CN1952046A - 一种酯交换反应生产生物柴油的方法 - Google Patents

一种酯交换反应生产生物柴油的方法 Download PDF

Info

Publication number
CN1952046A
CN1952046A CNA2005100475124A CN200510047512A CN1952046A CN 1952046 A CN1952046 A CN 1952046A CN A2005100475124 A CNA2005100475124 A CN A2005100475124A CN 200510047512 A CN200510047512 A CN 200510047512A CN 1952046 A CN1952046 A CN 1952046A
Authority
CN
China
Prior art keywords
reaction
oil
accordance
fatty acid
alcohol
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CNA2005100475124A
Other languages
English (en)
Other versions
CN100590176C (zh
Inventor
霍稳周
黎元生
于镝鸣
陈明
李花伊
吕清林
高飞
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
China Petroleum and Chemical Corp
Sinopec Fushun Research Institute of Petroleum and Petrochemicals
Original Assignee
China Petroleum and Chemical Corp
Sinopec Fushun Research Institute of Petroleum and Petrochemicals
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by China Petroleum and Chemical Corp, Sinopec Fushun Research Institute of Petroleum and Petrochemicals filed Critical China Petroleum and Chemical Corp
Priority to CN200510047512A priority Critical patent/CN100590176C/zh
Publication of CN1952046A publication Critical patent/CN1952046A/zh
Application granted granted Critical
Publication of CN100590176C publication Critical patent/CN100590176C/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E50/00Technologies for the production of fuel of non-fossil origin
    • Y02E50/10Biofuels, e.g. bio-diesel
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P30/00Technologies relating to oil refining and petrochemical industry
    • Y02P30/20Technologies relating to oil refining and petrochemical industry using bio-feedstock

Abstract

本发明涉及一种酯交换反应生产生物柴油的方法。本发明方法将参加反应的动、植物油或脂和低碳醇按反应计量比例通入设有超声波发射装置的酯交换反应器中,在适宜条件下进行反应。本发明方法可显著提高醇与油脂间的传质过程,更快地达到完全反应状态,缩短反应时间;提高转化率。在缓和的条件下,可以获得很高的转化率。与现有技术相比,本发明方法具有流程简单、条件缓和、转化率高、副产物少等优点,可以用于各种动、植物油或脂生产生物柴油。

Description

一种酯交换反应生产生物柴油的方法
技术领域
本发明涉及一种生物柴油的生产方法,具体地说是一种利用酯交换反应制备生物柴油的方法。
背景技术
脂肪酸甘油三酸酯,特别是动、植物脂和油,用低分子量一元醇进行酯交换反应得到的单脂,与从石油馏分中得到的柴油有相似的性质,可以作为燃料使用,一般将用这种方法得到的燃料称为生物柴油。
通过油脂的酯交换反应生产的生物柴油具有以下优点:1)有优良的环保特性。生物柴油含硫量低,不含对环境造成污染的芳香烃。2)有较好的发动机低温启动性能,无添加剂冷凝点达-20℃。3)有较好的润滑性能,可降低喷油泵、发动机缸体和连杆的磨损率,延长其使用寿命。4)有较好的安全性能,其闪点高,不属于危险品。5)有良好的燃料性能,其十六烷值高,燃烧性能优于普通柴油。6)具有可再生性。生物柴油作为一种可再生能源,其资源不会枯竭。
目前,主要采用化学酯交换法生产生物柴油,使用酸、碱以及分子筛作为催化剂。使用碱(有机碱或无机碱)为催化剂时,在碱浓度过高时,会导致副反应发生。碱与产物进行皂化反应,导致产率下降。使用酸为催化剂时,需要较高的温度,酸催化酯交换反应是可逆的。耗能高且收率低。使用分子筛为催化剂时,需要在较高的反应温度下进行酯交换反应,此时甲醇呈蒸气状态,不利于反应的进行。无论采用那种催化剂,上述方法均存在以下缺点:工艺复杂、醇必须过量,后续工艺必须有相应的醇回收装置,能耗高;产品色泽深,由于脂肪中不饱和脂肪酸在高温下容易变质;酯化产物难于回收,成本高;生产过程中有废液排放。另外,现有技术中反应得到的酯相中,目的产物(如甲酯)含量较低(一般为50%~70%),须通过分离将大量甘油单酯和甘油二酯循环回反应器,实际上造成反应器利用率降低,原料处理能力下降,生产效率较低。
为了解决生产过程中废液排放的问题,人们开始使用生物酶合成生物柴油,该法具有条件温和,醇用量小,无污染排放等优点。缺点是:油脂的转化率低;酶的使用寿命短;产品与甘油难以分离;脂肪酶价格高;因此无工业应用价值。
为了解决催化剂分离的问题,中国专利CN1408701A公开了一种制备脂肪酸酯的方法和装置。在超临界状态和催化剂存在的条件下,使用该发明的反应器,来制备脂肪酸酯。其中把含有未反应的反应物和/或中间产物的反应混合物再循环回反应器。该方法优选的温度为240℃~400℃,更优选的温度为245℃~350℃,优选的反应压力为0.5MPa~25MPa,更优选的反应压力为2MPa~22MPa,特别优选8MPa~20MPa。该方法增加了反应界面面积,提高了转化率。中国专利CN1408701A也公开了一种制备脂肪酸酯的方法和含脂肪酸酯的燃料。该脂肪酸酯是在无催化剂存在下,油脂和醇两者之一是超临界状态的条件下,油脂和醇反应制备的。该方法优选反应温度不超过400℃,优选的反应压力为0.4MPa~25.0MPa。该方法不存在催化剂分离的问题,产物不需循环,因此能耗低。但是由于以上两种方法均在在高温高压下进行,会导致动、植物油脂的裂解,同时存在设备费用高的问题。
日本专利(特开2002-167356)也公开了一种脂肪酸脂的制备方法,该方法是采用一种挥发性的有机胺作为催化剂,在比较缓和的条件下制备出脂肪酸脂,从工艺角度看,不需要分离催化剂,可以简单的精制出脂肪酸脂,而且避免了传统方法中存在着相分离甘油相中催化剂残留的问题。该方法的最佳反应条件为,反应温度60~150℃,反应压力为0.2~0.9MPa。该方法虽然解决了催化剂的分离问题,但仍然存在着醇与动、植物油脂互溶性差,反应体系呈两相,酯交换反应只在界面进行,反应速率低的问题。
为了提高转化率,中国专利CN1496398A公开了一种通过醇解从三酰基甘油酯获得脂肪酸酯的方法。为了加快酯交换反应过程,在初始反应阶段加入一定量的至少一种链烷醇脂肪酸酯,尤其是一元链烷醇酯,优选甲酯、乙酯、和/或乙酯,到有待进行酯交换的脂肪和/或油中,以致由此生成的反应混合物由单相构成。从而使该过程从开始就保持高反应速率。并解决了脂肪酸对反应转化率影响的问题。由于该方法可以避免或缩短酯交换的初始阶段,缩短了反应时间,但是对酯交换反应的选择性和转化率没有太大的贡献;反应需要进行循环操作,增加了能耗;反应过程所选的催化剂价格高;酯交换反应过程本身生成水,而水对反应所选的催化剂有毒,因此催化剂寿命短;不溶于反应混合物的催化活性盐要沉积在载体上,催化剂制作和/或分离过程复杂。
发明内容
针对现有技术的不足,本发明提供一种设备简单、以超声波促进酯交换反应生产生物柴油的方法。
本发明生物柴油的生产过程包括以下内容:将参加反应的动、植物油或脂和低碳一元醇按反应计量比例通入设有超声波发射装置的酯交换反应器,在适宜的反应条件下进行酯交换反应,在酯交换反应过程中,超声波的频率为10~300kHz,超声波的功率为0.1~500W/L反应物料。超声波发射装置可以根据酯交换反应器的规模设置一个或多个。
本发明可以不使用催化剂,所谓的不使用催化剂是指:不使用催化剂或者使用极小量的催化剂,例如催化剂的加入量是原料的1.0%(重量)以下。不使用催化剂意味着工艺过程简单,生产成本低。这里所指的催化剂是有机胺类物质,如含1~5个碳原子的有机胺类物质。
酯交换反应是在温度范围30℃~150℃,优选30℃~130℃,最优先选择的是60℃~100℃间进行。反应是在常压至低碳一元醇的蒸汽压的压力下进行。
任何脂肪酸三甘油酯都可以作为本发明的原料,尤其优选的是用动、植物脂和/或油,特别是那些脂肪酸根中具有10~22个碳原子,最好是12~18个碳原子的作为原料。作为植物性原料的例子可以举出大豆油、菜籽油、葵花籽油、花生油、棉籽油、棕榈油、亚麻仁油、蓖麻油、甜菜油和橄榄油等一种或几种。动物性原料的例子如牛油、猪油一种或两种。
本发明使用具有1~8个碳原子的低分子量一元醇与脂肪酸三甘油酯进行酯交换反应。优选具有1~6个碳原子的醇,特别优选甲醇或乙醇。
本发明中的具体反应时间取决于所采用的原料—油脂和醇类物质的种类、反应条件以及所要求的收率,一般反应时间在0.5~5小时。
按照本发明,酯交换反应是在常压到所选用的醇的蒸汽压之间的压力下进行的。一般在常压到1.0MPa(表压,下同),优选0.10MPa~0.8MPa。适当的压力可以增加反应界面面积,提高油脂的转化率。
按照本发明的实施方法,酯交换反应选取低分子量一元醇与动、植物脂和油的摩尔比为3~50,优选5~30,最优先选择的是5~15。但通过试验发现,一元醇的加入量略大于理论量时,反应的选择性和转化率都有提高。
本发明涉及的酯交换反应器可以直接沿用现有的标准反应釜,非准反应釜及槽状或筒状的反应釜,可以附设搅拌器、加压装置、温度表、压力表等附属设备,并且可以根据装置的规模和操作条件确定酯交换反应器的规模及形式。也可以选择其它形式的反应器,如撞击流反应器,静态混合器反应器等。为提高反应效果,可以在酯交换反应器出口与入口之间建立物料循环,循环物料量为进料量的5%~500%。
本发明涉及的超声波换能器(或超声波发生器)可以直接采用市售的现有产品,也可以采用另行设计的产品,还可以采用文献资料所报道的产品,考虑到在必要时对超声波发射元件冷却,可以在超声波发射元件周围增设水冷结构。
本发明方法采用一种设有一个或多个圆柱状超声波发射装置的酯交换反应器作为生物柴油的生产设备,由于所设的超声波发射装置上的超声波换能器的频率不同,各超声波换能器产生的超声波可通过超声波发射体的侧面及另一端向酯交换反应器内的反应物料放射。可以通过调节超声波的辐射功率,改变物料扰动强度,改善反应活性,使之达到最佳的反应效果,来促进酯交换反应的进行,从而提高了传质速率,在缓和的反应条件,得到了较高的转化率。
本发明采用设有超声波发射装置的反应器作为酯交换反应器,极大地强化了微观混合和微观传质效果,在缓和的反应条件下,达到了较高的转化率。避免了催化剂分离,解决了醇与动、植物油脂互溶性差,反应体系呈两相,酯交换反应只在界面进行,反应速率低的问题。简化了工艺流程,降低了生产成本和设备投资。生产过程中无废液排放,是一项绿色环保工艺方法。
附图说明
图1是本发明使用的一种具体超声波酯交换反应器结构示意图;
图2为本发明反应体系一种工艺流程图。
具体实施方式
如图1所示,本发明所采用的超声波酯交换反应器由反应器5,即圆筒状反应器,和超声波发振器1-1、1-2及超声波换能器3-1、3-2,超声波发射体4-1、4-2构成。在反应器5内设有超声波发射体4-1和4-2,超声波发射体4-1和4-2的一端各设有超声波换能器3-1和3-2,超声波发振器1-1、1-2分别连接超声波换能器3-1和3-2。
反应器5的上下分别设有循环出料口14和循环进料口13,反应器5的外侧设有控制反应温度的夹套6,夹套6上部一侧设有循环液入口9,夹套下部一侧设有循环液出口7。而且反应器5的上部设有反应物料入口11;反应器5的下部设有反应物料出口8。用固定螺母2-1和2-2将超声波发射体4-1和4-2固定于反应器5上下部的法兰10-1和10-2上,法兰10-1和10-2和反应器5是通过固定件12-1和12-2来固定连接的。
超声波换能器3-1和3-2可将超声波发振器1-1和1-2来的电信号转化为机械震动。并可产生一种频率的超声波。该超声波换能器3-1和3-2产生的超声波可通过上述超声波发射体4-1和4-2的侧面,或侧面及另一端向反应器5内放射。
本发明利用超声波促进酯交换反应,在反应器内所设的超声波发射体可以对反应器内的反应物料发射超声波,这样就可以利用超声波的分散、振动、活化等多重效应,破坏反应器内反应物料的溶剂结构,改善反应活性,从而提高了传质速率和转化率。
如图2所示,按照化学计量比将参加反应的物料,分别用泵或液体输送设备输入到酯交换反应器进料口11中,原料物流在超声波的作用下在反应器D中产生剧烈的振动,从而均匀混合发生酯交换反应,然后反应物料在压力作用下,不断流向出料口14,由出料口14流出的物料进入中间罐C中,通过泵或液体输送设备在循环到酯交换反应器循环进料口13中,物料在超声波作用下产生振动,从而再均匀混合发生酯交换反应,然后反应物料在压力作用下,不断流向出料口8,反应物料从出料口8通过压力调节器E来控制反应器压力,从压力调节器E排出的反应物料直接进行蒸馏操作,可以将未反应的醇类物质分离出去,然后循环使用。后直接进行蒸馏操作,可以将未反应的醇类物质分离出去,然后循环使用。经过蒸馏后的反应产物,静置分离,上层酯相即可作为生物柴油产品使用,下层为纯度约75%以上的甘油可作为副产品出售。有时连续排出的反应产物不经过上述蒸馏操作,直接静置分离,即可得到纯度为93%以上的生物柴油产品和纯度为75%以上的甘油。
下面通过实施例和比较例进一步说明本发明的方法和效果。涉及的百分含量为质量百分含量。
实施例1
在计量罐A中加入棉籽油,在计量罐B中加入甲醇,甲醇和棉籽油的摩尔比为10,棉籽油和甲醇的进料速率等于酯交换反应器有效容积(即进料体积空速为1h-1,也即反应时间为1h),将棉籽油和甲醇分别用泵打入酯交换反应器内,与循环物料在酯交换反应器中在超声波的作用下快速混合发生酯交换反应,循环物料速率为进料量的300%。控制反应温度为130℃,反应压力为0.8MPa,超声波的频率为15kHz,功率为400W/L反应物料(反应物料量按反应器有效容积计算,下同)。从酯交换反应器出料口流出的反应产物通过静置分离,得到脂肪酸酯相(上层),利用导津公司的GC-14B气相色谱仪分析,测得脂肪酸甘油三酯转化率为100%,脂肪酸酯相中甲酯的含量为90.5%。
实施例2
按照实施例1的方法,只是进料速率为酯交换反应器有效容积的二分之一,循环物料速率为进料量的400%,超声波的频率为30kHz,功率为100W/L物料。从反应器出料口流出的反应产物通过静置分离,得到脂肪酸酯相(上层),利用导津公司的GC-14B气相色谱仪分析,测得脂肪酸甘油三酯转化率为100%,脂肪酸酯相中甲酯的含量为92.8%。
实施例3
按照实施例1的方法,进料速率为反应器有效容积的四分之一,循环物料速率为进料量的200%,超声波的频率为200kHz,功率为80W/L物料。从酯交换反应器出料口流出的反应产物通过静置分离,得到脂肪酸酯相(上层),利用导津公司的GC-14B气相色谱仪分析,测得脂肪酸甘油三酯转化率为100%,脂肪酸酯相中甲酯的含量为89.5%。
实施例4
按照实施例1的方法,进料速率为酯交换反应器有效容积的五分之一,循环物料速率为进料量的100%,超声波的频率为100kHz,功率为10W/L物料。从反应器出料口流出的反应产物通过静置分离,得到脂肪酸酯相(上层),利用导津公司的GC-14B气相色谱仪分析,测得脂肪酸甘油三酯转化率为98.5%,脂肪酸酯相中甲酯的含量为86.5%。
实施例5
按照实施例1的方法,进料速率等于酯交换反应器的有效容积,无循环物料,超声波的频率为18kHz,功率为40W/L物料。从反话反应器出料口流出的反应产物通过静置分离,得到脂肪酸酯相(上层),利用导津公司的GC-14B气相色谱仪分析,测得脂肪酸甘油三酯转化率为100%,脂肪酸酯相中甲酯的含量为89.8%。
实施例6
按照实施例1的方法,只是甲醇和棉籽油的摩尔比为15,超声波的频率为20kHz,功率为100W/L物料,从酯交换反应器出料口流出的反应产物通过静置分离,得到脂肪酸酯相(上层),利用导津公司的GC-14B气相色谱仪分析,测得脂肪酸甘油三酯转化率为100%,脂肪酸酯相中甲酯的含量为91.5%。
实施例7
按照实施例1的方法,只是甲醇和棉籽油的摩尔比为5,超声波的频率为20kHz,功率为30W/L物料,从酯交换反应器出料口流出的反应产物通过静置分离,得到脂肪酸酯相(上层),利用导津公司的GC-14B气相色谱仪分析,测得脂肪酸甘油三酯转化率为90%,脂肪酸酯相中甲酯的含量为80.5%。
实施例8
按照实施例1的方法,只是将反应温度为100℃,超声波的频率为20kHz,功率为200W/L物料,从酯交换反应器出料口流出的反应产物通过静置分离,得到脂肪酸酯相(上层),利用导津公司的GC-14B气相色谱仪分析,测得脂肪酸甘油三酯转化率为95%,脂肪酸酯相中甲酯的含量为87.7%。
实施例9
按照实施例1的方法,只是将反应温度为60℃,超声波的频率为100kHz,功率为250W/L物料,从酯交换反应器出料口流出的反应产物通过静置分离,得到脂肪酸酯相(上层),利用导津公司的GC-14B气相色谱仪分析,测得脂肪酸甘油三酯转化率为90%,脂肪酸酯相中甲酯的含量为85.3%。
实施例10
按照实施例1的方法,只是将甲醇改为乙醇,超声波的频率为50kHz,功率为300W/L物料,从酯交换反应器出料口流出的反应产物通过静置分离,得到脂肪酸酯相(上层),利用导津公司的GC-14B气相色谱仪分析,测得脂肪酸甘油三酯转化率为100%,脂肪酸酯相中乙酯的含量为91.5%。
实施例11
按照实施例1的方法,只是将甲醇改为乙醇,乙醇和油脂的摩尔比为15,反应温度为120℃,反应压力为0.5MPa,超声波的频率为15kHz,功率为80W/L物料,从酯交换反应器出料口流出的反应产物通过静置分离,得到脂肪酸酯相(上层),利用导津公司的GC-14B气相色谱仪分析,测得脂肪酸甘油三酯转化率为100%,脂肪酸酯相中乙酯的含量为90.5%。
实施例12
按照实施例1的方法,只是将棉子油改为菜子油,菜子油的进料速率为反应器有效容积的四分之一,反应温度为130℃,反应压力为0.65MPa,超声波的频率为15kHz,功率为100W/L物料,从酯交换反应器出料口流出的反应产物通过静置分离,得到脂肪酸酯相(上层),利用导津公司的GC-14B气相色谱仪分析,测得脂肪酸甘油三酯转化率为100%,脂肪酸酯相中甲酯的含量为93.5%。
实施例13
按照实施例1的方法,只是将棉子油改为大豆油,大豆油的进料速率为反应器有效容积的二分之一,反应温度为100℃,反应压力为0.4MPa,超声波的频率为30kHz,功率为200W/L物料,从酯交换反应器出料口流出的反应产物通过静置分离,得到脂肪酸酯相(上层),利用导津公司的GC-14B气相色谱仪分析,测得脂肪酸甘油三酯转化率为97%,脂肪酸酯相中甲酯的含量为88.9%。
实施例14
按照实施例1的方法,只是在原料中加入0.1%的二乙胺,超声波的频率为18kHz,功率为50W/L物料,从酯交换反应器出料口流出的反应产物通过静置分离,得到脂肪酸酯相(上层),利用导津公司的GC-14B气相色谱仪分析,测得脂肪酸甘油三酯转化率为100%,脂肪酸酯相中甲酯的含量为95.5%。
实施例15
按照实施例12的方法,只是将菜籽油改为大豆色拉油,在原料中加入1%的二乙胺,从进料速率等于反应器的有效容积,超声波的频率为20kHz,功率为200W/L物料,反应器出料口流出的反应产物通过静置分离,得到脂肪酸酯相(上层),利用导津公司的GC-14B气相色谱仪分析,测得脂肪酸甘油三酯转化率为100%,脂肪酸酯相中甲酯的含量为93.5%。
比较例1
将大豆色拉油100克、甲醇50克、二乙胺20克、水10克加入到500毫升耐压玻璃烧瓶中,以700rpm的搅拌速度进行搅拌,加热到130℃,此时表压0.65MPa。在130℃下继续搅拌,反应3小时。反应结束后通过静置分离,得到脂肪酸酯相(上层),利用导津公司的GC-14B气相色谱仪分析,测得脂肪酸甘油三酯转化率为100%,脂肪酸酯相中甲酯的含量为92%。
比较例2
按比较例1方法,只是催化剂二乙胺加入量为2克。产物脂肪酸甘油三酯转化率为100%,脂肪酸酯相中甲酯的含量为90%。从比较例2和实施例15可以看出,在催化剂用量相近的情况下,本发明方法可以在较短的反应时间内达到更佳的反应效果(目的产品选择性增加),大大提高了生产效率。
比较例3
按比较例1方法,只是不加催化剂二乙胺,原料为棉籽油,按实施例1的原料配比。产物脂肪酸甘油三酯转化率为100%,脂肪酸酯相中甲酯的含量为88.5%。比较例3和实施例1相比,在不使用催化剂的情况下,本发明方法可以在更短的反应时间内达到更佳的反应效果。

Claims (10)

1、一种酯交换反应生产生物柴油的方法,包括以下内容:将参加反应的动、植物油或脂和低碳一元醇按反应计量比例通入设有超声波发射装置的酯交换反应器,在适宜的反应条件下进行酯交换反应,在酯交换反应过程中,超声波的频率为10~300kHz,超声波的功率为0.1~500W/L反应物料。
2、按照权利要求1所述的方法,其特征在于所述的酯交换反应温度为30℃~150℃。
3、按照权利要求1所述的方法,其特征在于所述的酯交换反应压力为常压至低碳一元醇的蒸汽压的压力下进行。
4、按照权利要求1所述的方法,其特征在于所述的动、植物油或脂选自大豆油、菜籽油、葵花籽油、花生油、棉籽油、棕榈油、亚麻仁油、蓖麻油、甜菜油、橄榄油、牛油和猪油中的一种或几种。
5、按照权利要求1所述的方法,其特征在于所述的低碳一元醇为具有1~8个碳原子的一元醇。
6、按照权利要求1所述的方法,其特征在于所述的低碳一元酯为甲醇或乙醇。
7、按照权利要求1所述的方法,其特征在于所述的酯交换反应时间为0.5~5小时。
8、按照权利要求1所述的方法,其特征在于所述的酯交换反应的反应压力为常压到1.0MPa。
9、按照权利要求1所述的方法,其特征在于所述的酯交换反应中低分子量一元醇与动、植物脂和油的摩尔比为3~50。
10、按照权利要求1所述的方法,其特征在于所述的酯交换反应加入占原料重量1.0%以下的催化剂,催化剂为含1~5个碳原子的有机胺类物质。
CN200510047512A 2005-10-19 2005-10-19 一种酯交换反应生产生物柴油的方法 Active CN100590176C (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN200510047512A CN100590176C (zh) 2005-10-19 2005-10-19 一种酯交换反应生产生物柴油的方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN200510047512A CN100590176C (zh) 2005-10-19 2005-10-19 一种酯交换反应生产生物柴油的方法

Publications (2)

Publication Number Publication Date
CN1952046A true CN1952046A (zh) 2007-04-25
CN100590176C CN100590176C (zh) 2010-02-17

Family

ID=38058607

Family Applications (1)

Application Number Title Priority Date Filing Date
CN200510047512A Active CN100590176C (zh) 2005-10-19 2005-10-19 一种酯交换反应生产生物柴油的方法

Country Status (1)

Country Link
CN (1) CN100590176C (zh)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102559396A (zh) * 2012-01-18 2012-07-11 浙江工业大学 一种生物柴油酯化酯交换反应装置
CN105505448A (zh) * 2015-11-26 2016-04-20 辽宁石油化工大学 一种超声波作用下的渣油临氢加工方法
CN104549530B (zh) * 2013-10-22 2016-08-17 中国石油化工股份有限公司 一种加氢催化剂载体的制备方法
CN106753810A (zh) * 2017-02-14 2017-05-31 徐健 一种利用超声波技术生产生物柴油的工艺方法
CN109054912A (zh) * 2018-08-01 2018-12-21 东营市浩瀚生化科技有限公司 一种复合乳化剂及其在生产微乳化柴油中的应用
WO2022089530A1 (zh) 2020-10-28 2022-05-05 中国石油化工股份有限公司 一种液-液混合器、包括其的液-液反应装置、和使用其的液-液反应方法

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102559396A (zh) * 2012-01-18 2012-07-11 浙江工业大学 一种生物柴油酯化酯交换反应装置
CN102559396B (zh) * 2012-01-18 2013-10-30 浙江工业大学 一种生物柴油酯化酯交换反应装置
CN104549530B (zh) * 2013-10-22 2016-08-17 中国石油化工股份有限公司 一种加氢催化剂载体的制备方法
CN105505448A (zh) * 2015-11-26 2016-04-20 辽宁石油化工大学 一种超声波作用下的渣油临氢加工方法
CN106753810A (zh) * 2017-02-14 2017-05-31 徐健 一种利用超声波技术生产生物柴油的工艺方法
CN109054912A (zh) * 2018-08-01 2018-12-21 东营市浩瀚生化科技有限公司 一种复合乳化剂及其在生产微乳化柴油中的应用
CN109054912B (zh) * 2018-08-01 2021-03-26 东营市浩瀚生化科技有限公司 一种复合乳化剂及其在生产微乳化柴油中的应用
WO2022089530A1 (zh) 2020-10-28 2022-05-05 中国石油化工股份有限公司 一种液-液混合器、包括其的液-液反应装置、和使用其的液-液反应方法

Also Published As

Publication number Publication date
CN100590176C (zh) 2010-02-17

Similar Documents

Publication Publication Date Title
Tabatabaei et al. Reactor technologies for biodiesel production and processing: A review
CN100590176C (zh) 一种酯交换反应生产生物柴油的方法
CN101314719B (zh) 串联双固定床固体催化剂催化制备生物柴油的方法
CN100410349C (zh) 均相连续反应制备生物柴油的方法
CN100537711C (zh) 一种生物柴油的生产方法
Suranani et al. Process intensification using corning® advanced-flow™ reactor for continuous flow synthesis of biodiesel from fresh oil and used cooking oil
CN101177617B (zh) 一种制备生物柴油的工艺方法
CN100392045C (zh) 一种采用固定床气相酯化制备脂肪酸甲酯的方法
CN101117587B (zh) 移动式生物柴油生产设备及其工艺流程
CN100360644C (zh) 一种生物柴油的生产方法
CN101463264B (zh) 秸秆载体用于油脂热解制备生物柴油的方法
CN100545240C (zh) 一种利用固体酸和固体碱两步催化法生产生物柴油的方法
CN100404641C (zh) 一种利用超声波进行甲醇酯化制备生物柴油的方法
CN1952048B (zh) 一种生物柴油的生产方法
CN100535081C (zh) 制造生物柴油的反应釜
CN100523131C (zh) 用废油制备生物柴油的酯化反应工艺
CN100460482C (zh) 以混合植物油为原料制备生物柴油的方法
CN101497803A (zh) 生物柴油及其制备技术
Demisu Factors affecting biodiesel production from non-edible vegetable oil via base-catalyzed transesterification process: synthesis
CN1952047B (zh) 生物柴油的生产方法
CN101280209B (zh) 一种连续生产生物柴油的方法
CN1900224B (zh) 一种生物柴油的制备方法
CN104651060A (zh) 生物柴油连续酯交换工艺
CN206109357U (zh) 一种高适应性连续化生物柴油加工装置
KR101150842B1 (ko) 마이크로파 도파관을 이용한 튜브방식 바이오디젤 제조장치

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C14 Grant of patent or utility model
GR01 Patent grant