CN1940626A - 单焦透镜 - Google Patents

单焦透镜 Download PDF

Info

Publication number
CN1940626A
CN1940626A CNA2006101543759A CN200610154375A CN1940626A CN 1940626 A CN1940626 A CN 1940626A CN A2006101543759 A CNA2006101543759 A CN A2006101543759A CN 200610154375 A CN200610154375 A CN 200610154375A CN 1940626 A CN1940626 A CN 1940626A
Authority
CN
China
Prior art keywords
lens
object side
face
unifocal
paraxial
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CNA2006101543759A
Other languages
English (en)
Other versions
CN1940626B (zh
Inventor
佐藤贤一
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tianjin OFilm Opto Electronics Co Ltd
Original Assignee
Fujinon Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fujinon Corp filed Critical Fujinon Corp
Publication of CN1940626A publication Critical patent/CN1940626A/zh
Application granted granted Critical
Publication of CN1940626B publication Critical patent/CN1940626B/zh
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B9/00Optical objectives characterised both by the number of the components and their arrangements according to their sign, i.e. + or -
    • G02B9/12Optical objectives characterised both by the number of the components and their arrangements according to their sign, i.e. + or - having three components only
    • G02B9/14Optical objectives characterised both by the number of the components and their arrangements according to their sign, i.e. + or - having three components only arranged + - +
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B13/00Optical objectives specially designed for the purposes specified below
    • G02B13/001Miniaturised objectives for electronic devices, e.g. portable telephones, webcams, PDAs, small digital cameras
    • G02B13/0015Miniaturised objectives for electronic devices, e.g. portable telephones, webcams, PDAs, small digital cameras characterised by the lens design
    • G02B13/002Miniaturised objectives for electronic devices, e.g. portable telephones, webcams, PDAs, small digital cameras characterised by the lens design having at least one aspherical surface
    • G02B13/0035Miniaturised objectives for electronic devices, e.g. portable telephones, webcams, PDAs, small digital cameras characterised by the lens design having at least one aspherical surface having three lenses
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B13/00Optical objectives specially designed for the purposes specified below
    • G02B13/18Optical objectives specially designed for the purposes specified below with lenses having one or more non-spherical faces, e.g. for reducing geometrical aberration
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B9/00Optical objectives characterised both by the number of the components and their arrangements according to their sign, i.e. + or -
    • G02B9/12Optical objectives characterised both by the number of the components and their arrangements according to their sign, i.e. + or - having three components only
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B9/00Optical objectives characterised both by the number of the components and their arrangements according to their sign, i.e. + or -
    • G02B9/12Optical objectives characterised both by the number of the components and their arrangements according to their sign, i.e. + or - having three components only
    • G02B9/14Optical objectives characterised both by the number of the components and their arrangements according to their sign, i.e. + or - having three components only arranged + - +
    • G02B9/16Optical objectives characterised both by the number of the components and their arrangements according to their sign, i.e. + or - having three components only arranged + - + all the components being simple

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Lenses (AREA)

Abstract

本发明提供一种虽然是较少透镜枚数,但能实现高性能小型化的单焦透镜系统。该单焦透镜从物体侧起顺次具备:第1透镜,其是以物体侧的面为凸面形状的正光焦度的透镜;第2透镜,其是在近轴上以物体侧的面为凹面形状的负弯月透镜;和第3透镜,其是在近轴上以物体侧的面为凸面形状的非球面透镜,并且通过满足规定条件式,来谋求确保小型化的同时使第1透镜和第2透镜的玻璃材料最佳化,由此虽然是3枚这样较少的透镜枚数,但能实现高性能小型化的透镜系统。

Description

单焦透镜
技术领域
本发明涉及一种适用于具有摄像功能的小型设备例如附带摄像机的移动电话机、PDA(Personal Digital Assistant(个人数字助理))和数字静物相机(Digital Still Camera)等的单焦透镜。
背景技术
在数字静物相机等的摄像仪器中,一直使用CCD(Charge CoupledDevice:电荷耦合元件)或CMOS(Complementary Metal OxideSemiconductor(互补型金属氧化物半导体))等的摄像元件。近年来,这些摄像元件小型化正以非常速度进行着。因此,对摄像仪器本身及其所搭载的透镜也要求小型轻量化。并且近年来,为了达到高像质而开发有像素数较多的摄像元件,伴随于此也对透镜系统在更高分辨率的情况下要求高对比度的性能。
作为这样的摄像仪器所使用的成像透镜,例如有在以下专利文献1中记载的透镜。在该专利文献1中,记载着从物体侧顺次地由第1~第3透镜构成的3枚结构的成像透镜。在该成像透镜中,第1透镜的光焦度小并且将孔径光阑配置在第2透镜和第3透镜之间。
[专利文献1]日本特开平10-48516号公报
发明内容
如上所述近年来,摄像元件小型化和高像素化一直在进行中,伴随于此对成像透镜要求高分辨性能和结构小型化。上述专利文献1中所记载的成像透镜,利用3枚结构这样的较少枚数来实现某程度的性能和小型化,但是期待着在比此更小型化的状态下开发高性能的透镜系统。
本发明是鉴于这种问题提出的,其目的在于,提供一种虽然是较少透镜枚数但能够实现高性能及小型化的透镜系统的单焦透镜。
本发明涉及的单焦透镜,从物体侧起顺次具备:第1透镜,其是以物体侧的面为凸面形状的正光焦度的透镜;第2透镜,其是在近轴上以物体侧的面为凹面形状的负弯月透镜;和第3透镜,其是在近轴上以物体侧的面为凸面形状的非球面透镜,所述单焦透镜满足以下条件:
1.5>f1/f>0.6                                (1)
69<vdA                                       (2)
24<vdB<32                                   (3)
1.55>NdA                                     (4)
1.65>NdB>1.48                               (5)
1.8>L/D                                      (6)
0.30<RA/f<0.40                              (7)
其中,
f:整体的焦距
f1:第1透镜的焦距
vdA:第1透镜的阿贝数
vdB:第2透镜的阿贝数
NdA:第1透镜的d线中的折射率
NdB:第2透镜的d线中的折射率
RA:第1透镜的物体侧的面的近轴曲率半经
L:从第1透镜的物体侧的面到成像位置为止的光轴上的距离
D:最大像高
本发明涉及的单焦透镜,也可以进一步具备配置在光轴上比第1透镜G1的像侧的面更靠近物体侧的透镜光阑。
在本发明涉及的单焦透镜中,通过满足条件式(1)、(6)、(7)来确保小型化,同时满足条件式(2)、(3)、(4)、(5)使第1透镜和第2透镜的玻璃材料最佳化,由此虽然是3枚这样较少的透镜枚数但以小型化方式实现了高性能的透镜系统。
根据本发明的单焦透镜,从物体侧起顺次具备:第1透镜,其是以物体侧的面为凸面形状的正光焦度的透镜;第2透镜,其是在近轴上以物体侧的面为凹面形状的负弯月透镜;和第3透镜,其是在近轴上以物体侧的面为凸面形状的非球面透镜,并且通过满足规定条件式,来谋求确保小型化的同时使第1透镜和第2透镜的玻璃材料最佳化,从而虽然是3枚这样较少的透镜枚数,但能实现高性能小型化的透镜系统。
附图说明
图1是表示本发明的一实施方式涉及的单焦透镜的第1结构例的图,是对应于实施例1的透镜剖面图。
图2是表示本发明的一实施方式涉及的单焦透镜的第2结构例的图,是对应于实施例2的透镜剖面图。
图3是表示实施例1涉及的单焦透镜的基本透镜数据的图。
图4是表示实施例1涉及的单焦透镜的有关非球面数据的图。
图5是表示实施例2涉及的单焦透镜的基本透镜数据的图。
图6是表示实施例2涉及的单焦透镜的有关非球面数据的图。
图7是针对各实施例将有关条件式的值概况地表示的图
图8是表示实施例1涉及的单焦透镜的各像差的像差图,(A)表示球面像差,(B)表示像散,(C)表示畸变。
图9是表示实施例2涉及的单焦透镜的各像差的像差图,(A)表示球面像差,(B)表示像散,(C)表示畸变。
图中:CC-光学部件,G1-第1透镜,G2-第2透镜,G3-第3透镜,St-透镜光阑,Ri-从物体侧起第i透镜面的曲率半径,Di-从物体侧起第i透镜面和第i+1透镜面的面间隔,Z1-光轴。
具体实施方式
下面,参照附图对本发明的实施方式详细地进行说明。
图1表示本发明的一实施方式涉及的单焦透镜的第1结构例的图。该结构例对应于后述的第1数值实施例(图3,图4)的透镜结构。另外,图2表示第2结构例。图2的结构例对应于后述的第2数值实施例(图5,图6)的透镜结构。还有,在图1、图2中,符号Ri表示将最接近物体侧的构成要素的面作为第1号,并随着朝向像侧(成像侧)使标号顺次增加而附加了标号第i号(i=1~8)的面(第i面)的曲率半径。符号Di表示第i面和第i+1面在光轴Z1上的面间隔。还有,因为各结构例的基本构成都是相同的,所以,以下以图1所示的单焦透镜的结构为基础进行说明。
该单焦透镜适用于搭载在具有摄像功能的小型设备,例如PDA(Personal Digital Assistant(个人数字助理))、摄像机和数字静物相机等上。该单焦透镜,沿光轴Z1从物体侧起顺次地具备第1透镜G1、第2透镜G2和第3透镜G3。将孔径光阑St配置在光轴Z1上比第1透镜G1的像侧的面更靠近物体侧。作为优选,可以将孔径光阑St配置在光轴Z1上第1透镜G1的物体侧的面和像侧的面之间。
在该单焦透镜的成像面(摄像面)上配置有未图示的CCD等摄像元件。在第3透镜G3和摄像面之间,根据安装透镜的摄像机侧的结构,也可以配置各种光学部件GC。例如也可以配置摄像面保护用玻璃罩和各种光学滤光片等平板状的光学部件GC。
第1透镜G1优选为由玻璃材料构成的非球面透镜。第2透镜G2和第3透镜G3优选为由塑料材料构成的非球面透镜。第1透镜G1具有以物体侧的面为凸面形状的正光焦度。第2透镜G2为在近轴上以物体侧的面为凹面形状的负弯月透镜。第3透镜G3为在近轴上以物体侧的面为凸面形状的非球面透镜。
第3透镜G3的物体侧的面优选具有随着向周边延伸而使正的光焦度减弱的形状。第3透镜G3的像侧的面优选具有近轴上在像侧为凹面形状、并随着向周边延伸而使负的光焦度减弱且在周边反转为正的光焦度的形状。
该单焦透镜满足以下条件式。其中,f表示整体的焦距,f1表示第1透镜G1的焦距,vdA表示第1透镜G1的阿贝数,vdB表示第2透镜G2的阿贝数,NdA表示第1透镜G1的d线中的折射率,NdB表示第2透镜G2的d线中的折射率,RA表示第1透镜G1的物体侧的面的近轴曲率半经,L表示从第1透镜G1的物体侧的面到成像位置为止的光轴上的距离,D表示最大像高。还有,将L设为对玻璃罩等光学部件GC的厚度进行空气换算(即换算为空气介质中的厚度)后的值。
1.5>f1/f>0.6                                    (1)
69<vdA                        (2)
24<vdB<32                    (3)
1.55>NdA                      (4)
1.65>NdB>1.48                (5)
1.8>L/D                       (6)
0.30<RA/f<0.40               (7)
接着,对如上那样构成的单焦透镜的作用和效果进行说明。
在单焦透镜中,如以下说明的那样,通过满足条件式(1)、(6)、(7)来确保小型化,同时满足条件式(2)、(3)、(4)、(5)而使第1透镜G1和第2透镜G2的玻璃材料的折射率及色散特性最佳化,由此虽然是3枚这样较少的透镜枚数但以小型化方式实现了高性能的透镜系统。
条件式(1)与第1透镜G1的焦距有关,当超过该数据范围时全长就过于变长,当低于该数据范围时光瞳就过于变短,这些不作为优选。条件式(6)表示光轴Z1上光学全长L和最大像高D之比,当超过该数据范围时就不能够使整个透镜系统充分小型化。条件式(7)与第1透镜G1的前面的曲率半径有关,当超过该数据范围时要缩短透镜全长就变得困难,当低于该数据范围时要校正球面像差、场曲就变得困难,由此不作为优选。在该单焦透镜中,将第1透镜G 1的前面的曲率半径减小就可将比较光焦度增大,由此可谋求全长缩短。
条件式(2)、(4)与第1透镜G1的玻璃材料特性有关,按照满足这些条件的方式,对具有正光焦度的第1透镜G1使用阿贝数大折射率小的玻璃材料,由此能够较好地校正色差、场曲。条件式(3)、(5)与第2透镜G2的玻璃材料的特性有关,只要在这些数值范围内,通过与第1透镜G1的组合而对于色差、场曲就都能够得到所需充分的性能。另外,关于第3透镜G3,选择所谓的丙烯树脂或者环烯聚合物这样的阿贝数大致55~60的且廉价又容易到手的光学稳定(低畸变等)的材料,由此能够得到良好的性能。
另外,在该单焦透镜中,将孔径光阑St配置在光轴Z1上比第1透镜G1的像侧的面更靠近物体侧,进一步优选配置在光轴Z1上第1透镜G1的物体侧的面和像侧的面之间,由此可以使也包括孔径光阑St的全长缩短。并且在该单焦透镜中,通过对各透镜适当地使用非球面,从而能够得到较大的像差校正效果。特别是,关于第3透镜G3的非球面形状使近轴形状和周边形状设定为适当的形状,由此开始校正场曲,从而有关像差校正可获得更大的效果。
如以上所说明的那样,根据本实施方式涉及的单焦透镜,通过满足规定条件式来进行第1透镜G1和第2透镜G2的玻璃材料的最佳化和光焦度分配的最佳化等,由此虽然是3枚这样较少的透镜枚数,但能实现高性能小型化的透镜系统。
[实施例]
接着,对本实施方式涉及的单焦透镜的具体的数值实施例进行说明。以下,对2个数值实施例(实施例1、2)概括地进行说明。
图3、图4表示对应于图1所示的单焦透镜结构的具体的透镜数据(实施例1)。尤其在图3中表示其基本的透镜数据,在图4中表示有关非球面的数据。另外,图5、图6表示对应于图2所示的单焦透镜结构的具体的透镜数据(实施例2)。尤其在图5中表示其基本的透镜数据,在图6中表示有关非球面的数据。
在图3、图5所示的透镜数据中的面序号Si栏中,表示有关各实施方式涉及的单焦透镜、将最接近物体侧的构成要素的面作为第1面并随着朝向像侧以顺次增加方式而附加了标号的第i(i=1~8)面的序号。在曲率半径Ri栏中,表示对应于图1、图2中附加的符号Ri而从物体侧起第i面的曲率半径的值。面间隔Di栏也同样表示从物体侧起第i面Si和第i+1面Si+1在光轴上的间隔。曲率半径Ri和面间隔Di的值的单位是毫米(mm)。在Ndj、vdj栏中,分别表示也包括光学部件GC从物体侧起第j(j=1~4)光学要素相对于d线(波长587.6nm)的折射率和阿贝数的值。另外,在图3、图5中,作为各数据也表示整个系统的近轴焦距f(mm)、F数(FNO.)和视场角2ω(ω:半视场角)的值。
还有,在实施例1涉及的单焦透镜中,将孔径透镜光阑St配置在光轴Z1上从第1透镜G1的物体侧的面向像面侧退进0.05mm的位置上。在实施例2涉及的单焦透镜中,将孔径透镜光阑St配置在光轴Z1上从第1透镜G1的物体侧的面向像面侧退进0.1mm的位置上。
在图3、图5的各透镜数据中,附加在面序号左侧的记号“*”表示该透镜面是非球面形状。各实施例涉及的单焦透镜,第1透镜G1、第2透镜G2和第3透镜G3的两面所有皆是非球面形状。从而,在图3、图5的基本透镜数据中,作为这些非球面的曲率半径,表示着光轴附近的曲率半径的数值。
在图4、图6中表示实施例1、2涉及的单焦透镜中的非球面数据。在作为非球面数据所示的数值中,记号“E”表示其之后的数据是以10为底的“幂指数”,表示由以10为底的指数函数表示的数值与“E”前的数值相乘。例如,如果是“1.0E-02”,则表示“1.0×10-2”的数值。
作为非球面数据,表记由下式(A)表示的非球面形状的公式中的各系数Ai、K的值。更详细而言,Z表示从距光轴具有高度h的位置上的非球面上的点垂下到非球面的顶点的切向平面(与光轴垂直的平面)的垂直线的长度(mm)。各实施例涉及的单焦透镜,皆通过有效地使用作为非球面系数的偶数次的系数A4、A6、A8、A10和奇数次的系数A3、A5、A7、A9来表示各非球面。
Z=C·h2/{1+(1-K·C2·h2)1/2}
+A3·h3+A4·h4+A5·h5+A6·h6+A7·h7+A8·h8+A9·h9+A10·h10
                                                       (A)
其中,
Z:非球面的深度(mm)
h:从光轴到透镜面为止的距离(高度)(mm)
K:离心率
C:近轴曲率=1/R
(R近轴曲率半径)
Ai:第i次的非球面系数
将上述各条件式有关的值针对各实施例概括地表示在图7中。从图7可清楚那样,各实施例的值位于各条件式的数据范围内。
图8(A)~图8(C)表示实施例1涉及的单焦透镜中的球面像差、像散和畸变(畸变像差)。在各像差图中,表示将d线作为基准波长的像差,但是在球面像差图中,也表示针对g线(波长435.8nm)、C线(波长656.3nm)的像差。在像散图中,实线表示径向方向的像差,虚线表示切向方向的像差。ω表示半视场角。同样地,在图9(A)~图9(C)中表示实施例2涉及的单焦透镜的有关各像差。
如从以上各数值数据和各像差图可清楚那样,关于各实施例,虽然是较少透镜枚数,但是可较好地进行像差校正,由此可实现小型化的透镜系统。
还有,本发明,并非限定于上述实施方式和各实施例而可以进行各种变形。例如,各透镜组成成分的曲率半径、面间隔和折射率值等不限定于上述各数值实施例中所示的值,可以采用另外的值。

Claims (2)

1.一种单焦透镜,其特征在于,从物体侧起顺次具备:第1透镜,其是以物体侧的面为凸面形状的正光焦度的透镜;第2透镜,其是在近轴上以物体侧的面为凹面形状的负弯月透镜;和第3透镜,其是在近轴上以物体侧的面为凸面形状的非球面透镜,所述单焦透镜满足以下条件:
1.5>f1/f>0.6                                    (1)
69<vdA                                           (2)
24<vdB<32                                       (3)
1.55>NdA                                         (4)
1.65>NdB>1.48                                   (5)
1.8>L/D                                          (6)
0.30<RA/f<0.40                                  (7)
其中,
f:整体的焦距
f1:第1透镜的焦距
vdA:第1透镜的阿贝数
vdB:第2透镜的阿贝数
NdA:第1透镜的d线中的折射率
NdB:第2透镜的d线中的折射率
RA:第1透镜的物体侧的面的近轴曲率半经
L:从第1透镜的物体侧的面到成像位置为止的光轴上的距离
D:最大像高。
2.根据权利要求1所述的单焦透镜,其特征在于,
进一步具备:配置在光轴上比第1透镜的像侧的面更靠近物体侧的透镜光阑。
CN2006101543759A 2005-09-29 2006-09-26 单焦透镜 Expired - Fee Related CN1940626B (zh)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2005284712 2005-09-29
JP2005284712A JP4804856B2 (ja) 2005-09-29 2005-09-29 単焦点レンズ
JP2005-284712 2005-09-29

Publications (2)

Publication Number Publication Date
CN1940626A true CN1940626A (zh) 2007-04-04
CN1940626B CN1940626B (zh) 2012-08-29

Family

ID=37459499

Family Applications (1)

Application Number Title Priority Date Filing Date
CN2006101543759A Expired - Fee Related CN1940626B (zh) 2005-09-29 2006-09-26 单焦透镜

Country Status (6)

Country Link
US (1) US7408725B2 (zh)
EP (1) EP1770424A1 (zh)
JP (1) JP4804856B2 (zh)
KR (1) KR100773812B1 (zh)
CN (1) CN1940626B (zh)
TW (1) TWI309728B (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN100573223C (zh) * 2007-08-09 2009-12-23 鸿富锦精密工业(深圳)有限公司 低高度镜头系统

Families Citing this family (77)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007264181A (ja) * 2006-03-28 2007-10-11 Fujinon Corp 撮像レンズ
JP4890943B2 (ja) * 2006-05-26 2012-03-07 富士フイルム株式会社 撮像レンズ
US7460314B2 (en) * 2007-02-28 2008-12-02 E-Pin Optical Industry Co., Ltd Three-piece type optical lens
TW200837418A (en) * 2007-03-13 2008-09-16 Asia Optical Co Inc Slim lens
JP2008233221A (ja) 2007-03-16 2008-10-02 Matsushita Electric Ind Co Ltd 撮影レンズ
KR100843467B1 (ko) * 2007-03-16 2008-07-03 삼성전기주식회사 초소형 촬상 광학계
US8201743B2 (en) * 2007-06-28 2012-06-19 Symbol Technologies, Inc. Bar code reader with improved lens for imaging with balanced astigmatism
TWM341858U (en) * 2007-12-19 2008-10-01 Largan Precision Co Ltd Auto-focus module
US11792538B2 (en) 2008-05-20 2023-10-17 Adeia Imaging Llc Capturing and processing of images including occlusions focused on an image sensor by a lens stack array
US8866920B2 (en) 2008-05-20 2014-10-21 Pelican Imaging Corporation Capturing and processing of images using monolithic camera array with heterogeneous imagers
KR101733443B1 (ko) 2008-05-20 2017-05-10 펠리칸 이매징 코포레이션 이종 이미저를 구비한 모놀리식 카메라 어레이를 이용한 이미지의 캡처링 및 처리
US8369030B2 (en) * 2009-05-25 2013-02-05 Ricoh Company, Limited Image forming lens, camera device, and handheld terminal
JP5308915B2 (ja) * 2009-05-28 2013-10-09 株式会社オプトロジック 撮像レンズ
TWI404972B (zh) * 2009-06-19 2013-08-11 Largan Precision Co 成像光學鏡組
TWI408408B (zh) 2009-06-19 2013-09-11 E Pin Optical Industry Co Ltd 短後焦小型三鏡片光學取像鏡頭
US8514491B2 (en) 2009-11-20 2013-08-20 Pelican Imaging Corporation Capturing and processing of images using monolithic camera array with heterogeneous imagers
CN102193168B (zh) * 2010-03-04 2012-08-29 大立光电股份有限公司 摄影透镜系统
WO2011143501A1 (en) 2010-05-12 2011-11-17 Pelican Imaging Corporation Architectures for imager arrays and array cameras
TW201200928A (en) 2010-06-30 2012-01-01 E Pin Optical Industry Co Ltd Three-piece pickup lens
US8878950B2 (en) 2010-12-14 2014-11-04 Pelican Imaging Corporation Systems and methods for synthesizing high resolution images using super-resolution processes
WO2012155119A1 (en) 2011-05-11 2012-11-15 Pelican Imaging Corporation Systems and methods for transmitting and receiving array camera image data
JP2014521117A (ja) 2011-06-28 2014-08-25 ペリカン イメージング コーポレイション アレイカメラで使用するための光学配列
US20130265459A1 (en) 2011-06-28 2013-10-10 Pelican Imaging Corporation Optical arrangements for use with an array camera
WO2013043751A1 (en) 2011-09-19 2013-03-28 Pelican Imaging Corporation Systems and methods for controlling aliasing in images captured by an array camera for use in super resolution processing using pixel apertures
IN2014CN02708A (zh) 2011-09-28 2015-08-07 Pelican Imaging Corp
US9412206B2 (en) 2012-02-21 2016-08-09 Pelican Imaging Corporation Systems and methods for the manipulation of captured light field image data
US9210392B2 (en) 2012-05-01 2015-12-08 Pelican Imaging Coporation Camera modules patterned with pi filter groups
WO2014005123A1 (en) 2012-06-28 2014-01-03 Pelican Imaging Corporation Systems and methods for detecting defective camera arrays, optic arrays, and sensors
US20140002674A1 (en) 2012-06-30 2014-01-02 Pelican Imaging Corporation Systems and Methods for Manufacturing Camera Modules Using Active Alignment of Lens Stack Arrays and Sensors
US8619082B1 (en) 2012-08-21 2013-12-31 Pelican Imaging Corporation Systems and methods for parallax detection and correction in images captured using array cameras that contain occlusions using subsets of images to perform depth estimation
US20140055632A1 (en) 2012-08-23 2014-02-27 Pelican Imaging Corporation Feature based high resolution motion estimation from low resolution images captured using an array source
WO2014043641A1 (en) 2012-09-14 2014-03-20 Pelican Imaging Corporation Systems and methods for correcting user identified artifacts in light field images
US20140092281A1 (en) 2012-09-28 2014-04-03 Pelican Imaging Corporation Generating Images from Light Fields Utilizing Virtual Viewpoints
WO2014078443A1 (en) 2012-11-13 2014-05-22 Pelican Imaging Corporation Systems and methods for array camera focal plane control
US9462164B2 (en) 2013-02-21 2016-10-04 Pelican Imaging Corporation Systems and methods for generating compressed light field representation data using captured light fields, array geometry, and parallax information
WO2014133974A1 (en) 2013-02-24 2014-09-04 Pelican Imaging Corporation Thin form computational and modular array cameras
US9638883B1 (en) 2013-03-04 2017-05-02 Fotonation Cayman Limited Passive alignment of array camera modules constructed from lens stack arrays and sensors based upon alignment information obtained during manufacture of array camera modules using an active alignment process
WO2014138695A1 (en) 2013-03-08 2014-09-12 Pelican Imaging Corporation Systems and methods for measuring scene information while capturing images using array cameras
US8866912B2 (en) 2013-03-10 2014-10-21 Pelican Imaging Corporation System and methods for calibration of an array camera using a single captured image
US9521416B1 (en) 2013-03-11 2016-12-13 Kip Peli P1 Lp Systems and methods for image data compression
US9124831B2 (en) 2013-03-13 2015-09-01 Pelican Imaging Corporation System and methods for calibration of an array camera
WO2014165244A1 (en) 2013-03-13 2014-10-09 Pelican Imaging Corporation Systems and methods for synthesizing images from image data captured by an array camera using restricted depth of field depth maps in which depth estimation precision varies
US9106784B2 (en) 2013-03-13 2015-08-11 Pelican Imaging Corporation Systems and methods for controlling aliasing in images captured by an array camera for use in super-resolution processing
US9888194B2 (en) 2013-03-13 2018-02-06 Fotonation Cayman Limited Array camera architecture implementing quantum film image sensors
US9578259B2 (en) 2013-03-14 2017-02-21 Fotonation Cayman Limited Systems and methods for reducing motion blur in images or video in ultra low light with array cameras
WO2014153098A1 (en) 2013-03-14 2014-09-25 Pelican Imaging Corporation Photmetric normalization in array cameras
US9633442B2 (en) 2013-03-15 2017-04-25 Fotonation Cayman Limited Array cameras including an array camera module augmented with a separate camera
US10122993B2 (en) 2013-03-15 2018-11-06 Fotonation Limited Autofocus system for a conventional camera that uses depth information from an array camera
US9445003B1 (en) 2013-03-15 2016-09-13 Pelican Imaging Corporation Systems and methods for synthesizing high resolution images using image deconvolution based on motion and depth information
US9497370B2 (en) 2013-03-15 2016-11-15 Pelican Imaging Corporation Array camera architecture implementing quantum dot color filters
US9497429B2 (en) 2013-03-15 2016-11-15 Pelican Imaging Corporation Extended color processing on pelican array cameras
US9438888B2 (en) 2013-03-15 2016-09-06 Pelican Imaging Corporation Systems and methods for stereo imaging with camera arrays
US9898856B2 (en) 2013-09-27 2018-02-20 Fotonation Cayman Limited Systems and methods for depth-assisted perspective distortion correction
US9426343B2 (en) 2013-11-07 2016-08-23 Pelican Imaging Corporation Array cameras incorporating independently aligned lens stacks
US10119808B2 (en) 2013-11-18 2018-11-06 Fotonation Limited Systems and methods for estimating depth from projected texture using camera arrays
EP3075140B1 (en) 2013-11-26 2018-06-13 FotoNation Cayman Limited Array camera configurations incorporating multiple constituent array cameras
US10089740B2 (en) 2014-03-07 2018-10-02 Fotonation Limited System and methods for depth regularization and semiautomatic interactive matting using RGB-D images
US9247117B2 (en) 2014-04-07 2016-01-26 Pelican Imaging Corporation Systems and methods for correcting for warpage of a sensor array in an array camera module by introducing warpage into a focal plane of a lens stack array
US9521319B2 (en) 2014-06-18 2016-12-13 Pelican Imaging Corporation Array cameras and array camera modules including spectral filters disposed outside of a constituent image sensor
JP2017531976A (ja) 2014-09-29 2017-10-26 フォトネイション ケイマン リミテッド アレイカメラを動的に較正するためのシステム及び方法
TWI546562B (zh) * 2014-12-04 2016-08-21 先進光電科技股份有限公司 光學成像系統(一)
TWI572888B (zh) * 2015-01-21 2017-03-01 先進光電科技股份有限公司 光學成像系統(一)
US9942474B2 (en) 2015-04-17 2018-04-10 Fotonation Cayman Limited Systems and methods for performing high speed video capture and depth estimation using array cameras
US10482618B2 (en) 2017-08-21 2019-11-19 Fotonation Limited Systems and methods for hybrid depth regularization
EP3611552B1 (en) 2018-08-16 2023-03-08 Jabil Optics Germany GmbH Camera lens system for an endoscope, method for producing a camera lens system and an endoscope
DE112020004391T5 (de) 2019-09-17 2022-06-02 Boston Polarimetrics, Inc. Systeme und verfahren zur oberflächenmodellierung unter verwendung von polarisationsmerkmalen
MX2022004163A (es) 2019-10-07 2022-07-19 Boston Polarimetrics Inc Sistemas y metodos para la deteccion de estandares de superficie con polarizacion.
CN114787648B (zh) 2019-11-30 2023-11-10 波士顿偏振测定公司 用于使用偏振提示进行透明对象分段的系统和方法
US11195303B2 (en) 2020-01-29 2021-12-07 Boston Polarimetrics, Inc. Systems and methods for characterizing object pose detection and measurement systems
CN115428028A (zh) 2020-01-30 2022-12-02 因思创新有限责任公司 用于合成用于在包括偏振图像的不同成像模态下训练统计模型的数据的系统和方法
WO2021243088A1 (en) 2020-05-27 2021-12-02 Boston Polarimetrics, Inc. Multi-aperture polarization optical systems using beam splitters
TWI827857B (zh) * 2020-07-03 2024-01-01 先進光電科技股份有限公司 光學成像系統
US12020455B2 (en) 2021-03-10 2024-06-25 Intrinsic Innovation Llc Systems and methods for high dynamic range image reconstruction
US11290658B1 (en) 2021-04-15 2022-03-29 Boston Polarimetrics, Inc. Systems and methods for camera exposure control
US11954886B2 (en) 2021-04-15 2024-04-09 Intrinsic Innovation Llc Systems and methods for six-degree of freedom pose estimation of deformable objects
US11689813B2 (en) 2021-07-01 2023-06-27 Intrinsic Innovation Llc Systems and methods for high dynamic range imaging using crossed polarizers
CN114217427B (zh) * 2022-02-23 2022-07-15 江西联益光学有限公司 光学镜头

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1048516A (ja) 1996-08-06 1998-02-20 Hinode:Kk Ccd用レンズ
DE60303153D1 (de) * 2002-03-25 2006-04-06 Konica Corp Dreilinsiges Objektiv
KR100741626B1 (ko) * 2002-10-25 2007-07-23 가부기키가이샤 나가노 코가쿠 겐큐쇼 촬상렌즈
JP2004212467A (ja) * 2002-12-27 2004-07-29 Nidec Copal Corp 撮影レンズ
JP2004226487A (ja) 2003-01-20 2004-08-12 Seiko Epson Corp 撮像レンズ
JP3717488B2 (ja) 2003-03-31 2005-11-16 フジノン株式会社 単焦点レンズ
JP4515728B2 (ja) * 2003-08-01 2010-08-04 リコー光学株式会社 結像レンズおよび携帯可能な電子機器
US7061695B2 (en) * 2003-11-04 2006-06-13 Eastman Kodak Company Three element optical system
CN2695994Y (zh) * 2004-03-06 2005-04-27 鸿富锦精密工业(深圳)有限公司 数码相机镜头
JP2005345919A (ja) * 2004-06-04 2005-12-15 Seiko Precision Inc 撮像レンズ

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN100573223C (zh) * 2007-08-09 2009-12-23 鸿富锦精密工业(深圳)有限公司 低高度镜头系统

Also Published As

Publication number Publication date
KR100773812B1 (ko) 2007-11-06
EP1770424A1 (en) 2007-04-04
KR20070036698A (ko) 2007-04-03
JP4804856B2 (ja) 2011-11-02
TWI309728B (en) 2009-05-11
JP2007094113A (ja) 2007-04-12
US7408725B2 (en) 2008-08-05
US20070070526A1 (en) 2007-03-29
CN1940626B (zh) 2012-08-29
TW200717022A (en) 2007-05-01

Similar Documents

Publication Publication Date Title
CN1940626A (zh) 单焦透镜
CN1296743C (zh) 单焦点镜头
CN1287186C (zh) 变焦镜头及摄像装置
US7911715B2 (en) Imaging lens and imaging apparatus
CN1296744C (zh) 广角单焦点镜头
CN100476491C (zh) 成像透镜
CN1940625A (zh) 单焦点透镜
CN101046541A (zh) 摄像透镜
CN1866068A (zh) 广角镜头系统和取像器件
CN1677134A (zh) 成像透镜
CN101046543A (zh) 摄像透镜
CN1673796A (zh) 具有接合透镜的变焦镜头
CN101046542A (zh) 摄像透镜
CN1837887A (zh) 变焦透镜
CN1690733A (zh) 成像透镜
CN1924630A (zh) 变焦透镜光学系统
CN101038413A (zh) 摄像透镜
CN1967310A (zh) 变焦透镜
CN101042463A (zh) 变焦透镜
CN1320382C (zh) 小型变焦镜头
CN101038368A (zh) 变焦透镜和摄像设备
CN101078805A (zh) 摄像透镜
CN1940624A (zh) 单焦点透镜
CN101046546A (zh) 摄像透镜
CN1849544A (zh) 变焦透镜和成像装置

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C12 Rejection of a patent application after its publication
RJ01 Rejection of invention patent application after publication

Open date: 20070404

C14 Grant of patent or utility model
GR01 Patent grant
ASS Succession or assignment of patent right

Owner name: FUJI FILM CORP.

Free format text: FORMER OWNER: FUJINON CORP.

Effective date: 20130118

C41 Transfer of patent application or patent right or utility model
TR01 Transfer of patent right

Effective date of registration: 20130118

Address after: Tokyo, Japan

Patentee after: FUJIFILM Corp.

Address before: Japan's Saitama Prefecture

Patentee before: Fujinon Corp.

TR01 Transfer of patent right

Effective date of registration: 20190128

Address after: East of Liuxue Road and North of Longtan Canal in Nanchang Economic and Technological Development Zone, Jiangxi Province

Patentee after: NANCHANG OFILM OPTICAL-ELECTRONIC TECH Co.,Ltd.

Address before: Tokyo, Japan

Patentee before: FUJIFILM Corp.

TR01 Transfer of patent right
TR01 Transfer of patent right

Effective date of registration: 20200424

Address after: 300385 No.2, Hongyuan Road, Xiqing Economic Development Zone, Xiqing District, Tianjin

Patentee after: Tianjin Oufei photoelectric Co.,Ltd.

Address before: 330013 east of lilac road in Nanchang economic and Technological Development Zone, Jiangxi Province, north of Longtan water canal

Patentee before: NANCHANG OFILM OPTICAL-ELECTRONIC TECH Co.,Ltd.

TR01 Transfer of patent right
CF01 Termination of patent right due to non-payment of annual fee

Granted publication date: 20120829