CN1954052A - 抑制剂增强的重油热改质 - Google Patents

抑制剂增强的重油热改质 Download PDF

Info

Publication number
CN1954052A
CN1954052A CNA2005800155158A CN200580015515A CN1954052A CN 1954052 A CN1954052 A CN 1954052A CN A2005800155158 A CNA2005800155158 A CN A2005800155158A CN 200580015515 A CN200580015515 A CN 200580015515A CN 1954052 A CN1954052 A CN 1954052A
Authority
CN
China
Prior art keywords
heavy oil
inhibitor
oil
additive
upgrading
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CNA2005800155158A
Other languages
English (en)
Inventor
拉梅什·瓦拉达拉杰
克里斯多佛·P·艾皮希
道格拉斯·W·希松
罗伯特·C·韦尔奇
利奥·D·布朗
科尼利厄斯·H·布龙斯
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
ExxonMobil Technology and Engineering Co
Original Assignee
ExxonMobil Research and Engineering Co
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by ExxonMobil Research and Engineering Co filed Critical ExxonMobil Research and Engineering Co
Publication of CN1954052A publication Critical patent/CN1954052A/zh
Pending legal-status Critical Current

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10GCRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
    • C10G9/00Thermal non-catalytic cracking, in the absence of hydrogen, of hydrocarbon oils
    • C10G9/007Visbreaking
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10GCRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
    • C10G11/00Catalytic cracking, in the absence of hydrogen, of hydrocarbon oils
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10GCRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
    • C10G29/00Refining of hydrocarbon oils, in the absence of hydrogen, with other chemicals
    • C10G29/06Metal salts, or metal salts deposited on a carrier
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10GCRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
    • C10G45/00Refining of hydrocarbon oils using hydrogen or hydrogen-generating compounds
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10GCRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
    • C10G47/00Cracking of hydrocarbon oils, in the presence of hydrogen or hydrogen- generating compounds, to obtain lower boiling fractions
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10GCRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
    • C10G47/00Cracking of hydrocarbon oils, in the presence of hydrogen or hydrogen- generating compounds, to obtain lower boiling fractions
    • C10G47/22Non-catalytic cracking in the presence of hydrogen
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10GCRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
    • C10G49/00Treatment of hydrocarbon oils, in the presence of hydrogen or hydrogen-generating compounds, not provided for in a single one of groups C10G45/02, C10G45/32, C10G45/44, C10G45/58 or C10G47/00
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10GCRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
    • C10G75/00Inhibiting corrosion or fouling in apparatus for treatment or conversion of hydrocarbon oils, in general
    • C10G75/04Inhibiting corrosion or fouling in apparatus for treatment or conversion of hydrocarbon oils, in general by addition of antifouling agents
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10GCRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
    • C10G9/00Thermal non-catalytic cracking, in the absence of hydrogen, of hydrocarbon oils
    • C10G9/14Thermal non-catalytic cracking, in the absence of hydrogen, of hydrocarbon oils in pipes or coils with or without auxiliary means, e.g. digesters, soaking drums, expansion means
    • C10G9/16Preventing or removing incrustation
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M135/00Lubricating compositions characterised by the additive being an organic non-macromolecular compound containing sulfur, selenium or tellurium
    • C10M135/08Lubricating compositions characterised by the additive being an organic non-macromolecular compound containing sulfur, selenium or tellurium containing a sulfur-to-oxygen bond
    • C10M135/10Sulfonic acids or derivatives thereof
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M169/00Lubricating compositions characterised by containing as components a mixture of at least two types of ingredient selected from base-materials, thickeners or additives, covered by the preceding groups, each of these compounds being essential
    • C10M169/04Mixtures of base-materials and additives
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M175/00Working-up used lubricants to recover useful products ; Cleaning
    • C10M175/0016Working-up used lubricants to recover useful products ; Cleaning with the use of chemical agents
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M177/00Special methods of preparation of lubricating compositions; Chemical modification by after-treatment of components or of the whole of a lubricating composition, not covered by other classes
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M2203/00Organic non-macromolecular hydrocarbon compounds and hydrocarbon fractions as ingredients in lubricant compositions
    • C10M2203/10Petroleum or coal fractions, e.g. tars, solvents, bitumen
    • C10M2203/108Residual fractions, e.g. bright stocks
    • C10M2203/1085Residual fractions, e.g. bright stocks used as base material
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M2219/00Organic non-macromolecular compounds containing sulfur, selenium or tellurium as ingredients in lubricant compositions
    • C10M2219/04Organic non-macromolecular compounds containing sulfur, selenium or tellurium as ingredients in lubricant compositions containing sulfur-to-oxygen bonds, i.e. sulfones, sulfoxides
    • C10M2219/044Sulfonic acids, Derivatives thereof, e.g. neutral salts
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10NINDEXING SCHEME ASSOCIATED WITH SUBCLASS C10M RELATING TO LUBRICATING COMPOSITIONS
    • C10N2060/00Chemical after-treatment of the constituents of the lubricating composition
    • C10N2060/10Chemical after-treatment of the constituents of the lubricating composition by sulfur or a compound containing sulfur
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10STECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10S516/00Colloid systems and wetting agents; subcombinations thereof; processes of
    • Y10S516/905Agent composition per se for colloid system making or stabilizing, e.g. foaming, emulsifying, dispersing, or gelling
    • Y10S516/909The agent contains organic compound containing sulfoxy*

Landscapes

  • Chemical & Material Sciences (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Production Of Liquid Hydrocarbon Mixture For Refining Petroleum (AREA)
  • Lubricants (AREA)

Abstract

一种改质重油的方法,通过使重油与抑制剂添加剂接触,然后热处理添加了抑制剂的重油。所述的抑制剂选自多核芳香族多磺酸化合物。本发明也涉及由抑制剂增强的热处理方法获得的改质产品。

Description

抑制剂增强的重油热改质
发明领域
本发明涉及一种改质重油的方法,通过使重油与抑制剂添加剂接触,然后热处理添加了抑制剂的重油。本发明也涉及由抑制剂增强的热处理方法获得的改质产品。
发明背景
重油通常是指包含具有较高粘度或API比重小于20的油类的那些烃类。API比重小于20的原油和在原油常压或真空蒸馏之后得到的原油渣油是重油的实例。重油的改质在生产、运输和精制工艺中都是重要的。改质的原油与未改质的原油相比,通常具有较高的API比重和较低的粘度。较低的粘度能够易于油类运输。重油改质普遍采用的方法是重油的热处理。热处理包括例如减粘裂化和加氢减粘裂化(通过加氢进行减粘裂化)的工艺。烃类的热处理或添加剂增强减粘裂化领域的现有技术教导了通过多种不同方法用于提高原油、原油馏出物或残油的质量或降低其粘度的方法。例如,US 4,298,455中教导了添加剂的使用,例如自由基引发剂的使用;EP 175511中教导了硫醇化合物和芳香族氢给体的使用;US 3,707,459教导了自由基受体的使用;US4,592,830教导了氢给体溶剂的使用。其它文献教导了特定催化剂的使用,例如低酸性沸石催化剂(US 4,411,770)和钼催化剂、硫化铵和水(US 4,659,543)。其它参考文献教导了石油残油和重油的改质(MurrayR.Grey,Marcel Dekker,1994,99.239-243)以及环烷酸的热解(US5,820,750)。
通常,重油的热处理工艺会产生具有较高API的改质油。在一些情况下,也可以降低其中的硫和环烷酸含量。然而,重油热处理的主要缺点在于随着转化率的提高,会形成甲苯不溶性(TI)物质。这些甲苯不溶性物质包括在热处理过程中由重油的某些成分产生的有机和有机金属物质。通常,TI物质在临界转换点之后通常会指数增加。因此,TI物质的形成限制了重油热改质的效果。在改质油中存在的TI物质是不希望的,因为这种TI物质会在储存、运输和加工设备中发生结垢。此外,在与其它原油混合时TI物质也会引起不相容性。提高转化率而不产生甲苯不溶性物质是重油热处理领域的长期需求。本发明满足了这一需求。在此所用的原油渣油或残油是指由原油的常压或真空蒸馏而得到的残余原油。
发明概述
在一个实施方案中,提供一种改质重油的方法,该方法包括以下步骤:
-使重油与有效量的抑制剂添加剂接触以提供添加了抑制剂的重油,然后,
-在250℃~500℃的温度下热处理所述添加了抑制剂的重油0.5~6小时以改质重油。
另一实施方案是通过以下步骤制备的改质重油:
-使重油与有效量的抑制剂添加剂接触以提供添加了抑制剂的重油,然后,
-在250℃~500℃的温度下热处理所述添加了抑制剂的重油0.5~6小时。
在又一实施方案中,提供一种改质重油的方法,该方法包括:
a)使重油与有效量的水溶性抑制剂添加剂接触以提供添加了抑制剂的重油,该水溶性抑制剂添加剂由以下化学结构表示:
Ar-(SO3 -X+)n
其中Ar为至少两个环的同核芳香基团,n为1~5的整数,X选自元素周期表的I族(碱金属)和II族(碱土金属)元素,并且当使用碱金属时,n为1~5的整数,当使用碱土金属时,n为2~10的整数;
b)在250℃~500℃的温度下热处理所述添加了抑制剂的重油0.1~10小时;
c)使所述热处理的添加了抑制剂的重油与水接触,其中水溶性抑制剂添加剂迁移到水相中;
d)从包含所述水溶性抑制剂添加剂的水相中分离热处理的重油;
e)从水中分离抑制剂添加剂;和
f)循环所述分离的抑制剂添加剂,使之在以上步骤a)中接触重油。
再一实施方案是一种改质重油的方法,该方法包括以下步骤:
-使重油与有效量的双功能抑制剂添加剂接触以提供添加了双功能抑制剂的重油,然后,
-在250℃~500℃的温度下,在氢存在下和500~2500psig(3447.38~17236.89kPa)的氢分压下,热处理所述添加了抑制剂的重油0.1~10小时的时间,以改质重油。
另一实施方案是通过以下步骤制备的改质重油:
-使原油与有效量的双功能添加剂接触以提供添加了双功能添加剂的重油,然后,
-在250℃~500℃的温度下,在氢存在下和500~2500psig(3447.38~17236.89kPa)的氢分压下,热处理所述添加了添加剂的重油0.1~10小时的时间。
又一实施方案是具有以下化学结构的双功能抑制剂-加氢处理添加剂:
[R-PNA-(SO3 -)n]aMb
其中PNA是包含2~15个芳香环的多核芳香烃;n为1~15的整数,表示PNA烃上的磺酸基SO3 -官能团的数量;R为包含0~40个碳原子的烷基基团;M为选自元素周期表的详细形式(Long Form)的IV-B、V-B、VI-B、VII-B和VIII族的元素;a和b分别为1~4的整数。
附图简述
此处的图1示出了本发明的R-PNA-(X)n抑制剂添加剂的说明性实例,其中R=O,X=SO3 -,并且添加剂为PNA-磺酸的钠盐。
此处的图2是实施例2的操作1和操作2的示意图,分别表示为方案1和方案2。
此处的图3是标识为“无”的不含添加剂的、以及包含两种添加剂1,3,6-NTSS和2,6-NDSS的热处理过的Athabasca沥青的甲苯不溶物(TI)的柱状图。
此处的图4是标识为“无”的不含添加剂的、以及包含分别依照方案-1和方案-2形成的添加剂1,3,6-NTSS的热处理过的Athabasca沥青的甲苯不溶物(TI)的柱状图。
发明详述
根据本发明的一个实施方案,提供一种改质重油如重油和原油渣油的方法。残油原料包括但不限于由石油原油的常压和真空蒸馏、或重油的常压或真空蒸馏获得的残余物,减粘裂化的残油,来自脱沥青单元的焦油,或这些物质的组合。也可使用常压或真空初馏的重质沥青。通常,这种原料是具有538℃或更高的标称初沸点、20°或更小的API比重、0~40重量%的康拉逊残碳值(Conradson Carbon Residue)含量的高沸点烃类物质。
向原油或原油渣油中加入抑制剂添加剂,接着在250℃~500℃的温度下热处理30秒~6小时。
抑制剂添加剂是以下结构的多核芳香酸:
R-PNA-(X)n
其中PNA是包含2~15个芳香环的多核芳香烃,X为选自SO3H、COOH和PO3H的酸官能团,n为1~15的整数,表示PNA结构上的酸官能团(X)的数量。芳香环可为稠合的或孤立的芳香环。另外,芳香环可为同核或异核芳香环。同核芳香环是指仅包含碳和氢的芳香环。异核芳香环是指除了碳和氢之外包含氮、氧或硫的芳香环。R为包含0~40个原子的烷基基团。R可为直链或支化的烷基基团。可使用R-PNA-(X)n的混合物。R-PNA-磺酸是优选的。R-PNA-(X)n添加剂的盐是更优选的。元素周期表的详细形式的I族和II族元素如钠、钾或钙是最优选的。优选的R-PNA-(X)n抑制剂添加剂的一些说明性、非限制性实例在此处的图1中给出。
如前所述,本发明的优选抑制剂添加剂是以下化学结构的芳香族多磺酸盐:
Ar-(SO3 -X+)n
其中Ar为至少两个环的同核芳香基团,n为1~5的整数,X选自元素周期表的I族(碱金属)和II族(碱土金属)元素,并且当使用碱金属时,n为1~5的整数,当使用碱土金属时,n为2~10的整数。优选的X选自碱金属,优选钠或钾及其混合物。I族和II族是指元素周期表的族。优选的X选自碱金属,更优选钠。也优选Ar具有2~15个环,更优选2~4个环,最优选2~3个环。本发明的芳香族多磺酸盐由轻质催化循环油的多磺酸化所制备属于本发明的范围之内。轻质催化循环油是通过蒸馏来自流化催化裂化(FCC)工艺的产品而制备的烃的复合组合物,碳数为C9~C25,沸点为340_(171℃)~700_(371℃)。轻质催化循环油在此也被称为轻质催化循环油和LCCO。LCCO通常富含2-环芳香族分子。来自US精炼厂的LCCO通常包含80%的芳香族化合物。该芳香族化合物通常为33%的1-环芳香族化合物和66%的2-环芳香族化合物。此外,该1-环和2-环芳香族化合物可以是甲基、乙基和丙基取代的。甲基是主要的取代基。也存在较少量的含氮和含硫的杂环,例如吲哚、喹啉和苯并噻吩。
优选的本发明的芳香族多磺酸盐的非限制性实例如下所示。
萘-2-磺酸钠盐
Figure A20058001551500122
萘-2,6-二磺酸钠盐
Figure A20058001551500123
萘-1,5-二磺酸钠盐
Figure A20058001551500124
萘-1,3,6-三磺酸钠盐
Figure A20058001551500131
蒽醌-2-磺酸钠盐
Figure A20058001551500132
蒽醌-1,5-二磺酸钠盐
Figure A20058001551500133
芘-1,3,6,8-四磺酸钠盐
该多磺酸组合物可通过下述方法由LCCO制备,该方法通常包括在有效条件下用化学计量过量的硫酸多磺化LCCO。石油原料的常规磺化通常使用过量的石油原料,而不是过量的硫酸。本发明人意外地发现,当使用化学计量过量的硫酸磺化LCCO时,所得的多磺化产物具有新的性质和用途。通过用一定量的苛性碱处理以中和酸官能团,使芳香族多磺酸转化为芳香族多磺酸盐。LCCO多磺酸组合物可最好地描述成1-环和2-环芳香核的混合物,每个芳香核具有一个或多个磺酸基团。芳香核为甲基、乙基和丙基取代的,并且甲基基团是更优选的取代基。
通常,抑制剂添加剂的加入量可为10~50,000wppm,优选20~3000wppm,更优选20~1000wppm,以原油或原油渣油的量为基准。抑制剂添加剂可以直接加入或者在合适的载体溶剂中加入。优选的载体溶剂是芳香烃溶剂,如甲苯、二甲苯、原油衍生的芳香族馏出物如ExxonMobil Chemical Company出售的Aromatic 150,水、醇及其混合物。当抑制剂添加剂为PNA-酸的盐时,优选使用水或水-醇混合物作为载体溶剂。优选的醇为甲醇、乙醇、丙醇及其混合物。当使用PNA-酸和PNA-酸盐的混合物时,优选使用水和烃溶剂的乳液作为载体介质。乳液可为油包水乳液或水包油乳液。载体溶剂优选为添加剂和载体溶剂混合物的10~80重量%。
抑制剂添加剂与重油的接触可以在热处理之前的任何时候完成。接触可在储藏处、运输过程中或精炼地点生产重油的位置处进行。在原油残油的情况下,在热处理之前的任何时间接触抑制剂添加剂。接触之后,优选混合重油和添加剂。可使用本领域中通常已知的任何合适的混合装置。这种合适的混合器的非限制性实例包括在线静态混合器和浆式混合器。重油和添加剂的接触可在10℃~90℃的任何温度下进行。接触并混合重油和添加剂之后,混合物可从接触温度冷却至环境温度,即15℃~30℃。另外,在热处理之前,添加了添加剂并冷却的混合物可储存起来,或从一个地点运输至另一个地点。可选择地,如果需要,可在接触地点热处理添加了添加剂并冷却的混合物。
添加有添加剂的重油的热处理包括将油在250℃~500℃的温度范围内加热30秒~6小时。工艺装置例如减粘裂化炉可以有利地用于进行热处理。优选使用本领域技术人员公知的混合装置来混合热处理过程中添加有添加剂的重油。也优选热处理工艺是在惰性环境中进行的。在反应容器中使用例如氮气或氩气的惰性气体可以提供这种惰性环境。
该抑制剂增强的热改质工艺提供了一种热改质产物,其与起始进料相比具有较高的API比重,与没有本发明抑制剂添加剂条件下制备的热改质产物相比,具有较低的甲苯不溶性物质含量。本发明的抑制剂添加剂抑制了甲苯不溶性物质的形成,同时促进了热转化(例如热裂化)以容易的方式发生。本发明工艺的热改质产物与由同样温度、同样处理时间但不添加抑制剂添加剂而进行的热改质工艺所制备的产物相比,其甲苯不溶性物质减少了至少20%。本发明工艺的热改质产物与由同样温度、同样处理时间但不添加抑制剂添加剂而进行的热改质工艺制备的产物相比,至少高15个API单位。本发明的改质油包含改质的重油、添加的抑制剂添加剂,以及(若有的话)由添加的抑制剂添加剂在热改质工艺过程中形成的产物。
当改质过程发生在预精炼位置时,通常在运输和销售之前将改质油和其它产生的但未经热处理的原油进行混合。所述其它产生的但未经热处理的原油可以是与改质油来源相同的重油或不同的原油。所述其它产生的但未经热处理的原油可以是脱水或脱盐原油。“未经热处理”通常是指没有在250℃~500℃的温度范围内热处理30秒~6小时。本发明改质油的特别优点在于:相对较低含量的甲苯不溶性(TI)物质的存在能够使改质油和其它油以相容的方式进行混合。本发明的改质油和其它相容性油类的混合物是一种新颖的具有商业价值的产品。本发明改质油产品的另一特征在于该产品也可以与其它原油的馏出物或残油以相容的方式进行混合。产品中较低的TI含量使得能够进行这种混合或混和。
用氢和双功能添加剂进行热改质
根据本发明的另一实施方案,提供用于改质包括氢的重质原油和原油渣油的热处理方法。向原油或原油渣油中加入双功能添加剂,其提供TI抑制和催化加氢反应的双重功能,接着进行热处理。热处理包括在250℃~500℃的温度下,在氢存在下和500~2500psig(3447.38~17236.89kPa)的氢分压下,处理添加了双功能添加剂的油0.1~10小时的时间以得到改质油。
适合于包括氢用于改质重油的热处理方法的双功能添加剂的实例是元素周期表的IV-B、V-B、VI-B、VII-B和VIII族金属的多核芳香族磺酸盐和烷基多核芳香族磺酸盐。双功能添加剂由以下化学结构表示:
[R-PNA-(X)n]aMb
其中PNA是包含2~15个芳香环的多核芳香烃;X是磺酸官能团,n为1~15的整数,表示PNA烃上的磺酸官能团的数量;R为包含0~40个碳原子的烷基基团;M为选自元素周期表的详细形式的IV-B、V-B、VI-B、VII-B和VIII族的元素;a和b分别为1~4的整数。R基团可为直链或支化的烷基基团。芳香环可为稠合的或孤立的芳香环。另外,芳香环可为同核或异核芳香环。同核芳香环是指仅包含碳和氢的芳香环。异核芳香环是指除了碳和氢之外还包含氮、氧和硫的芳香环。
当双功能添加剂的金属组分为IV-B族金属时,它可为钛(Ti)、锆(Zr)或铪(Hf)。当金属为V-B族金属时,它可为钒(V)、铌(Nb)或钽(Ta)。当金属为VI-B族金属时,它可为铬(Cr)、钼(Mo)或钨(W)。当金属为VII-B族金属时,它可为锰(Mn)或铼(Re)。当金属为VIII-B族金属时,它可为非贵金属如铁(Fe)、钴(Co)或镍(Ni),或贵金属如钌(Ru)、铑(Rh)、钯(Pd)、锇(Os)、铱(Ir)或铂(Pt)。优选的金属为VI-B族金属,最优选为钼。
有效量的双功能添加剂可为油可混溶的或油可分散的。优选本发明的双功能添加剂由于它们的分子结构而表现出有利地与富含沥青质的重油的相容性。双功能添加剂也可在加氢转化工艺的条件下被活化。
可通过使用一种以上金属的双功能添加剂的混合物,来增强双功能添加剂的效果。例如,如果使用钼,期望加入额外量的钴。这预期对催化加氢工艺产生积极的协同效果。通常,钴的加入量相对每摩尔钼可为0.2~2摩尔,优选0.4摩尔。
双功能添加剂存在的量可为1~300wppm金属。更优选地,基于待加氢转化的烃油为1~60wppm的金属。优选在热处理改质过程中混合重油和添加剂。可使用本领域技术人员已知的混合装置和工艺装置。优选可使用可在高压下操作的工艺装置如高压减粘裂化炉,以在氢存在下进行热处理过程。
双功能添加剂可以直接或使用载体溶剂与重油接触。优选的载体溶剂是芳香烃溶剂,如甲苯、二甲苯、原油衍生的芳香族馏出物如ExxonMobil Chemical Company出售的Aromatic 150,水、醇及其混合物。优选的醇为甲醇、乙醇、丙醇及其混合物。载体溶剂可为双功能添加剂和载体溶剂的10~80重量%。
可在热处理之前的任何时间使重油与双功能添加剂接触。接触可在储藏处、运输过程中或精炼地点生产重油的位置处进行。在原油残油的情况下,在热处理之前的任何时间接触双功能添加剂。接触之后,优选混合重油和添加剂。可使用本领域中通常已知的任何合适的混合装置。这种合适的混合器非限制性实例包括在线静态混合器和浆式混合器。重油和添加剂的接触可在10℃~90℃的温度下进行有效长的时间。接触并混合重油和添加剂之后,混合物可从接触温度冷却至室温,即15℃~30℃。另外,在热处理之前,添加了添加剂并冷却的混合物可储存起来,或从一个地点运输至另一个地点。可选择地,如果需要,可在接触地点热处理添加了添加剂并冷却的混合物。添加了双功能添加剂的重油的热处理包括在250℃~500℃的温度下,在氢存在下和500~2500psig(3447.38~17236.89kPa)的氢分压下,加热所述添加了添加剂的重油0.1~10小时的时间,以得到改质油产品。
本发明双功能添加剂增强的加氢处理改质方法提供了改质产品,其与起始进料相比具有较高的API比重,与没有本发明双功能添加剂条件下制备的加氢处理改质产物相比,具有较少的甲苯不溶性物质。由于双功能添加剂的抑制功能,甲苯不溶性物质的生成得到抑制,同时促进了加氢转化以容易的方式发生。在氢存在下的热处理工艺的改质产物与由同样温度、同样时间但不添加双功能抑制剂-加氢处理添加剂而进行的热处理工艺所制备的产物相比,其甲苯不溶性物质减少了至少20%。本发明的改质油包括改质的重油、加入的双功能添加剂和在热改质过程中由加入的双功能添加剂形成的产物。
本文包括说明性目的的以下实施例,但并不意图限制本发明。
实施例
实施例1
双功能抑制剂-加氢处理添加剂的合成
作为说明,描述了含钼的双功能添加剂的两种合成路线。可通过GB 1215120A中公开的方法来合成双功能钼添加剂,其在此处引入作为参考。这样制备反应混合物:混合二乙酰丙酮酸氧钼和PNA-磺酸,根据形成钼单磺酸基化合物的反应化学计量比,理论上要求相对于存在的每摩尔二丙酮酸氧钼使用1摩尔磺酸。优选地,PNA-磺酸与二乙酰丙酮酸氧钼的摩尔比为5∶1~10∶1,提供超过需要的过量PNA-磺酸,进一步促进PNA-磺酸钼化合物的形成。可使用较低的PNA-磺酸与二乙酰丙酮酸氧钼的摩尔比,其可低至每摩尔二乙酰丙酮酸氧钼1摩尔~5摩尔PNA-磺酸。当使用这种较低比时,通常必须用惰性有机溶剂如矿物油进行粘性反应混合物的稀释。将反应介质从室温缓慢加热至190℃的温度,然后保持在190℃~210℃的温度下足够长的时间,以进行乙酰丙酮的除去,接着冷却反应混合物。
在可替换的合成方法中,三氧化钼和相应的PNA-磺酸以所需的化学计量比在惰性高沸点溶剂中混合,并加热至150℃~200℃的温度,以提供惰性溶剂中胶态悬浮液形式的PNA-磺酸盐的钼盐。
实施例2
在氮气下[350 PSI(2413.16kPa)]将120g沥青快速加热至750_(403.89℃),并且以1500RPM连续搅拌。使沥青在这些条件下反应一段时间,这段时间计算为相当于在875_(468.33℃)温度下的短减粘裂化操作(通常为120~180“当量秒”)。在获得期望的减粘裂化强度之后,快速冷却高压釜以停止任何进一步的热转化。分析气体和液体产物并进行物料衡算。沸点分布和粘度的变化反映了减粘裂化条件的强度。通过定量过滤减粘裂化炉产物的新鲜热甲苯溶液(20∶1的甲苯与产物的比)来测定甲苯不溶物(TI)。
操作-1:在一次操作中,在减粘裂化之前将1,3,6-萘三磺酸三钠盐抑制剂添加剂(1,3,6-NTSS)与沥青混合。用甲苯洗涤反应产物以除去甲苯溶解物。使所得的甲苯不溶物和抑制剂添加剂与水接触以回收抑制剂添加剂,该抑制剂添加剂可循环到减粘裂化反应中。剩下甲苯不溶物部分。
操作-2:在第二操作中,使用2,6-萘二磺酸二钠盐(2,6-NDSS)作为抑制剂添加剂,并在减粘裂化反应之前与沥青混合。将所得的减粘裂化产物进行水洗,以除去抑制剂添加剂用于循环。使剩余物与甲苯接触以除去甲苯溶解物,由此剩下甲苯不溶物部分。
操作-1和操作-2在图2中分别以方案1和方案2示意性地示出。
两次操作的结果如图3所示(方案1产生的),证明以基于油重量的0.6wt%的处理比使用水溶性添加剂1,3,6-NTSS和2,6-NDSS,导致在120和135当量秒的强度下结焦形成减少。图4(方案2产生的)描述了水洗实验的结果。可观察到,减粘裂化产物的水洗导致甲苯不溶物的进一步减少。因此,抑制剂不仅起到减少甲苯不溶物的作用,而且由于它们的表面活性剂性质,也可将一些甲苯不溶物萃取到中间的油/水相中。
减粘裂化产物的分析结果如下表1和2所示。这些减粘裂化产品的样品是由反应器直接获得的。我们观察到700_+(371.11℃)转化中未添加添加剂和添加了添加剂的样品之间的微小差异。但是,我们观察到,添加了添加剂的样品相对于未添加添加剂的样品的操作,减粘裂化产品的粘度明显降低。这些观察表明,水溶性抑制剂不仅起到减少甲苯不溶物的作用,而且具有新的降低粘度的性质。
表1
  当量强度,秒 120 120  120  135 135  135
  抑制剂 1,3,6-NTSS  2,6-NDSS  无 1,3,6-NTSS  2,6-NDSS
  700_+(371.11℃)转化,% 24.93 26.67  26.82  29.03 29.04  29.87
表2
    抑制剂     产品粘度;cp@40℃
    无     225
    1,3,6-NTSS     152
    2,6-NDSS     145
实施例3
LCCO的多磺化
向25g LCCO中加入25g浓硫酸,将混合物加热至70℃,在70℃下保持并混合2天。在反应完成之后,用100ml甲苯以三等分洗涤产物,在85℃下干燥以提供LCCO多磺酸产物。用苛性碱中和酸产物以提供相应的多钠盐。要指出的是,与现有技术的磺化方法不同,使用过量的浓硫酸以实现LCCO的多磺化。
产物表征(LCCO多磺酸)
使用FTIR和13C-NMR来表征LCCO多磺酸。产物的FTIR和结果表明,不同磺酸的伸缩和弯曲振动方式对应于水合磺酸即R-SO3 -H3O+。FTIR光谱类似于磺酸盐。磺酸盐具有~1230-1120cm-1和~1080-1025cm-1附近的带(不对称和对称SO2伸缩)。H3O+引起~2800-1650cm-1(宽峰)附近和2600、2250和1680cm-1附近的特征峰。3520cm-1附近(双峰)观察到的“游离OH”带证实存在大量的水合水,其足以形成水合氢离子。这表明,产物绝大部分是水合氢磺酸盐形式的水合磺酸。
产物的13C-NMR表明,不同的芳香碳-SO3H在141.72ppm和181ppm处共振。
用NaOH滴定含水LCCO-磺酸产物。用5g蒸馏水稀释5g产物以制备50%的活性物质。该50%的活性物质用于NaOH滴定。从滴定开始,对于1g 50%的活性物质,需要0.143g NaOH以完全中和。以每克活性物质为基准表示,1g磺化产物需要0.286g NaOH。
LCCO多磺酸多钠盐的表面活性
用表面科学领域的技术人员已知的威廉米悬片法(Wilhelmy platemethod)和悬滴法(pendant drop method),测定LCCO多磺酸多钠盐的空气/水和油/水表面张力。表3和表4列出分别对LCCO多磺酸多钠盐(LCCO-PSS)的空气/水和油/水表面张力的观察值。我们观察到与对1,3,6-萘三磺酸三钠盐(1,3,6-NTSS)和1,3,6,8-芘四磺酸钠盐(1,3,6,8-PTSS)观察到的类似的值。该数据表明LCCO多磺酸钠盐的高表面活性或表面活性剂性质。在LCCO产物的1-环和2-环芳香核上存在甲基、乙基和丙基取代基不会明显改变表面活性。
表3
   添加      空气/水表面张力(达因/cm){+/-0.5}
  无2-NSS2,6-NDSS1,3,6-NTSS1,3,6,8-PTSSLCCO-PSS     724323212121
表4
   添加剂      油/水界面张力(达因/cm){+/-0.5}
  无2,6-NDSS1,3,6-NTSS1,3,6,8-PTSSLCCO-PSS     45.519.33.21.51.5
以上数据证明,LCCO可转化为芳香族多磺酸盐,其是水溶性的并具有意想不到的高表面活性。

Claims (28)

1.一种改质重油的方法,该方法包括以下步骤:
a)使重油与有效量的抑制剂添加剂接触以提供添加了抑制剂的重油,该抑制剂添加剂由以下化学结构表示:
R-PNA-(X)n
其中R为包含0~40个碳原子的烷基基团;PNA是包含2~15个芳香环的多核芳香烃;X为选自SO3H、COOH和PO3H的酸官能团;n为1~15的整数;和
b)在250℃~500℃的温度下、在氢存在下和500~2500psig(3447.38~17236.89kPa)的氢分压下,热处理所述添加了抑制剂的重油0.1~10小时的时间。
2.一种改质重油的方法,该方法包括以下步骤:
a)使重油与有效量的抑制剂添加剂接触以提供添加了抑制剂的重油,该抑制剂添加剂由以下化学结构表示:
[R-PNA-(SO3 -)n]aMb
其中PNA是包含2~15个芳香环的多核芳香烃;X为磺酸官能团,n为1~15的整数,表示PNA烃上的磺酸官能团的数量;R为包含0~40个碳原子的烷基基团;M为选自元素周期表的详细形式的IV-B、V-B、VI-B、VII-B和VIII族的元素;a和b分别为1~4的整数;和
b)在250℃~500℃的温度下、在氢存在下和500~2500psig(3447.38~17236.89kPa)的氢分压下,热处理所述添加了抑制剂的重油0.1~10小时的时间。
3.权利要求1或2的方法,其中接触、热处理或两者在惰性环境中进行,其中抑制剂添加剂的用量为基于重油重量的10~50,000ppm,所述接触在25℃~90℃的温度下进行1分钟~24小时的时间。
4.权利要求1~3中任一项的方法,其中重油是原油、真空残油和常压残油的一种或多种。
5.权利要求1~4中任一项的方法,其还包括以下步骤:首先用载体溶剂提供抑制剂添加剂,然后使重油与抑制剂添加剂和载体溶剂的混合物接触。
6.权利要求1~5中任一项的方法,其中载体溶剂选自水、芳香烃、醇及其混合物,并且为抑制剂添加剂和载体溶剂混合物的10~80wt%。
7.权利要求1~6中任一项的改质油,与在相同工艺条件下、不存在抑制剂的热处理所获得的未处理的重油原料相比,其甲苯不溶物减少了至少20wt%。
8.权利要求2的方法,其中M选自VIII族和VI-B族。
9.一种改质重油的方法,该方法包括:
a)使重油与有效量的水溶性抑制剂添加剂接触,以提供添加了抑制剂的重油,该水溶性抑制剂添加剂由以下化学结构表示:
Ar-(SO3 -X+)n
其中Ar为至少两个环的同核芳香基团,X选自元素周期表的I族(碱金属)和II族(碱土金属)元素,并且当使用碱金属时,n为1~5的整数,当使用碱土金属时,n为2~10的整数;
b)在250℃~500℃的温度下热处理所述添加了抑制剂的重油0.1~10小时,由此得到改质的重油;
c)使所述热处理的添加了抑制剂的重油与水接触,其中水溶性抑制剂添加剂迁移到水相中;
d)从包含所述抑制剂添加剂的水相中分离热处理的重油;
e)从水中分离抑制剂添加剂;和
f)循环所述分离的抑制剂添加剂,使之在以上步骤a)中接触重油。
10.一种改质重油的方法,该方法包括:
a)在氢存在下,使重油与有效量的水溶性抑制剂添加剂接触,以提供添加了抑制剂的重油,该水溶性抑制剂添加剂由以下化学结构表示:
[R-PNA-(X)n]aMb
其中PNA是包含2~15个芳香环的多核芳香烃;X为磺酸官能团,n为1~15的整数,表示PNA烃上的磺酸官能团的数量;R为包含0~40个碳原子的烷基基团;M为选自元素周期表的详细形式的IV-B、V-B、VI-B、VII-B和VIII族的元素;a和b分别为1~4的整数;
b)在250℃~500℃的温度下热处理所述添加了抑制剂的重油0.1~10小时;
c)使所述热处理的添加了抑制剂的重油与水接触,其中水溶性抑制剂添加剂迁移到水相中;
d)从包含所述水溶性抑制剂添加剂的水相中分离热处理的重油;
e)从水中分离抑制剂添加剂;和
f)循环所述分离的抑制剂添加剂,使之在以上步骤a)中接触重油。
11.权利要求9或10的方法,其中重油为真空残油。
12.权利要求9或10的方法,其中X为碱金属。
13.权利要求9~12中任一项的方法,其中Ar的环的数量为2~3,n为1。
14.权利要求9~13中任一项的方法,其中芳香族多磺酸盐为萘-2-磺酸钠盐、萘-2,6-二磺酸钠盐、萘-1,5-二磺酸钠盐、萘-1,3,6-三磺酸钠盐、蒽醌-2-磺酸钠盐、蒽醌-1,5-二磺酸钠盐和芘-1,3,6,8-四磺酸钠盐中的一种或多种。
15.权利要求9~14中任一项的方法,其中添加剂的有效量为基于重油重量的10~50,000wppm。
16.一种制备由以下化学结构表示的芳香族多磺酸化合物的方法:
R-Ar-(SO3 -X+)n
其中R为具有0~40个碳原子的烷基基团,Ar为包括2~15个芳香环的芳香环结构,X为氢或碱金属或碱土金属,当X为碱金属时,n为1~5的整数,当X为碱土金属时,n为2~10的整数,该方法包括:
在20℃~100℃的温度下使轻质催化循环油与硫酸反应有效量的时间,硫酸的量为化学计量量的1.2~2倍,由此形成反应产物;
用有机溶剂洗涤所述反应产物;
用合适的碱中和洗涤的反应产物以形成相应的多磺酸盐。
17.权利要求16的方法,其中R为具有1~5个碳的烷基基团。
18.权利要求16的方法,其中R为O。
19.权利要求16~18中任一项的方法,其中用有机溶剂洗涤反应产物,或用苛性碱溶液中和反应产物。
20.权利要求16~19中任一项的方法,其中用苛性碱溶液中和溶剂洗涤过的反应产物。
21.权利要求16~20中任一项的方法,其中苛性碱溶液为氢氧化钠溶液。
22.一种制备富含芳香族多磺酸化合物的轻质催化循环油料流的方法,该方法包括:
在20℃~100℃的温度下使轻质催化循环油与硫酸反应有效量的时间,硫酸的量为化学计量量的1.2~2倍,由此形成反应产物,由此得到富含芳香族多磺酸化合物的轻质催化循环油。
23.权利要求22的方法,其中加入碱金属氢氧化物溶液以将至少部分芳香族多磺酸化合物转化为相应的盐。
24.权利要求22或23的方法,其中碱金属氢氧化物为氢氧化钠。
25.一种改质重油的方法,该方法包括以下步骤:
向所述重油中加入一定量的轻质催化循环油,该轻质催化循环油包含有效量的由以下通式表示的芳香族多磺酸化合物:
R-Ar-(SO3 -X+)n
其中R为具有0~40个碳原子的烷基基团,Ar为包括2~15个芳香环的芳香环结构,X为氢或碱金属或碱土金属,当X为碱金属时,n为1~5的整数,当X为碱土金属时,n为2~10的整数;和
在250℃~500℃的温度下热处理所述添加了轻质催化循环油的重油0.5~6小时以改质重油。
26.权利要求25的方法,其中重油是原油、真空残油和常压残油中的至少一种。
27.权利要求25或26的方法,其中添加剂的有效量为基于重油重量的10~50,000wppm,并且其中多核芳香族化合物包括2~15个芳香环。
28.由前述任一项权利要求的方法制备的产品。
CNA2005800155158A 2004-05-14 2005-05-12 抑制剂增强的重油热改质 Pending CN1954052A (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US57130804P 2004-05-14 2004-05-14
US60/571,308 2004-05-14

Related Child Applications (1)

Application Number Title Priority Date Filing Date
CNA2009100074540A Division CN101550096A (zh) 2004-05-14 2005-05-12 抑制剂增强的重油热改质

Publications (1)

Publication Number Publication Date
CN1954052A true CN1954052A (zh) 2007-04-25

Family

ID=34969570

Family Applications (4)

Application Number Title Priority Date Filing Date
CN2005800155177A Expired - Fee Related CN1954053B (zh) 2004-05-14 2005-05-12 重油热处理的结垢抑制
CNA2009100074540A Pending CN101550096A (zh) 2004-05-14 2005-05-12 抑制剂增强的重油热改质
CNA2005800155158A Pending CN1954052A (zh) 2004-05-14 2005-05-12 抑制剂增强的重油热改质
CNA2005800155181A Pending CN1954054A (zh) 2004-05-14 2005-05-12 使用油溶性多核芳香族化合物通过抑制中间相对重油的抑制剂增强热改质

Family Applications Before (2)

Application Number Title Priority Date Filing Date
CN2005800155177A Expired - Fee Related CN1954053B (zh) 2004-05-14 2005-05-12 重油热处理的结垢抑制
CNA2009100074540A Pending CN101550096A (zh) 2004-05-14 2005-05-12 抑制剂增强的重油热改质

Family Applications After (1)

Application Number Title Priority Date Filing Date
CNA2005800155181A Pending CN1954054A (zh) 2004-05-14 2005-05-12 使用油溶性多核芳香族化合物通过抑制中间相对重油的抑制剂增强热改质

Country Status (7)

Country Link
US (5) US7537686B2 (zh)
EP (3) EP1751257A2 (zh)
JP (3) JP2007537347A (zh)
CN (4) CN1954053B (zh)
AU (3) AU2005245867A1 (zh)
CA (3) CA2566122A1 (zh)
WO (3) WO2005113726A1 (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103842468A (zh) * 2011-08-31 2014-06-04 雪佛龙奥伦耐有限责任公司 液态原油烃组合物
CN104395435A (zh) * 2012-06-11 2015-03-04 奥德拉公司 改质受污染烃流的方法

Families Citing this family (34)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7537686B2 (en) * 2004-05-14 2009-05-26 Exxonmobil Research And Engineering Company Inhibitor enhanced thermal upgrading of heavy oils
US8298997B2 (en) 2006-08-16 2012-10-30 Exxonmobil Upstream Research Company Core annular flow of heavy crude oils in transportation pipelines and production wellbores
CA2657844C (en) * 2006-08-16 2013-11-12 Exxonmobil Upstream Research Company Demulsification of water-in-oil emulsion
US8101086B2 (en) * 2006-08-16 2012-01-24 Exxonmobil Upstream Research Company Oil/water separation of full well stream by flocculation-demulsification process
US9115851B2 (en) 2006-08-16 2015-08-25 Exxonmobil Upstream Research Company Core annular flow of crude oils
US7837855B2 (en) * 2006-08-21 2010-11-23 Exxonmobil Research & Engineering Company High-solvency-dispersive-power (HSDP) crude oil blending for fouling mitigation and on-line cleaning
US7901564B2 (en) * 2006-08-21 2011-03-08 Exxonmobil Research & Engineering Company Mitigation of refinery process unit fouling using high-solvency-dispersive-power (HSDP) resid fractions
US7833407B2 (en) * 2006-08-21 2010-11-16 Exxonmobil Research & Engineering Company Method of blending high TAN and high SBN crude oils and method of reducing particulate induced whole crude oil fouling and asphaltene induced whole crude oil fouling
CN100443562C (zh) * 2006-10-13 2008-12-17 中国地质大学(武汉) 一种含有两亲结构的稠油水热催化裂解降粘剂的制备方法
JP5378657B2 (ja) * 2007-05-31 2013-12-25 Jx日鉱日石エネルギー株式会社 炭化水素油の分解方法
US8062504B2 (en) * 2007-08-06 2011-11-22 Exxonmobil Research & Engineering Company Method for reducing oil fouling in heat transfer equipment
US8440069B2 (en) * 2007-08-06 2013-05-14 Exxonmobil Research And Engineering Company Methods of isolating and using components from a high solvency dispersive power (HSDP) crude oil
US7871510B2 (en) 2007-08-28 2011-01-18 Exxonmobil Research & Engineering Co. Production of an enhanced resid coker feed using ultrafiltration
US8019964B2 (en) * 2008-01-11 2011-09-13 International Buisness Machines Corporation Dynamic address translation with DAT protection
US7794587B2 (en) * 2008-01-22 2010-09-14 Exxonmobil Research And Engineering Company Method to alter coke morphology using metal salts of aromatic sulfonic acids and/or polysulfonic acids
US7871511B2 (en) * 2008-06-24 2011-01-18 Exxonmobil Research & Engineering Co. Method to alter coke morphology using either polynuclear aromatic compounds or functionalized lignin
US8398848B2 (en) * 2008-10-02 2013-03-19 Exxonmobil Research And Engineering Company Desulfurization of heavy hydrocarbons and conversion of resulting hydrosulfides utilizing copper metal
US8968555B2 (en) * 2008-10-02 2015-03-03 Exxonmobil Research And Engineering Company Desulfurization of heavy hydrocarbons and conversion of resulting hydrosulfides utilizing copper sulfide
US8696889B2 (en) * 2008-10-02 2014-04-15 Exxonmobil Research And Engineering Company Desulfurization of heavy hydrocarbons and conversion of resulting hydrosulfides utilizing a transition metal oxide
US20100163461A1 (en) 2008-10-09 2010-07-01 Wright Chris A Method and system for controlling the amount of anti-fouling additive for particulate-induced fouling mitigation in refining operations
US8425761B2 (en) * 2008-12-11 2013-04-23 Exxonmobil Research And Engineering Company Non-high solvency dispersive power (non-HSDP) crude oil with increased fouling mitigation and on-line cleaning effects
US8518238B2 (en) * 2009-04-09 2013-08-27 General Electric Company Processes for inhibiting fouling in hydrocarbon processing
US20110094937A1 (en) * 2009-10-27 2011-04-28 Kellogg Brown & Root Llc Residuum Oil Supercritical Extraction Process
US8916042B2 (en) * 2012-06-19 2014-12-23 Baker Hughes Incorporated Upgrading heavy oil and bitumen with an initiator
US9988584B2 (en) 2013-02-15 2018-06-05 Rival Technologies Inc. Method of upgrading heavy crude oil
JP5870066B2 (ja) * 2013-05-27 2016-02-24 ジーエス カルテックス コーポレイション 炭素繊維用ピッチの製造方法
US9803146B2 (en) * 2013-06-14 2017-10-31 Hindustan Petroleum Corporation Ltd. Hydrocarbon residue upgradation process
AU2016355377B2 (en) * 2015-11-20 2022-07-21 Hindustan Petroleum Corporation Ltd. Descaling and anti fouling composition
CA2963436C (en) 2017-04-06 2022-09-20 Iftikhar Huq Partial upgrading of bitumen
RU2662243C1 (ru) * 2017-09-18 2018-07-25 Государственное унитарное предприятие "Институт нефтехимпереработки Республики Башкортостан" (ГУП "ИНХП РБ") Способ подготовки высоковязкой нефти
US11091703B2 (en) * 2018-09-19 2021-08-17 Jorge Echenagucia Cioppa Thermal cracking of crude oil using a liquid catalyst to prevent coke formation and promote alkylation
JP7482623B2 (ja) * 2018-12-20 2024-05-14 インフィニューム インターナショナル リミテッド 油汚損防止剤および/または抗アスファルテン塊状凝集プロセス
CN110608369A (zh) * 2019-09-20 2019-12-24 华东理工大学 一种重油三层液的形成方法
US11279886B2 (en) 2019-11-05 2022-03-22 Saudi Arabian Oil Company Hydrocracking process and system including separation of heavy poly nuclear aromatics from recycle by sulfonation

Family Cites Families (80)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2626207A (en) * 1948-09-17 1953-01-20 Shell Dev Fuel oil composition
US2843530A (en) * 1954-08-20 1958-07-15 Exxon Research Engineering Co Residuum conversion process
US3105810A (en) * 1959-01-19 1963-10-01 Nalco Chemical Co Preventing fouling of metal conductors in a refinery process
US3310484A (en) * 1965-05-20 1967-03-21 Exxon Research Engineering Co Thermal cracking in an oxygen free atmosphere
US3475323A (en) 1967-05-01 1969-10-28 Exxon Research Engineering Co Process for the preparation of low sulfur fuel oil
US3558474A (en) * 1968-09-30 1971-01-26 Universal Oil Prod Co Slurry process for hydrorefining petroleum crude oil
US3852047A (en) * 1969-06-09 1974-12-03 Texaco Inc Manufacture of petroleum coke
US3617514A (en) * 1969-12-08 1971-11-02 Sun Oil Co Use of styrene reactor bottoms in delayed coking
US3707459A (en) * 1970-04-17 1972-12-26 Exxon Research Engineering Co Cracking hydrocarbon residua
US3684697A (en) * 1970-12-17 1972-08-15 Bernard William Gamson Petroleum coke production
US3769200A (en) * 1971-12-06 1973-10-30 Union Oil Co Method of producing high purity coke by delayed coking
US4390474A (en) * 1974-10-16 1983-06-28 Stepan Chemical Company Sulfonation petroleum composition
US4226805A (en) * 1976-09-09 1980-10-07 Witco Chemical Corporation Sulfonation of oils
US4140623A (en) * 1977-09-26 1979-02-20 Continental Oil Company Inhibition of coke puffing
DE2901178A1 (de) * 1979-01-13 1980-07-24 Bayer Ag Verfahren zur herstellung von naphthalin-1,3,5-trisulfonsaeure
CA1141320A (en) 1979-12-28 1983-02-15 Harvey E. Alford Coking technique and means for making methane
US4292168A (en) * 1979-12-28 1981-09-29 Mobil Oil Corporation Upgrading heavy oils by non-catalytic treatment with hydrogen and hydrogen transfer solvent
US4298455A (en) * 1979-12-31 1981-11-03 Texaco Inc. Viscosity reduction process
CA1125686A (en) * 1980-07-03 1982-06-15 Zacheria M. George Hydrodesulfurization of coke
US4612109A (en) * 1980-10-28 1986-09-16 Nl Industries, Inc. Method for controlling foaming in delayed coking processes
JPS5790093A (en) * 1980-11-27 1982-06-04 Cosmo Co Ltd Treatment of petroleum heavy oil
US4404110A (en) * 1980-12-22 1983-09-13 Marathon Oil Company Ozonation of petroleum feedstocks
US4440625A (en) * 1981-09-24 1984-04-03 Atlantic Richfield Co. Method for minimizing fouling of heat exchanges
US4455219A (en) * 1982-03-01 1984-06-19 Conoco Inc. Method of reducing coke yield
US4430197A (en) * 1982-04-05 1984-02-07 Conoco Inc. Hydrogen donor cracking with donor soaking of pitch
US4411770A (en) * 1982-04-16 1983-10-25 Mobil Oil Corporation Hydrovisbreaking process
US4478729A (en) * 1982-06-14 1984-10-23 Standard Oil Company (Indiana) Molybdenum sulfonates for friction reducing additives
US4518487A (en) * 1983-08-01 1985-05-21 Conoco Inc. Process for improving product yields from delayed coking
ZA845721B (en) * 1983-08-01 1986-03-26 Mobil Oil Corp Process for visbreaking resids in the presence of hydrogen-donor materials
US4616308A (en) * 1983-11-15 1986-10-07 Shell Oil Company Dynamic process control
US4549934A (en) * 1984-04-25 1985-10-29 Conoco, Inc. Flash zone draw tray for coker fractionator
AU580617B2 (en) 1984-09-10 1989-01-19 Mobil Oil Corporation Process for visbreaking resids in the presence of hydrogen- donor materials and organic sulfur compounds
US4587007A (en) * 1984-09-10 1986-05-06 Mobil Oil Corporation Process for visbreaking resids in the presence of hydrogen-donor materials and organic sulfur compounds
US4659543A (en) * 1984-11-16 1987-04-21 Westinghouse Electric Corp. Cross brace for stiffening a water cross in a fuel assembly
US4592830A (en) * 1985-03-22 1986-06-03 Phillips Petroleum Company Hydrovisbreaking process for hydrocarbon containing feed streams
US4619756A (en) * 1985-04-11 1986-10-28 Exxon Chemical Patents Inc. Method to inhibit deposit formation
US4670165A (en) * 1985-11-13 1987-06-02 Halliburton Company Method of recovering hydrocarbons from subterranean formations
US4659453A (en) * 1986-02-05 1987-04-21 Phillips Petroleum Company Hydrovisbreaking of oils
US4847018A (en) * 1986-09-25 1989-07-11 Union Oil Company Of California Process for producing petroleum sulfonates
US4927561A (en) * 1986-12-18 1990-05-22 Betz Laboratories, Inc. Multifunctional antifoulant compositions
CA1291057C (en) * 1986-12-19 1991-10-22 Junichi Kubo Method for hydrocracking heavy fraction oils
IT1237807B (it) * 1989-12-21 1993-06-17 Eniricerche Spa Procedimento per la preparazione di un disperdente solfonato da frazioni, asfaltiche del petrolio
US5110981A (en) * 1991-06-18 1992-05-05 Henkel Corporation Process for making alkyl naphthalene sulfonate surfactants
US5160602A (en) * 1991-09-27 1992-11-03 Conoco Inc. Process for producing isotropic coke
US5258115A (en) * 1991-10-21 1993-11-02 Mobil Oil Corporation Delayed coking with refinery caustic
US5248410A (en) * 1991-11-29 1993-09-28 Texaco Inc. Delayed coking of used lubricating oil
FR2689137B1 (fr) * 1992-03-26 1994-05-27 Inst Francais Du Petrole Procede d'hydro conversion de fractions lourds en phase liquide en presence d'un catalyseur disperse et d'additif polyaromatique.
US5296130A (en) * 1993-01-06 1994-03-22 Energy Mines And Resources Canada Hydrocracking of heavy asphaltenic oil in presence of an additive to prevent coke formation
WO1995014069A1 (en) 1993-11-18 1995-05-26 Mobil Oil Corporation Disposal of plastic waste material
IT1265286B1 (it) * 1993-12-17 1996-10-31 Agip Spa Procedimento per recuperare e movimentare prodotti petroliferi altamente viscosi
US5650072A (en) * 1994-04-22 1997-07-22 Nalco/Exxon Energy Chemicals L.P. Sulfonate and sulfate dispersants for the chemical processing industry
US6264829B1 (en) * 1994-11-30 2001-07-24 Fluor Corporation Low headroom coke drum deheading device
US5820750A (en) * 1995-02-17 1998-10-13 Exxon Research And Engineering Company Thermal decomposition of naphthenic acids
US6169054B1 (en) * 1997-04-11 2001-01-02 Intevep, S.A. Oil soluble coking additive, and method for making and using same
US5645711A (en) * 1996-01-05 1997-07-08 Conoco Inc. Process for upgrading the flash zone gas oil stream from a delayed coker
US5853565A (en) * 1996-04-01 1998-12-29 Amoco Corporation Controlling thermal coking
DE69607623T2 (de) 1996-10-30 2000-10-19 Nalco/Exxon Energy Chemicals, L.P. Verfahren zur Hemmung von Verkoken in Pyrolyse-Ofen
US5853568A (en) * 1997-07-30 1998-12-29 Exxon Research And Engineering Company Fluid cat cracking heavy using stripped catalyst for feed preheat and regenerator temperature control
CN1068623C (zh) * 1997-11-19 2001-07-18 中国石油化工总公司 抑制加热炉生焦的方法
US6387840B1 (en) * 1998-05-01 2002-05-14 Intevep, S.A. Oil soluble coking additive
AU8906998A (en) 1998-06-11 1999-12-30 Conoco Inc. Delayed coking with external recycle
US6168709B1 (en) * 1998-08-20 2001-01-02 Roger G. Etter Production and use of a premium fuel grade petroleum coke
US6048904A (en) * 1998-12-01 2000-04-11 Exxon Research And Engineering Co. Branched alkyl-aromatic sulfonic acid dispersants for solublizing asphaltenes in petroleum oils
US6611735B1 (en) * 1999-11-17 2003-08-26 Ethyl Corporation Method of predicting and optimizing production
US6316685B1 (en) * 1999-12-16 2001-11-13 Baker Hughes Incorporated Method for separating solids from hydrocarbon slurries
US6800193B2 (en) * 2000-04-25 2004-10-05 Exxonmobil Upstream Research Company Mineral acid enhanced thermal treatment for viscosity reduction of oils (ECB-0002)
DE50107797D1 (de) * 2000-06-02 2005-12-01 Mapal Fab Praezision Reibahle
US6544411B2 (en) * 2001-03-09 2003-04-08 Exxonmobile Research And Engineering Co. Viscosity reduction of oils by sonic treatment
US6489368B2 (en) * 2001-03-09 2002-12-03 Exxonmobil Research And Engineering Company Aromatic sulfonic acid demulsifier for crude oils
ATE458798T1 (de) * 2001-03-12 2010-03-15 Curtiss Wright Flow Control Verbessertes system zum abnehmen des bodens einer verkokungskammer
JP2003049174A (ja) * 2001-08-08 2003-02-21 Idemitsu Kosan Co Ltd 重質油の分解処理方法
US20040035749A1 (en) * 2001-10-24 2004-02-26 Khan Motasimur Rashid Flow properties of heavy crude petroleum
US7247220B2 (en) 2001-11-09 2007-07-24 Foster Wheeler Usa Corporation Coke drum discharge system
US20030102250A1 (en) 2001-12-04 2003-06-05 Michael Siskin Delayed coking process for producing anisotropic free-flowing shot coke
US20030127314A1 (en) * 2002-01-10 2003-07-10 Bell Robert V. Safe and automatic method for removal of coke from a coke vessel
US20030191194A1 (en) * 2002-04-09 2003-10-09 Ramesh Varadaraj Oil/water viscoelastic compositions and method for preparing the same
US6843889B2 (en) 2002-09-05 2005-01-18 Curtiss-Wright Flow Control Corporation Coke drum bottom throttling valve and system
JP4041409B2 (ja) * 2003-02-05 2008-01-30 独立行政法人科学技術振興機構 多環式芳香族炭素系固体強酸
ES2543404T3 (es) 2003-05-16 2015-08-19 Exxonmobil Research And Engineering Company Proceso de coquización retardada para producción de coque en granalla fluido
US7537686B2 (en) * 2004-05-14 2009-05-26 Exxonmobil Research And Engineering Company Inhibitor enhanced thermal upgrading of heavy oils

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103842468A (zh) * 2011-08-31 2014-06-04 雪佛龙奥伦耐有限责任公司 液态原油烃组合物
CN104395435A (zh) * 2012-06-11 2015-03-04 奥德拉公司 改质受污染烃流的方法

Also Published As

Publication number Publication date
WO2005113727A3 (en) 2006-05-18
CA2566788A1 (en) 2005-12-01
US7704376B2 (en) 2010-04-27
WO2005113725A1 (en) 2005-12-01
US20050258070A1 (en) 2005-11-24
EP1751256A1 (en) 2007-02-14
CN1954054A (zh) 2007-04-25
WO2005113727A2 (en) 2005-12-01
US7732387B2 (en) 2010-06-08
US7537686B2 (en) 2009-05-26
EP1753842A1 (en) 2007-02-21
CN101550096A (zh) 2009-10-07
JP2007537346A (ja) 2007-12-20
US20050258071A1 (en) 2005-11-24
AU2005245867A1 (en) 2005-12-01
CA2566788C (en) 2011-06-21
JP2007537345A (ja) 2007-12-20
WO2005113726A1 (en) 2005-12-01
US7594989B2 (en) 2009-09-29
CN1954053A (zh) 2007-04-25
US20060021907A1 (en) 2006-02-02
CA2566761C (en) 2011-06-07
AU2005245866A1 (en) 2005-12-01
CN1954053B (zh) 2010-06-16
JP2007537347A (ja) 2007-12-20
CA2566122A1 (en) 2005-12-01
US20050263438A1 (en) 2005-12-01
AU2005245865A1 (en) 2005-12-01
CA2566761A1 (en) 2005-12-01
US20060183950A1 (en) 2006-08-17
EP1751257A2 (en) 2007-02-14

Similar Documents

Publication Publication Date Title
CN1954052A (zh) 抑制剂增强的重油热改质
JPH01207390A (ja) 混合極性抽出溶媒−脂肪族−芳香族或は極性抽出溶媒−極性置換ナフテン抽出溶媒混合物を用いた炭化水素油の抽出
WO2015183361A1 (en) Pyrolysis tar upgrading process
US2948675A (en) Process for removing heavy metals from petroleum with an oil-insoluble sulfonic acid
US8613852B2 (en) Process for producing a high stability desulfurized heavy oils stream
Razavian et al. Intensified transformation of low-value residual fuel oil to light fuels with TPABr: EG as deep eutectic solvent with dual functionality at moderate temperatures
US4692270A (en) Surface active agent
US9238780B2 (en) Solvent extraction process for removal of naphthenic acids and calcium from low asphaltic crude oil
EP0252606A2 (en) Process for increasing the cetane number of diesel fuels
CN106243002A (zh) 一种石油磺酸盐驱油剂及其制备方法
WO2011075495A1 (en) Desulfurization process using alkali metal reagent
US2772212A (en) Process for removing metals from crude oils and then hydrodesulfurizing the crude oil
CN111170904B (zh) 石油磺酸盐原料及其制备方法、石油磺酸盐及其生产方法
BR102012021754A2 (pt) composiÇço catalÍtica, mÉtodo para manufatura de uma emulsço catalÍtica e processo de hidroconversço
Prajapati et al. Slurry phase hydrocracking of residue by phosphomolybdic and phosphotungstic acids
JPH01108296A (ja) 水素供与体希釈物を用いたクラッキング法
US2654777A (en) Extraction of sulfuric acid sludge
KR102098148B1 (ko) 아스팔텐 저감 방법
US1747119A (en) Process and product for treating emulsions of mineral oils
RU2640210C1 (ru) Катализатор гидропереработки нефтяных фракций (варианты)
US2817679A (en) Production of basic alkaline earth metal petroleum sulfonates
Myltykbaeva KANSEITOVA DARIYA KURMANALIEVNA
DeRosset et al. Upgrading of coal liquids: upgrading distillates from coal liquefaction. Annual report, January 31, 1979-January 31, 1980
STEININGER et al. Other Classes
Units-Phase Advanced Direct Liquefaction Concepts for PETC ceneº aa

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C12 Rejection of a patent application after its publication
RJ01 Rejection of invention patent application after publication

Open date: 20070425