05-03 Semiconductor Components Industries, Llc Ground fault circuit interrupter and method
US8390297B2 (en) * 2009-10-02 2013-03-05 Semiconductor Components Industries, Llc Ground fault circuit interrupter and method
US9478969B2 (en) 2009-10-02 2016-10-25 Semiconductor Components Industries, Llc Ground fault circuit interrupter and method
WO2011054385A1 (en) * 2009-11-05 2011-05-12 Areva T&D Uk Limited Method of monitoring the grading margin between time-current characteristics of intelligent electronic devices
US8310370B1 (en) * 2009-12-23 2012-11-13 Southern Company Services, Inc. Smart circuit breaker with integrated energy management interface
US8665574B2 (en) 2010-11-12 2014-03-04 Schneider Electric USA, Inc. Thermal memory in a fault powered system
US8542021B2 (en) 2010-11-16 2013-09-24 Schneider Electric USA, Inc. Multi-pole arcing fault circuit breaker including a neutral current sensor
US8854032B2 (en) * 2011-01-12 2014-10-07 Schneider Electric USA, Inc. System and method for monitoring current drawn by a protected load in a self-powered electronic protection device
WO2012133756A1 (ja) * 2011-03-31 2012-10-04 日本電気株式会社 消費電力管理システム
DE102011083790A1 (de) * 2011-09-29 2013-04-04 Bender Gmbh & Co. Kg Verfahren zur Isolationsfehlerüberwachung mit dynamischem Ansprechverhalten
US20130168380A1 (en) * 2012-01-04 2013-07-04 Ching-Chuan Wang Heating structure and method for preventing the overheat of heating line
US8901915B2 (en) * 2012-01-11 2014-12-02 Elster Solutions, Llc Voltage or contact closure sensor
US9276393B2 (en) 2012-10-01 2016-03-01 Leviton Manufacturing Co., Inc. Processor-based circuit interrupting devices
US8929037B2 (en) 2013-01-24 2015-01-06 Eaton Corporation Circuit interrupter providing grounded neutral protection and method of controlling the same
US9124094B2 (en) * 2013-03-14 2015-09-01 Semiconductor Components Industries, Llc Current saturation detection and clamping circuit and method
US9645192B2 (en) 2013-03-14 2017-05-09 Semiconductor Components Industries, Llc Ground fault circuit interrupter and method
CN105518474B (zh) * 2013-09-13 2017-11-28 施耐德电气美国股份有限公司 使用单个接地故障传感器和单个adc的电弧‑故障和接地故障断流器
CA2927133C (en) 2013-11-22 2021-05-18 Schneider Electric USA, Inc. Multifunction circuit breaker with single test button
US10031173B2 (en) * 2015-05-11 2018-07-24 Schneider Electric USA, Inc. Arc fault and ground fault interrupter using dual ADC
US10333290B2 (en) 2016-12-08 2019-06-25 Schneider Electric USA, Inc. Multi-winding ground fault sensor
DE102017214205A1 (de) * 2017-08-15 2019-02-21 Robert Bosch Gmbh Steuergerät mit Schaltung und Verfahren zum Kurzschlussschutz von Masseleitungen und Sensoren
US10788540B2 (en) * 2017-10-27 2020-09-29 Semiconductor Components Industries, Llc Fault detection circuit and related methods
US10782958B2 (en) 2018-05-07 2020-09-22 Schneider Electric USA, Inc. Performance software updates on DF/CAFI breakers with existing hardware architecture
US11092623B2 (en) * 2018-12-11 2021-08-17 Electronics And Telecommunications Research Institute Current sensor for measuring alternating electromagnetic wave and a current breaker using the same
CN112039038B (zh) * 2020-08-24 2022-04-01 国网河北省电力有限公司邯郸供电分公司 一种基于能量泄放的电压互感器谐振主动根除的方法
US11394190B2 (en) 2020-10-30 2022-07-19 Abb Schweiz Ag Multi-frequency ground fault circuit interrupter apparatuses, systems, and method
US11605943B2 (en) 2021-03-25 2023-03-14 Abb Schweiz Ag Multiple frequency ground fault protection

Family Cites Families (27)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3794884A (en) * 1973-05-29 1974-02-26 Federal Pacific Electric Co Ground fault interrupter with pulsed neutral-to-ground fault detector
IT1010294B (it) * 1973-06-11 1977-01-10 Rca Corp Circuito per la rivelazione di guasti fra rete e terra e fra neutro e terra
US3848159A (en) * 1973-06-18 1974-11-12 Airpax Electronics Ground fault detector circuit with feedback to sensor
US4053815A (en) * 1973-09-10 1977-10-11 Federal Pacific Electric Company Ground fault interrupters
US3953767A (en) * 1974-04-15 1976-04-27 Rca Corporation Ground fault detection apparatus
US4001646A (en) * 1975-06-16 1977-01-04 General Electric Company Ground fault circuit interrupter utilizing a single transformer
US4180841A (en) * 1977-11-21 1979-12-25 Westinghouse Electric Corp. Ground fault circuit interrupter with grounded neutral protection
US4150411A (en) * 1977-12-15 1979-04-17 General Electric Company Ground fault circuit interrupter utilizing a single transformer
US4378579A (en) * 1980-11-07 1983-03-29 Sprague Electric Company Alternately low and high input-impedance detector for use in a GFI
DE3137496C2 (de) * 1981-09-21 1990-01-25 Siemens AG, 1000 Berlin und 8000 München Digitaler Überstromauslöser
US4542432A (en) * 1982-08-27 1985-09-17 Square D Company Ground fault detection circuit
US4550360A (en) * 1984-05-21 1985-10-29 General Electric Company Circuit breaker static trip unit having automatic circuit trimming
US4870532A (en) * 1988-08-24 1989-09-26 Westinghouse Electric Corp. Electric circuit for operating trip circuit of a circuit breaker
US5224011A (en) * 1991-04-19 1993-06-29 Gas Research Institute Multifunction protective relay system
US5428495A (en) * 1992-09-30 1995-06-27 Eaton Corporation Electrical switching apparatus with digital trip unit and automatic frequency selection
US5420740A (en) * 1993-09-15 1995-05-30 Eaton Corporation Ground fault circuit interrupter with immunity to wide band noise
US5644510A (en) * 1994-11-25 1997-07-01 General Electric Company Apparatus and method for motor overload protection using an elapsed-time signal for enabling computation of motor temperature data independently of temporary power interruption
US6313642B1 (en) * 1995-03-13 2001-11-06 Square D Company Apparatus and method for testing an arcing fault detection system
US5675336A (en) * 1996-02-15 1997-10-07 General Electric Company Analog memory unit
DE19803684A1 (de) * 1998-01-30 1999-08-05 Siemens Ag Zeitverzögerte Differenzstromschutzeinrichtung
US6266219B1 (en) * 1998-06-02 2001-07-24 Pass & Seymour, Inc. Combination ground fault and arc fault circuit interrupter
US6434715B1 (en) * 1999-06-14 2002-08-13 General Electric Company Method of detecting systemic fault conditions in an intelligent electronic device
US6265998B1 (en) * 1999-11-30 2001-07-24 Agere Systems Guardian Corp. Sampling device having an intrinsic filter
JP2001268779A (ja) * 2000-03-15 2001-09-28 Matsushita Electric Works Ltd 漏電遮断装置
US6459557B1 (en) * 2000-05-31 2002-10-01 Rockwell Automation Technologies, Inc. Configurable single/multi-phase overload relay
US6807036B2 (en) * 2001-04-26 2004-10-19 Hubbell Incorporated Digital fault interrupter with self-testing capabilities
JP2003092825A (ja) * 2001-09-18 2003-03-28 Meidensha Corp 地絡保護継電器

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101556301B (zh) * 2008-04-07 2013-07-17 西门子工业公司 多功能住宅电路断路器
CN111819651A (zh) * 2018-03-14 2020-10-23 Ls电气株式会社 断路器开闭辅助装置
US11776162B2 (en) 2018-03-14 2023-10-03 Ls Electric Co., Ltd. Circuit breaker opening/closing assistance apparatus
CN110618345A (zh) * 2019-11-04 2019-12-27 业成科技(成都)有限公司 检测线路受损的方法和装置

Also Published As

Publication number Publication date
EP1673842A2 (en) 2006-06-28
ES2560845T3 (es) 2016-02-23
EP2602892A2 (en) 2013-06-12
WO2005041376A2 (en) 2005-05-06
CN1973414B (zh) 2010-09-15
EP1673842A4 (en) 2011-10-12
JP2007525138A (ja) 2007-08-30
CA2542724A1 (en) 2005-05-06
CA2542724C (en) 2011-11-29
EP2602892A3 (en) 2013-08-28
JP4531052B2 (ja) 2010-08-25
ES2419979T3 (es) 2013-08-21
EP2802051B1 (en) 2015-12-30
EP1673842B1 (en) 2013-05-01
US20050083616A1 (en) 2005-04-21
US7193827B2 (en) 2007-03-20
WO2005041376A3 (en) 2006-11-30
EP2802051B8 (en) 2016-03-09
EP2802051A1 (en) 2014-11-12

Similar Documents

Publication Publication Date Title
CN1973414B (zh) 用于接地故障电路中断器的单传感器微控制器系统及方法
US8054593B2 (en) Apparatus and method for measuring load current using a ground fault sensing transformer
CN103415972B (zh) 用于检测并联电弧故障的方法、系统和装置
CN100477437C (zh) 剩余电流设备
US11125784B2 (en) Correcting for a gain error resulting from the position of a pole of zero in a transfer function of a system
EP3071986B1 (en) Electricity meter with fault detection mechanism and fault detection method
US9075099B2 (en) Method for adaptation of ground fault detection
Czapp et al. Verification of safety in low-voltage power systems without nuisance tripping of residual current devices
EP3654042B1 (en) Systems and methods for dynamically switching a load of a current transformer circuit
CN1272820C (zh) 包括测试电路的对地漏电跳闸装置
JPS6165829U (zh)
JP3602904B2 (ja) 絶縁監視装置の警報検出試験装置
US3514696A (en) Device for testing the integrity of electrical wire insulation by means of high voltage impulse
KR100592324B1 (ko) 엘씨 공진을 이용한 과도회복전압 분석 방법 및 그 분석장치
CN220086952U (zh) 一种无源泄漏电流测试仪输入测试电源的保护电路
US20220021366A1 (en) Apparatus for and method of correcting for a gain error resulting from the position of a pole or zero in a transfer function and to a current measurement device including such an apparatus
CN115639496A (zh) 智能配电柜状态监测系统
MXPA06004178A (en) Single-sensor microcontroller-based approach for ground fault circuit interrupters
CN118040608A (zh) 一种漏电保护电路
Hart An experimental study of short-circuit currents on a low-voltage system
CN115629265A (zh) 一种电压互感器专用继电保护装置判定系统及方法
CN117239678A (zh) 一种漏电检测和自动保护电路
CN111273166A (zh) 一种隔离开关小感性电流开合试验电路
JPH11142463A (ja) 電力送配電線の地絡点表示器および短絡地絡判別回路
JPS63268428A (ja) 地絡保護継電器

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C14 Grant of patent or utility model
GR01 Patent grant
C56 Change in the name or address of the patentee

Owner name: SCHNEIDER ELECTRIC USA INC.

Free format text: FORMER NAME: SQUARE D. CO.

CP01 Change in the name or title of a patent holder

Address after: Illinois State

Patentee after: Schneider Electric America Co., Ltd.

Address before: Illinois State

Patentee before: Square D Co.