CN1922549A - 确定成像系统中的图像模糊 - Google Patents

确定成像系统中的图像模糊 Download PDF

Info

Publication number
CN1922549A
CN1922549A CNA2005800056203A CN200580005620A CN1922549A CN 1922549 A CN1922549 A CN 1922549A CN A2005800056203 A CNA2005800056203 A CN A2005800056203A CN 200580005620 A CN200580005620 A CN 200580005620A CN 1922549 A CN1922549 A CN 1922549A
Authority
CN
China
Prior art keywords
parameter
image
imaging system
test pattern
pattern
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CNA2005800056203A
Other languages
English (en)
Inventor
彼得·迪克森
奥古斯图斯·J.·E.·M.·扬森
约瑟夫斯·J.·M.·布拉特
阿德里安·莱韦斯泰因
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Koninklijke Philips NV
Original Assignee
Koninklijke Philips Electronics NV
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Koninklijke Philips Electronics NV filed Critical Koninklijke Philips Electronics NV
Publication of CN1922549A publication Critical patent/CN1922549A/zh
Pending legal-status Critical Current

Links

Images

Classifications

    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/70Microphotolithographic exposure; Apparatus therefor
    • G03F7/70483Information management; Active and passive control; Testing; Wafer monitoring, e.g. pattern monitoring
    • G03F7/70605Workpiece metrology
    • G03F7/70608Monitoring the unpatterned workpiece, e.g. measuring thickness, reflectivity or effects of immersion liquid on resist
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/70Microphotolithographic exposure; Apparatus therefor
    • G03F7/70483Information management; Active and passive control; Testing; Wafer monitoring, e.g. pattern monitoring
    • G03F7/70591Testing optical components
    • G03F7/706Aberration measurement
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/70Microphotolithographic exposure; Apparatus therefor
    • G03F7/708Construction of apparatus, e.g. environment aspects, hygiene aspects or materials
    • G03F7/7085Detection arrangement, e.g. detectors of apparatus alignment possibly mounted on wafers, exposure dose, photo-cleaning flux, stray light, thermal load

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Health & Medical Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Environmental & Geological Engineering (AREA)
  • Epidemiology (AREA)
  • Public Health (AREA)
  • Exposure And Positioning Against Photoresist Photosensitive Materials (AREA)
  • Exposure Of Semiconductors, Excluding Electron Or Ion Beam Exposure (AREA)
  • Image Processing (AREA)

Abstract

本发明涉及确定关于成像系统(IS)中图像模糊的参数的方法,包括步骤:采用成像系统(IS)照射具有测试图案(MTP)的物体,从而形成测试图案的图像。测试图案(MTP)具有小于成像系统(IS)的分辨率的尺寸,这使得测试图案的图像独立于照明装置像差。测试图案(MTP)是孤立图案,这使得图像不受光学临近效应影响。图像由于成像系统和/或者检测被模糊图像的检测器中的随机波动而被模糊。根据关于被模糊图像的形状的参数,确定关于图像模糊的参数。根据本发明,可以表示抗蚀剂扩散和/或者聚焦噪声的特性。在设计掩模的方法中,要考虑与由于抗蚀剂中的扩散导致的图像模糊有关的参数。根据本发明的计算机程序能够执行从关于被模糊图像的形状的参数中确定关于图像模糊的参数的步骤。

Description

确定成像系统中的图像模糊
发明领域
本发明涉及确定关于成像系统中图像模糊的参数。
本发明还涉及设计光刻过程中使用的掩膜。
本发明还涉及一种计算机程序,用于执行确定关于成像系统中图像模糊的参数的方法。
本发明涉及一种设备,用于确定关于成像系统中图像模糊的参数。
技术背景
在英国专利申请GB-A-2,320,768中,公开了一种用于确定关于成像系统中图像模糊的参数的方法。在该已知方法中,用于在抗蚀剂层形成图案的光刻过程的过程参数被确定。该已知方法包括以下步骤:使用成像系统经由具有掩膜图案的掩膜照射抗蚀剂层,对经过照射的抗蚀剂层进行显影,从而形成图案,并从该图案的形状中确定过程参数。
在光刻过程中,抗蚀剂层的被照射部分在化学性质上被改变,而抗蚀剂层的未被照射部分在化学性质上没有被改变。在显影步骤中,理想情况是,或者是被照射部分融解并且未被照射部分保留,这种抗蚀剂经常称为负性抗蚀剂,或者是未被照射部分融解并且被照射部分保留,这种抗蚀剂经常称为正性抗蚀剂。
通常,对抗蚀剂层显影的步骤不是理想的,即靠近抗蚀剂层的被照射部分和非被照射部分之间的分界面,抗蚀剂层的一些部分可能被除去,而理想情况下它们不应该被除去,或者抗蚀剂层的一些部分可能没有被除去,而理想情况下它们应该被除去。这就导致在抗蚀剂中形成图像的模糊。这种非理想情况发生的程度取决于在光刻过程中的过程条件,例如抗蚀剂的化学成分,显影剂的化学成分,执行显影步骤时的温度,以及显影步骤持续的时间。
当抗蚀剂是所谓的化学放大抗蚀剂(CAR)时,它包括光酸生成剂,即一种在吸收光子时会释放酸的化合物。在所谓的曝光后烘烤(PEB)过程中,酸受到刺激而扩散。在扩散过程中,酸与抗蚀剂中的部位相互进行化学作用,从而局部改变抗蚀剂的溶解度。一个酸可以改变抗蚀剂中的若干部位,并且/或者它可以在化学相互作用过程中生成额外的酸,该酸也扩散。这样,单一的被吸收光子可以改变抗蚀剂中的几个部位,导致所谓的化学放大。这些溶解度被改变的部位可以全部在酸的扩散范围内。抗蚀剂通常包括捕获酸的陷阱,从而限制该扩散范围。这种类型的扩散可以至少部分地导致以上所述的非理想情况。
在高级的光刻过程中,所形成的特征图形(feature)可能很小,以至于这些相对于理想情况的偏移导致无法接受的结果。在正性抗蚀剂中,在显影步骤之后,两个相互靠近的分开的特征图形可能相互连接起来,而在掩膜上它们是相互分开的,并且由于成像系统的光学分辨率,它们在显影后也应该是很好的分开的。在集成电路(IC)制造中,这就可能造成短路。另一方面,在负性抗蚀剂中,在显影后,特征图形的狭窄部分例如线可能消失,而它们是在掩膜中的,并且由于成像系统的光学分辨率,它们在显影步骤之后应该是在抗蚀剂中的。在集成电路制造中,这就可能造成断路。
在已知方法中,在经由掩膜照射抗蚀剂层之后,以及显影之后,所期望的图案采用如下方法进行估计:掩膜图案的空间像(aerialimage)的傅立叶变换与说明抗蚀剂层中扩散的项相乘,对该运算的结果进行傅立叶反变换,以获得显影之后所预期的图案。
说明抗蚀剂层中扩散的项是通过拟合过程获得的。对于所述拟合过程,使用了各种类型的掩膜图案。所述掩膜图案是孤立的线、线和空间(space)、以及孤立的空间。对于每种类型的掩膜图案,使用至少两种不同的掩膜图案尺寸。对于每个类型的掩膜图案,使用不同的曝光剂量对抗蚀剂层的不同部分或者不同的抗蚀剂层进行照射。在显影步骤后,为每种掩膜图案和每个曝光剂量确定抗蚀剂层中的图案尺寸。抗蚀剂层中的该组图案尺寸适合于确定关于抗蚀剂层中的扩散过程的参数。
例如GB-A-2,320,768的图4A和4B所示,在已知方法中,当在多个剂量下使用仅仅一个掩膜图案,并且/或者仅仅一种类型的图案时,所述拟合过程不可靠。其中示出了,已知方法能够描述一种掩膜图案尺寸的结果,但是不能描述另外一种掩膜图案尺寸的结果。已知方法需要对各种特征尺寸及特征的观察,以表示出抗蚀剂层中的扩散过程的特性。
当相应的掩模图案具有相同的尺寸时,对于孤立的线、线和空间以及孤立的空间来说,空间像中的图案尺寸是不同的。在GB-A-2,320,768的图2的例子中,分别对于线和空间、以及对于孤立空间,获得空间像中最小和最大的图案尺寸。在抗蚀剂中相应图案的尺寸取决于曝光剂量。
已知方法的缺点在于它过于复杂。它需要各种类型的掩膜图案以及各种掩膜图案尺寸,以确定关于抗蚀剂中扩散过程的参数。此外,已知方法需要对用于经由掩膜照射抗蚀剂层的成像系统的详细理解,这是因为各种图案的空间像取决于成像系统的条件、掩膜图案尺寸以及掩膜图案类型。在拟合过程中,必须将成像系统的这些条件都考虑进去,但是这些条件常常是不知道。
发明内容
本发明的目的是提供一种较为不复杂的、确定关于成像系统中图像模糊的参数的方法。
本发明由独立权利要求定义。从属权利要求定义了有利的实施例。
这里,测试图案的尺寸指最大横向尺寸,成像系统的分辨率指在物体平面上两个点之间的最小距离,这两个点的图像在最佳聚焦的图像平面上仍然是分离的。成像系统可以有数值孔径NA,可以使用波长为λ的辐射照射抗蚀剂层,测试图案可以具有等于或者小于λ/(2*NA)的最大尺寸。NA可以等于或者大于例如0.6,诸如0.7、0.8。NA可以大于1.0,例如1.2或者1.4。在一些应用中,例如光学显微镜或者远紫外光(EUV)工具中,NA可以更低,例如在0.1-0.3范围内。λ可以在UV(紫外光)范围中,例如365nm,或者在深UV范围中,例如248nm、193nm或者157nm。λ可以在EUV范围中,例如13nm。所述方法的理想目的是无限小的测试图案,但是由于测试图案应该传递足够的光以形成可检测的图像,因此开口(openning)应该有一个最小尺寸。实际上,可以使用的开口的尺寸可以比对应于成像系统分辨率的尺寸小很多。该尺寸可以小于λ/(2NA),例如λ/(3NA)。开口可以是圆形的。例如对于λ=193nm、NA=0.6以及放大倍数M=1/4,开口的直径可以是500nm数量级的,例如600nm或者200nm。
术语孤立测试图案指基本上不受所谓的光学临近效应影响的测试图案。对于这种图案,空间像充分独立于任何临近图像的空间像。更高阶的辐射,即由于更高阶几何像差造成的辐射可以在基片级上偏差达到100μm的距离。更高阶的辐射是由例如,透镜或者反射镜膜的瑕疵、透镜材料的瑕疵以及物体或者检测器上的不必要反射导致的。孤立测试图案可以与相邻图案有一段距离,该距离足够大,从而避免源于相邻图案的更高阶辐射的混合。所需要的距离取决于更高阶几何像差的尺寸。该距离可以等于或者大于1μm,例如3或者7μm,最好等于或者大于10μm,例如34或者57μm,或者等于甚至大于100μm,例如155μm。优选的,该距离小于100μm。
在实施例中,使用单一测试图案,这是因为根据本发明的该方面,这足够用于确定关于成像系统中图像模糊的参数,而在已知方法中,必须使用几种不同尺寸的几种不同的掩膜图案。这就使得根据本发明的方法较为不复杂。
因为测试图案的尺寸小于成像系统的分辨率,因此测试图案的空间像充分独立于成像系统的照明装置。照明装置经常有它自己的像差,例如散光。在已知方法中,测试图案大于成像系统的分辨率,必须要将照明装置像差考虑进去,但是在根据本发明的方法中能够忽略。照明装置的相干值经常称为光瞳填充系数,在已知方法中,测试图案大于成像系统的分辨率,必须要将该相干值考虑进去,但是在根据本发明的方法中能够忽略。通过使用孤立测试图案,在根据本发明的方法中实质上不考虑光学临近效应,而在已知方法中,这种效应至少发生在所使用的三种图案类型中的至少一种上。
应该注意的是,尺寸小于光学图像系统的分辨率的孤立测试图案的空间像不是必须为具有最小图案尺寸的空间像。由于光学临近效应,该空间像典型地采用较大的常规图案获得,例如线和空间,如已知方法中所采用的。对于这些较大的常规图案,空间像具有最小图像,从而关于图像模糊的参数的影响经常是非常容易发现的。因此,通常使用这种类型的图案确定参数。
根据本发明,特意选择导致相对大的空间像尺寸的测试图案。与所期望的相反的是,这种图案的分析比对应于最小空间像的图案的分析更加容易。
根据本发明的方法并不局限于与抗蚀剂中的扩散有关的图像模糊。它可以用于确定关于各种类型图像模糊的参数。图像模糊理解为是由于在成像系统的元件之间的随机波动,或者由于在检测图像过程中的随机波动而造成的图像的模糊。这两种影响都可以使用相同的理论描述,并在以下进行解释。
根据本发明的方法并不局限于光刻系统,还可以用于其他类型的成像系统,例如光学显微镜或者电子显微镜。
本发明的方法并不局限于采用经过显影的抗蚀剂层对被模糊图像的检测。被模糊图像可以通过检测器设备或者通过光敏非电子检测器进行检测,其中检测器设备简称为检测器,其可以是电子设备,例如CCD相机,光敏非电子检测器例如为抗蚀剂层或者照相纸。检测器可以至少部分地导致图像模糊。当使用抗蚀剂层时,通过使用具有数字图像获取与存储能力的扫描电子显微镜(SEM)获取在抗蚀剂层中形成的图案,可以获得关于被模糊图像的形状的参数。这些图像可以进行离线分析。
关于被模糊图像的形状的参数可以包括被模糊点扩展函数(PSF)。被模糊PSF可以直接采用电子检测器,例如CCD相机获得。可以替换的是,可以从经过显影的抗蚀剂层,例如从聚焦曝光矩阵(focus exposure matrix)中,或者通过将单一图像插值到PSF的推定形状,重构出被模糊PSF。确定关于图像模糊的参数的步骤可以包括将成像系统的被模糊亮度基本函数拟合到被模糊点扩散函数的步骤。成像系统的几何像差可以方便地由亮度基本函数说明,该亮度基本函数在文章“Aberration retrieval using the extended Nijboer-Zernikeapproach”(“采用扩展Nijboer-Zernike方法的像差获取”),P.Dirksen,J.Braat,A.Janssen,C.Juffermans,Journal of Microlithography,Microfabricaion and Microsystems(微光刻、微制造以及微系统期刊),卷2,第2期,61-68页,2003年一月的公式16和24中给出,引入该文章作为剩余部分中的参考。可以通过使用说明图像模糊的函数对亮度基本函数进行卷积,获得被模糊亮度基本函数。当要确定各种亮度基本函数的振幅时,对每个亮度基本函数而不是各亮度基本函数的和进行卷积特别有利。
在实施例中,根据关于所形成的测试图案的形状的参数,确定成像系统的几何像差。成像系统的几何像差可以导致图像的额外模糊。术语几何像差可以指单一几何像差,例如球面像差、慧形像差、双重(two-fold)散光或者三重(three-fold)散光,或者指几种几何像差的组合。几何像差可以用泽尔尼克(Zernike)多项式描述,如参考资料中所述。几何像差理解为不包括色像差。关于图像模糊的参数理解为不包括几何像差。
发明者已经领悟到,可以独立于但是同步于关于图像模糊的参数确定几何像差。这对于确定该参数的已知方法是一种进步,在已知方法中,几何像差通常忽略或者假设是已知的,对于确定几何像差的现有方法也是一种进步,在现有方法中,该参数通常忽略或者假设是已知的。根据本发明的该方面,过程参数和几何像差两者都被准确地确定。
成像系统可以是光刻装置,物体可以是掩膜。检测被模糊图像的步骤包括以下步骤:通过被模糊图像对抗蚀剂层进行照射,以及对经过照射的抗蚀剂层进行显影,从而形成关于所述模糊图像的图案。
抗蚀剂层可以包括化学成分,例如光酸生成剂,其通过照射被激活,并且在激活后和显影过程终止之前进行扩散,从而改变抗蚀剂层的溶解度。过程参数可以与该化学成分的扩散有关。在本实施例中,该方法可以用于确定抗蚀剂中的化学成分的扩散长度。扩散可以在激活之后开始并持续发生,直到显影步骤结束为止。可以替换的是,它可以仅仅发生在该时间段的一部分中,例如仅仅在PEB过程中。扩散可以是由于酸的扩散引起的,如果其存在,或者是由于其他成分的扩散引起的,例如冷却剂(quencher),如果其存在。
根据本发明的方法不局限于对关于抗蚀剂中的扩散的参数的确定。它可以用于更加复杂的抗蚀剂模型,该模型还说明Fickian酸扩散之外的情况。过程参数可以涉及非高斯分布函数。
在实施例中,形成测试图案的步骤包括在第一曝光剂量下形成第一测试图案,在不同于第一曝光剂量的第二曝光剂量下形成第二测试图案。曝光剂量确定在被照射部位所产生的酸的量。曝光剂量越高,就产生越多的酸。有一个特定阈值,即需要某一最小酸量,从而需要特定最小数量的光子或者最小亮度来导致抗蚀剂溶解度的改变。在抗蚀剂的受照射部分与抗蚀剂的未受照射部分之间的分界面处,亮度从大值变为小值。该改变取决于几何像差。通过使用不同的曝光剂量确定该改变,允许更加可靠地确定几何像差和过程参数。可以使用两种以上的不同的曝光剂量,例如三种、五种、六种、七种或者九种。
根据本发明的方法不局限于对关于抗蚀剂的参数的确定。它可以用于确定关于图像模糊的参数,所述图像模糊例如可以由机械噪声导致的物体位置相对于检测器位置的随机波动造成。所述随机波动可以用高斯分布函数或者另一种分布函数描述。物体相对于检测器的位置可以在垂直于成像系统光轴的方向上波动。检测器可以包括抗蚀剂层。这种波动可以是各向异性的,即在都平行于抗蚀剂层的两个方向上是不同的。这可以发生在例如步进-扫描光刻工具中,在步进-扫描光刻工具中,由于在一个方向上的步进,噪声可以大于垂直于扫描方向的另外一个方向上的噪声。
根据本发明的方法不局限于对关于物体位置在垂直于成像系统光轴的方向上相对于检测器位置的随机波动的参数的确定。所述随机波动可以用高斯分布函数或者另一种分布函数描述。这种波动可以是在平行于光轴的方向上,并且可以导致所谓的聚焦噪声。在照射物体的步骤中,在图像平面中形成测试图案的图像。图像平面的位置取决于物体位置,以及取决于将测试图案投影到所述图像平面的投影系统的焦距。检测器可以具有有效检测平面,即在其中检测被模糊图像的平面。当将抗蚀剂层用作检测器时,抗蚀剂层可以具有500nm或者更小的的厚度,例如300nm、200nm甚至更小。抗蚀剂层可以被近似地视为好像它位于与检测器平面相同的抗蚀剂平面中。抗蚀剂平面可以位于抗蚀剂层的中间,并可以基本垂直于成像系统的光轴。由于例如散焦,检测器平面可以不与图像平面相重合。在这种情况中,在图像平面中,图像相对于空间像被放宽。放宽的量取决于检测器平面与图像平面之间的距离,即取决于散焦量。所述距离可以受到各种起因的随机波动的影响,如在下一段中将要描述的。根据本发明的方法所确定的关于图像模糊的参数可以涉及图像平面与检测器平面之间的距离的随机波动。所述随机波动越大,图像的模糊也越大。
图像平面与检测器平面之间距离的变化可以由几种机制导致,例如在平行于光轴的方向上的物体和/或者检测器的机械振动。聚焦噪声的可以替换的或者额外的原因可以是由于用于照射物体的照射源的波长的波动。成像系统可以包括用于将测试图案的图像投影到检测器上的投影透镜。所述投影透镜可以是彩色的,即它的焦距可以取决于它聚焦的波长。在这种系统中,照射源的波长波动可以造成图像平面与检测器平面之间的距离的波动。
关于图像模糊的参数可以包括两个参数,一个参数关于检测器平面中的波动,所述波动可以是由于例如抗蚀剂中的扩散和/或者是由于例如机械波动而造成的波动,另一参数关于垂直于检测器平面的波动,例如由于聚焦噪声造成的波动。发明者已经领悟到,在根据本发明的方法的实施例中能够区分开描述这两个过程的参数。
在实施例中,用于确定关于图像模糊的参数的关于被模糊图像形状的参数,包括被模糊图像的平均半径。在理想成像系统中,未模糊图像和被模糊图像具有半径不同的圆形形状,这种半径上的差异与图像模糊有关。在非理想成像系统中,即在具有几何像差的成像系统中,未模糊图像与被模糊图像可以具有非圆形形状。这可以是由几何像差导致的,例如彗形像差、n重散光(这里n是大于1的整数)以及三箔(three-foil)。本发明的该方面是基于以下观点,即被模糊图像的平均半径与绝大部分几何像差无关,包括在上句中所谈到的那些像差。这通常用于所述参考的符号中m≠0的所有像差。因此,当根据被模糊图像的平均半径确定参数时,这些像差对于参数值没有影响。
测试图像可以在两个不同的聚焦位置上成像,即被模糊图像可以被位于检测器平面中的检测器所检测出,图像形成在图像平面中,检测器平面与图像平面之间的距离受随机波动影响,图像模糊与随机波动有关。当将抗蚀剂层用作检测器时,在抗蚀剂平面与图像平面之间的第一距离处的抗蚀剂层中形成第一测试图案,在抗蚀剂平面与图像平面之间的第二距离处形成第二测试图案,并且第二距离不同于第一距离。被模糊图像的形状取决于形成该图像的聚焦条件。几何像差和过程参数取决于另一种方式的聚焦条件。因此,在本实施例中,通过在这两种不同的聚焦条件下检测被模糊图像,能够区分开几何像差,例如球面像差,以及参数,例如由于抗蚀剂中的扩散造成的模糊。
取代以上这两种聚焦条件,可以使用三种聚焦条件,即检测平面与图像平面之间的三种距离。一种聚焦条件可以是正焦,即检测器平面和图像平面重合,一种聚焦条件可以是欠焦,即图像平面在检测器平面之下,一种聚焦条件可以是过焦,即图像平面在检测器平面之上。这样,可以容易地区分开几何像差和关于图像模糊的参数,例如球面像差和在检测器平面中或者垂直于检测器平面的随机波动,这两者在跨焦(though focus)特性上是不同的,。
不同聚焦条件的数量可以大于三种,例如五种、六种、七种或者九种。不同的聚焦条件的数量可以是2N+1,N为正整数,其中一种聚焦条件是正焦,N种聚焦条件为欠焦,N种聚焦条件为过焦。
当将抗蚀剂层用作检测器时,对于每种聚焦条件,可以使用不同的曝光剂量。这样,就获得了所谓的聚焦曝光矩阵,其允许过程参数与几何像差的稳定拟合,如果也进行拟合的话。
附图简述
参考附图进一步阐明并描述本发明的这些方面和其他方面,在附图中:
图1概略示出了用于执行照射物体步骤的成像系统的实施例;
图2A和2B分别示出了掩膜上的测试图案和显影步骤之后在抗蚀剂层中的测试图案;
图3A和3B分别示出了聚焦曝光矩阵,以及由此获得的点扩散函数;
图4A-4C分别示出了理想点扩散函数连同存在球面像差、抗蚀剂平面中的扩散和垂直于抗蚀剂平面的随机波动时的点扩散函数;以及
图5示出了用于确定过程参数的点扩散函数的拟合。
具体实施方式
图1概略性地示出了成像系统IS的实施例的最重要的光学元件,该成像系统IS是用于在基片上重复对掩膜图案成像的光刻装置。该装置包括容纳投影透镜系统PL的投影镜筒。位于该系统之上的是容纳掩膜MA的掩膜架MH,在掩膜MA中提供了要被成像的掩膜图案C,例如IC图案。该掩膜架位于掩膜台MT中。基片台WT放置在投影镜筒中的投影透镜系统PL下方。该基片台支撑基片架WH,基片架WH用于容纳基片W,例如半导体基片,也称为晶片。该基片具有辐射敏感层,称为抗蚀剂层PR,掩膜图案必须在该层上多次成像,每次在不同的IC区域Wd中。如图中所示,基片台在X方向和Y方向上是可移动的,从而在一个IC区域上对掩膜图案成像之后,可以将后面的IC区域定位于掩膜图案的下方。
该装置还包括照射系统,其具有照射源LA。照射源LA是工作在λ=193nm的受激准分子激光器,但是可以替换的是,照射源LA可以是其他任何合适的能量源,例如氟化氪受激准分子激光器或者水银灯。该装置还包括透镜系统LS、反射器RE以及聚光透镜CO。所述照明系统发出的投影光束PB照射掩膜图案C。投影透镜系统PL将该图案在基片W的IC区域上成像。可以如EP-A0 658 810所述,实现该照明系统。该照明系统具有,例如M=1/4的放大率、数值孔径NA=0.63、以及直径22mm的衍射极限像场。
该投影装置还包括聚焦误差检测设备,在图1中未示出,用于检测投影透镜系统P1的焦点平面与抗蚀剂层PR的平面之间的偏差。这种偏差可以通过例如在Z轴方向上互相移动透镜系统和基片,或者通过在Z轴方向上移动投影透镜系统的一个或者多个透镜元件进行修正。在US-A4,356,392中描述了这种检测设备,其可以被固定到例如投影透镜系统上。在US-A5,191,200中描述了一种检测设备,其能够检测聚焦误差和基片的局部倾斜。
对于投影透镜系统有着严格的要求。采用该系统,具有例如0.35μm或者更小线宽的细节应该仍然被清晰地成像,从而该系统必须具有相对大的NA,例如大于0.6。此外,该系统必须具有相对大的,良好校正过的像场,例如直径为23mm。为了能够实现这些严格的要求,投影透镜系统包括较大数量的透镜元件,例如十个。这些透镜元件中的每一个都必须非常精确地制造,并且系统必须非常精确地装配。用于确定投影系统的像差是否足够小,从而能够使该系统适合于构建到投影设备中,还允许在该设备的使用期期间对像差进行检测的方法是有价值的,在根据本发明的方法的一个实施例中给出了这种方法。后面的像差可以有不同的原因。一旦知道了像差和它们的大小,就能够采取措施对其进行补偿,例如,通过调节透镜元件位置或者投影系统的间隔部分中的压力。
确定关于图像模糊的参数的方法包括:采用成像系统IS照射掩膜MA的步骤,掩膜MA是物体并且具有测试图案MTP。掩膜测试图案MTP是直径为0.6μm的大约为圆形的开口,并且具有小于成像系统IS分辨率的尺寸,该分辨率大约为λ/(NA*M)=1.2μm。测试图案是孤立图案。在图2A中示出了该测试图案。到掩膜MA上的下一个相邻图案的距离是25μm。除了掩膜测试图案MTP外,掩膜MA还可以包括用于在抗蚀剂层PR中产生相应芯片图案的图案C。合格的标线片可以用作掩膜MA,即该标线片具有测试图案,并且该测试图案的直径从例如SEM测量中获知。
对覆盖了抗反射涂层和抗蚀剂层的半导体晶片WA进行软烘烤,并将其用作检测器。该过程的细节可以在参考资料中找到。晶片WA可以是生产步骤中的产品晶片,并且可以包含一组干涉层或者抗反射涂层,例如SiON。
抗蚀剂层PR是来自JSR(日本合成橡胶公司)的AR237,并且其厚度为100-500nm。本发明并不局限于将抗蚀剂层作为检测器,也不局限于该抗蚀剂,也不局限于该抗蚀剂厚度。对抗蚀剂层PR的不同部分采用不同曝光剂量以及不同聚焦条件进行照射。抗蚀剂层PR的各部分以矩阵结构排列,其中相同列中的测试图案采用相同的曝光剂量,相同行中的测试图案采用相同的聚焦条件。曝光剂量与普通生产剂量相比相对较大,并且典型地在10和1000mJ/cm2之间。采用20个不同的剂量。剂量的采样通常是非等间距的。选择相邻曲线剂量,使得剂量的倒数的差大约恒定。最大剂量大致对应于强度点扩散函数的1-5%周线。曝光时间为大约10分钟。这暗示形成测试图案的步骤包括在第一曝光剂量下形成第一测试图案,以及在不同于第一曝光剂量的第二曝光剂量下形成第二测试图案。
聚焦条件典型地在从欠焦1.0μm到过焦1μm,采用11个等距步长,即焦距增量为0.1μm。这暗示在照射抗蚀剂层的步骤过程中,在图像平面上形成掩膜图案的图像,抗蚀剂层位于抗蚀剂平面中,形成测试图案的步骤包括在抗蚀剂平面与图像平面之间的第一距离上形成第一测试图案,在抗蚀剂平面与图像平面之间的第二距离上形成第二测试图案,第二距离不同于第一距离。因此获得11乘以20,即220个不同测试图案。因此而获得的测试图案之一如图2B中所示。它是测试图案的被模糊图像。模糊是由以下讨论的随机过程导致的。对于每次曝光,曝光剂量即所使用的能量,和聚焦条件,与相应的测试图案在晶片WA上的位置一起存储在电子文件中。
在参考资料的图5中,示出了一个例子,其包括在非理想聚焦条件以及非理想曝光剂量下掩膜测试图案的曝光,以及始终在最佳聚焦和最佳剂量的相同标准情况下发生的参考曝光。这些图案是在额外曝光步骤中产生的,并且可以用于SEM中的图案识别,特别是当需要分析非旋转对称项时。
被照射的抗蚀剂层PR被显影,从而形成测试图案。显影是采用130摄氏度的PEB和90秒的持续时间完成的,并且将Arch Chemicals公司的OPD 262作为显影剂。该步骤的结果是获得测试图案的矩阵,每个测试图案都具有与图2B所示类似的形状。在图2B所示的测试图案中,抗蚀剂层PR有一个孔,其曝光底层的晶片WA。在该图像上呈浅灰色的抗蚀剂层PR与在该图像上呈暗黑色的被曝光晶片WA之间的交界面上,有指示抗蚀剂层PR中的开口的内表面的亮环。矩阵中的测试图案的图像是在不使用参考图案时,由日立9200扫描电子显微镜(SEN)采用100,000倍的放大率获得的。使用参考图案的话,放大率大约为30,000。电子能量为800-500eV。各种测试图案的图像由SEM获得并存储在计算机中。所存储的文件可以包括额外信息,例如提取位置和放大率。数据搜集可以是自动的也可以是人工的。
在该组图像上,执行数据简化以提取关于测试图案形状的参数,该参数随后会用于确定过程参数。该数据简化可以在SEM上执行或者离线执行。在该步骤中,从图像中获得每个测试图案的形状,即在该例子中获得每个接触孔图像的形状。算法可是简单的阈值算法或者较为复杂的算法,包括对图像的微分。后一种算法检测SEM图像中亮度变化最剧烈的位置,是用于检测接触孔形状的鲁棒的算法。从形状中,可以提取出例如直径或者平均半径的参数,其可以通过平方拟合过程,以及任意的偏心率,即根据拟合过程得到的中心坐标与理想坐标之间的差异来获得。每个图像可以接收表示图像品质的品质指数。低品质的图像可以拒绝分析。例如可以要求SEM图像的某一最小对比度。可以替换的,或者额外的是,可以要求周线闭合,和/或者直径或者平均半径在特定界限中,例如在40nm和400nm之间。如果这些条件中一个或者几个不满足,则该图像可以被拒绝。
数据简化步骤的结果是,对于聚焦曝光矩阵的每个点都获得了关于形状的参数的集合。关于形状的参数可以是由上一段中所描述的算法获得的形状,和/或者是例如直径或者平均半径。当确定没有几何像差或者当仅仅确定旋转对称几何像差时,平均半径足够用于进一步的方法步骤。对包括非旋转对称几何像差的扩展与参考资料中所描述的过程类似。它是简单明了的,不需要在这里进行详细描述。
使用曝光数据,平均半径可以与曝光剂量和聚焦条件联系起来。使用亮度与1/剂量成比例的关系,可以将平均半径转换为原始点扩散函数(PSF),即转换到作为半径和焦距的函数的亮度。在该步骤中,相邻剂量的数据可以用二次插值法进行插值以缩减数据量,同时提高信噪比。在图3A中,数据表示为关于半径R和焦距f的,对于20mJ/cm2和800mJ/cm2之间的固定剂量的函数。在图3B中,在将剂量转换到亮度之后,相应的数据表示为关于半径R和焦距f的,对于将最大值归一化到1的固定的相对剂量的函数。
可能有些数据点丢失,这是由于存在能够印刷到抗蚀剂层的测试图案的最小直径,例如直径100nm。更小的直径可能不会产生。所丢失的数据点在R<50nm处在PSF中表示为“孔”。所丢失的数据点可以被忽略,并在随后的分析之前从数据集中删除。可以替换的是,可以假设PSF是平顶的,即将亮度假设为对于R<50nm恒定,或者对于0<R<100nm的亮度可以使用从参考资料中描述的扩展NijboerZernike(ENZ)理论中得到的基本函数推断出来。在经过这些步骤之中的一个步骤后,获得图3B中所示的“干净的点-扩散函数”I(r,f),以下简称为PSF。
PSF是采用ENZ理论的改进形式描述的,ENZ理论的改进形式是参考资料中所示出的ENZ理论的扩展,并且将会在以下进行描述。在描述对采用实验方法所获得的数据,例如图3B所示出的数据进行分析之前,通过仿真分析由于抗蚀剂的扩散,由于抗蚀剂平面与图像平面之间的距离的随机波动,以及由于几何像差所造成的过程参数的影响。
在不存在任何几何像差和任何过程参数时,由参考资料的公式24的右边第一项给出PSF。这是理想的PSF,在图4A-4C中的比较图中用实线示出。
当成像系统具有球面像差时,PSF是理想PSF加上项2Im{β40}Re{iV* 00V40}的和。这里和在本描述的剩余部分中,*表示复数共轭,所有的变量都在参考资料中定义。在图4A中,用虚线示出了存在球面像差时的PSF。假设不存在其他过程参数。图中示出了球面像差导致PSF的跨焦不对称,即I(r,f)≠I(r,-f)。
当必须要考虑关于抗蚀剂平面中扩散过程的过程参数时,PSF大致服从众所周知的Fickian二维扩散公式。该扩散公式的关于时间的一阶展开包括对位置的二阶导数。能够明确地计算具有索引(n,m)的所有基本亮度函数的二阶导数。对于不受像差影响的部分(m=n=0,从而V00 2),这在t的一阶情况下,会在PSF中产生额外的项,该项为:
2σr 2(V20V* 00+V00V* 20+2V00V* 00-4V11V* 11)
这里,σr是对扩散长度的测量。它可以涉及酸扩散系数D和扩散持续的时间t,如 σ r = ( 2 Dt ) . 该项要添加到理想PSF中,并且如果球面像差项存在,也要添加到其中。
如果图像模糊源自水平平面中的机械噪声,则σr解释为该机械噪声的RMS-噪声振幅。如果扩散噪声和位置噪声都存在,则可以定义全部RMS振幅,其由单一参数σr表示,该σr等于这两个独立参数的平方和的平方根。此外,二阶项,即与t2或者σ4成比例的项能够明确地计算出来,并且可以用于描述扩散系数的较大值的影响。该项包括对位置的四阶导数。
在以上描述的模型中,已经假设扩散过程是各向同性地。在扩散过程具有对应于X方向和Y方向的两个不同扩散长度参数σx和σy的情况中,σr 2应该由σr 2=1/2(σr 2y 2)所替代,而同时将进一步修正加入到PSF中:
0.5π2x 2y 2)(2V22V* 00+2V00V*22+4V11V* 11)cos(2φ)
因此二次谐波m=2亮度项必须加入到PSF中。各向异性的扩散或者位置噪声的影响是PSF的椭圆变形,该变形甚至跨焦,即I(r,f)=I(r,-f)。可以通过采用与参考资料中所述方式非常类似的方式考虑m=2传递项,而获得各向异性的参数。
可以替换的是,使用具有标准差σx,σy的2D高斯分布函数,可以计算出在位置变量x和y中的PSF的2D卷积。在第一阶中,这导致以上分析论述中的修正。
可能必须针对各向异性而旋转上述额外修正项,从而说明具有正交对称轴的扩散过程,该正交对称轴不是必须与所给出的光学系统的规范的X轴和Y轴重合。
在图4B中,用虚线示出检测平面中存在扩散时的PSF。其他过程参数和几何像差假设不存在。如所示,在检测器平面中的扩散导致PSF在径向上变宽,而PSF在焦距方向上几乎不变。应该注意的是,只有扩散存在时,PSF是跨焦对称的,即PSF(f)=PSF(-f)。
应该注意的是,如果抗蚀剂中存在酸,则将关于在抗蚀剂平面中扩散的理论应用于在抗蚀剂中酸的扩散,该理论也用于抗蚀剂平面中的各向同性的随机波动,该随机波动可能是由于例如机械振动或者晶片扫描器情况中的同步误差而引起的。
还可以将关于垂直于检测器平面的位置波动的参数考虑进来。焦距参数f被认为是随机变量。尽管不重要,为了简单,我们仍然假设f具有采用标准差σf的围绕它的均值的对称分布。然后,基本亮度函数的期望值实质上包括基本亮度函数对焦距参数的二阶导数。对于所有的(n,m)值都能明确计算关于焦距参数的二阶导数。对于不受像差影响的情况(m=n=0),聚焦噪声可以被PSF中的额外项所包含,该项为:
-0.5σf 2(1/6|V00|-1/2|V20|2+1/6V00V* 40+1/6V40V* 00)
可以替换的是,使用具有标准差σf的1D(一维)高斯分布函数,可以计算出在焦距变量f中的PSF的1D卷积。在第一阶中,这导致以上分析论述中的修正。
这里,σf是对检测器平面与图像平面之间的距离中的随机波动的测量。该项被添加到理想PSF中,如果球面像差项存在,也要添加到其中,如果检测器平面中的扩散项存在,也要添加到其中。
在图4C中,用虚线示出垂直于抗蚀剂平面的随机波动存在时的PSF。其他过程参数和几何像差假设不存在。如所示,聚焦噪声,即垂直于检测器平面的位置噪声导致PSF在焦距方向上变宽,而PSF在径向上几乎不变。应该注意的是,只有聚焦噪声存在时,PSF是跨焦对称的,即对于f的对称分布,PSF(f)=PSF(-f)。
在图4A-4C中示出,几何像差、由于抗蚀剂平面中的扩散造成的过程参数、以及由于垂直于抗蚀剂平面的波动造成的过程参数对PSF有着截然不同的影响。因此,在它们能够在同一实验中解决。可以替换的是,几何像差可以在单独的实验中确定,在该实验中,如国际专利申请WO 03/056392中所描述的,用检测器代替抗蚀剂层。
发明者已经领悟到,即使考虑高阶项时,不同的过程参数和几何像差也能分开。存在几何像差时,PSF可以表示为所谓的亮度基本函数的线性和,在参考材料的公式14和24中给出。假设由于过程参数造成的PSF的模糊至少大致为线性过程。
因此,通过简单地将PSF拟合到在图4A-4C的一个或者多个中所模拟并在上面所描述的项而获得过程参数。当几何像差和/或者扩散和/或者随机波动相对较大时,以下是确定过程参数和几何像差的更准确的方法:首先使用贝塞尔表达式对Vnm多项式计算亮度基本函数,见参考资料的公式6。当考虑测试掩膜图案的有限尺寸时,即与成像系统分辨率相同数量级的测试掩膜图案,必须使用参考资料中的公式11取而代之。将对于Vnm的结果保存在电子数据文件中。接下来,根据参考资料的公式16或者公式24计算亮度基本函数ψm n(r,f)和xm n(r,f),其取决于测试掩膜图案的尺寸。当忽略在成像系统的光瞳中的传递误差时,在分析中能够忽略xm n(r,f)。可以再次将结果电存储到数据文件中。
接下来,用因此而获得的每个亮度基本函数ψm n(r,f)对用于说明过程参数的项进行卷积。该步骤的结果是对应的一组被扩散亮度基本函数ψm n(r,f)。在抗蚀剂平面中的扩散和垂直于抗蚀剂平面的随机波动的情况中,这些运算分别描述为在水平平面上的2D卷积操作和沿着焦距轴的1D卷积操作。当将扩散和波动假设为高斯过程时,分别用项d(r)=2/σr 2exp{-r2/(2σr 2)}和项 ( f ) = 1 / σ r 2 π exp { - f 2 / ( 2 σ f 2 ) } 对亮度基本函数ψm n(r,f)进行卷积。对于一组可能的过程参数计算被扩散亮度基本函数。如果用数字积分来做,运算可能需要超过一个小时的有效CPU时间,但是幸运的是,它仅需要计算一次,即,对每个λ和NA的设定只计算一次。对于小过程参数值,可以使用以上给出的分析公式。该分析公式的优点是它们的稳定性以及容易计算。对于小参数值,在卷积核非常窄时,数值计算可能遇到离散化问题,需要非常很精细的栅格来进行具有足够精确性的数值计算。
该步骤的结果是,对过程参数σr和σf的每个值,获得被扩散亮度基本函数的大表格,例如对于在0和50nm之间的范围每次变化2nm的σr,和对于在0和300nm之间的范围每次变化5nm的σf
在一个实施例中,仅仅考虑旋转对称项。数据基数的尺寸则相对较小。它可以包括对应于Z4(散焦)和Z9、Z16泽尔尼克多项式的项,见上述参考资料以及这里引用的关于泽尔尼克多项式的定义的参考资料。最初,这产生描述相位和传递误差的6个亮度基本函数。使用抗蚀剂模型和聚焦噪声,我们现在得到26*61*6=9516个基本函数。可以替换的是,可以选择使用“混合方案”,其中对扩散进行数值计算,其允许相对大的扩散长度,并将对于扩散的结果存储在数据文件中,但是“在空闲时(on the fly)”,对聚焦噪声的影响进行分析计算。其结果是显著降低了数据量,同时代价是花费适当数量的CPU时间以及精确度。每次分析光刻过程的过程参数时,使用相同的被扩散亮度基本函数数据库,提供相同的λ和NA的设定,从而节约CPU时间。
在从关于测试图案形状的参数中确定过程参数的下一个步骤中,使用执行以下步骤的计算机程序:首先为σr和σf的所有可能值载入具有所有亮度基本函数的数据库。对于σr和σf的每个组合,通过采用类似参考资料的2和3部分中所述的方式的最小平方拟合过程,确定贝它系数βnm,见参考资料的公式24。
对于σr和σf的每个组合,因此而确定的贝它系数βnm用于计算品质因数M,其定义为:
M ( σ r , σ f ) = Σ p ≠ 0 1 2 ( 2 p + 1 ) ( Re ( β 2 p 0 ) ) 2 Σ p 1 2 ( 2 p + 1 ) [ ( Re ( β 2 p 0 ) ) 2 + ( Im ( β 2 p 0 ) ) 2 ]
品质因数M达到它的最小值时,σr和σf的值就是过程参数。对于尺寸小于成像系统分辨率的掩膜测试图案来说,品质因数有着显著的用处。假设镜头的传递误差能够忽略,相位误差不能忽略,但是很小。因此,在参考资料的注释中,A=1,并且Re(β2p0)实际上消失了。对于各向异性的情况,我们可以定义类似以上定义的品质因数的品质因数M(σx,σy,σf)。然而,现在我们还考虑对于m=2的实数和虚数贝它项,并再次优化使M达到最小值的σx,σy,σf的值。
可以替换的是,特别是当项xm n(r,f)在分析中被忽略时,可以使用简单的最小平方拟合过程而不是品质因数,并且其直接获得σr和σf参数,或者更一般地σx,σy,σf的值。
使用如上所述的预先计算的数据库,整个分析过程典型地需要10-15分钟,包括大约200幅SEM图像的分析。
在图5中,以上描述的从聚焦曝光矩阵中获得的PSF用实线示出。以上描述的拟合过程的结果用虚线示出。拟合过程的结果是34mλ的球面像差系数、31nm的σr以及195nm的σf。RMS拟合误差典型地为1.5%。
在拟合过程中,几何像差和/或者σr或者σf可以限制到0,特别是在对于PSF的模糊的相应贡献很小,或者假设很小时。
因此而获得的参数可以用于优化抗蚀剂的化学组成、抗蚀剂的显影、步进器(Stepper)或者扫描仪性能、例如同步设定、以及激光器的调谐。测试可以由光刻工具的卖主进行,或者在维护过程中在生产工具上进行。
因此而获得的参数可以用在用于过程优化,例如曝光条件的优化或者掩膜设计与制造的优化的光刻仿真器中,特别是,对于光学临近校正掩膜来说是这是有利的。到此为止,能够提供所期望的掩膜图案,可以通过以上方法确定关于图像模糊的参数,并且可以从所期望的掩膜图案以及关于图像模糊的参数中计算出掩膜图案,从而获得所设计的掩膜图案。
在本方法的另一个实施例中,将CCD阵列用作检测器,而不是抗蚀剂层。这种检测器可以是光刻系统的集成部分,例如它可以集成在晶片架WH(wafer holder)中。可以替换的是,它可以在由晶片WA占据的位置之外的其他位置上。在这种情况中,根据本发明的方法允许确定关于图像模糊的参数,所述图像模糊由例如检测器相对于掩膜的机械振动造成。图像模糊也可以至少部分地由成像系统的光学元件的振动造成。
替代光刻系统,成像系统可以是例如光学或者电子显微镜。随机波动可以由物体位置、检测器和/或者光学元件之间的随机波动造成。这样,可以描述成像系统的性能。
即使是当成像系统不是光刻系统,而是例如光学显微镜时,检测器也可以包括抗蚀剂层。这可以允许确定与由抗蚀剂中的扩散过程造成的图像模糊有关的参数,而不需要相对昂贵的步进器。
总之,确定成像系统IS中关于图像模糊的参数的方法包括采用所述成像系统照射具有测试图案的物体,从而形成所述测试图案的图像的步骤。所述测试图像具有小于所述成像系统分辨率的尺寸,使得所述测试图案的图像独立于照明设备像差。所述测试图案是孤立图案,使得图像不受光学临近效应的影响。图像被模糊,这是由于成像系统中和/或者在检测被模糊图像的检测器中的随机波动而引起的。从关于被模糊图像的形状的参数中,确定关于图像模糊的参数。根据本发明,可以表现抗蚀剂扩散和/或者聚焦噪声的特征。在设计掩膜的方法中,考虑了关于由于抗蚀剂中的扩散造成的图像模糊的参数。根据本发明的计算机程序能够执行从关于被模糊图像的形状的参数中确定关于图像模糊的参数的步骤。
应该注意的是,上述实施例是为了说明本发明而不是限定本发明,在不脱离所附权利要求的范围的情况下,本领域技术人员能够设计很多可以替换的实施例。在权利要求中,任何圆括号中的附图标记不应该理解为限定权利要求。单词“包括”并不排除存在权利要求所列举之外的元素或者步骤。元素之前的单词“一个”并不排斥多个这种元素的存在。

Claims (12)

1、确定关于成像系统(IS)中图像模糊的参数的方法,所述方法包括以下步骤:
采用所述成像系统(IS)照射具有测试图案(MTP)的物体,从而形成所述测试图案的图像,所述测试图案(MTP)具有小于所述成像系统(IS)的分辨率的尺寸,所述测试图案(MTP)是孤立测试图案,所述图像被模糊,
检测所述被模糊图像,以及
根据关于所述被模糊图像的形状的参数,确定关于图像模糊的参数。
2、如权利要求1所述的方法,其中,关于所述被模糊图像的形状的参数包括被模糊点扩散函数,并且确定关于所述图像模糊的参数的步骤包括将所述成像系统(IS)的被模糊亮度基本函数拟合到所述被模糊点扩散函数的步骤。
3、如权利要求2所述的方法,其中,将所述成像系统(IS)的被模糊亮度基本函数拟合到所述被模糊点扩散函数的步骤包括以下步骤:
对一组关于所述图像模糊的参数,计算多组被模糊亮度基本函数,以及
对于关于所述图像模糊的每个所述参数,将对应一组被模糊亮度函数拟合到所述被模糊点扩散函数。
4、如权利要求1所述的方法,其中,根据关于所述被模糊图像的形状的参数,确定所述成像系统(IS)的几何像差。
5、如权利要求1所述的方法,其中,采用位于检测器平面中的检测器设备(PR)检测所述被模糊图像,在图像平面中形成所述图像,在所述检测器平面与所述图像平面之间的距离受随机波动的影响,所述图像模糊与所述随机波动有关。
6、如权利要求1所述的方法,其中,关于所述被模糊图像的形状的参数包括其平均半径。
7、如权利要求1所述的方法,其中,所述成像系统(IS)是光刻装置,所述物体是掩膜(MA),检测所述被模糊图像的步骤包括以下步骤:通过所述测试图案(MTP)的图像照射抗蚀剂层(PR),并对被照射的抗蚀剂层进行显影,从而形成关于所述被模糊图像的图案。
8、如权利要求7所述的方法,其中,所述抗蚀剂层(PR)包括化学成分,所述化学成分通过所述照射被激活,并且在所述激活之后和所述显影之前进行扩散,所述化学成分改变所述抗蚀剂层的溶解度,所述图像模糊与所述化学成分的扩散有关。
9、如权利要求7所述的方法,其中,在第一曝光剂量下和在不同于第一曝光剂量的第二曝光剂量下,执行照射所述抗蚀剂层的步骤。
10、设计在光刻过程中使用的掩膜图案的方法,包括以下步骤:
提供所期望的掩膜图案,
采用如权利要求7所述的方法确定所述参数,以及
根据所期望的掩膜图案和所述参数,计算掩膜图案,从而获得所设计的掩膜图案。
11、用于如权利要求1所述的方法的计算机程序,所述计算机程序包括指令,所述指令使被编程设备执行以下步骤:根据关于所述被模糊图像的形状的参数,确定关于所述图像模糊的参数。
12、用于确定关于成像系统(IS)中图像模糊的参数的设备,所述设备包括用于根据关于所述被模糊图像的形状的参数确定关于所述图像模糊的参数的装置。
CNA2005800056203A 2004-02-23 2005-02-08 确定成像系统中的图像模糊 Pending CN1922549A (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
EP04100696.6 2004-02-23
EP04100696 2004-02-23

Publications (1)

Publication Number Publication Date
CN1922549A true CN1922549A (zh) 2007-02-28

Family

ID=34896103

Family Applications (1)

Application Number Title Priority Date Filing Date
CNA2005800056203A Pending CN1922549A (zh) 2004-02-23 2005-02-08 确定成像系统中的图像模糊

Country Status (7)

Country Link
US (1) US20080226152A1 (zh)
EP (1) EP1721216A2 (zh)
JP (1) JP2007523373A (zh)
KR (1) KR20070019976A (zh)
CN (1) CN1922549A (zh)
TW (1) TW200532400A (zh)
WO (1) WO2005083525A2 (zh)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102598687B (zh) * 2009-10-10 2014-11-26 汤姆森特许公司 计算视频图像中的模糊的方法和装置
CN109064517A (zh) * 2018-06-28 2018-12-21 上海复瞻智能科技有限公司 一种光轴垂直度调整方法及装置
CN109633896A (zh) * 2017-10-09 2019-04-16 艾菲瑞斯特有限公司 具有制作误差的容差的透镜设计

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20060132680A (ko) * 2004-02-05 2006-12-21 코닌클리즈케 필립스 일렉트로닉스 엔.브이. 광학 검사 장치, 광학 검사 방법, 피사체 제조 방법 및마스크
KR100843890B1 (ko) * 2005-11-07 2008-07-03 주식회사 하이닉스반도체 리소그래피 공정의 시뮬레이션 방법
JP2008177064A (ja) * 2007-01-19 2008-07-31 Hitachi High-Technologies Corp 走査型荷電粒子顕微鏡装置および走査型荷電粒子顕微鏡装置で取得した画像の処理方法
US9349153B2 (en) * 2007-04-25 2016-05-24 Digimarc Corporation Correcting image capture distortion
DE102008002247A1 (de) * 2008-06-05 2009-12-10 Carl Zeiss Smt Ag Verfahren und Vorrichtung zum Bestimmen einer optischen Eigenschaft eines optischen Systems
US8589827B2 (en) * 2009-11-12 2013-11-19 Kla-Tencor Corporation Photoresist simulation
JP5835968B2 (ja) * 2011-07-05 2015-12-24 キヤノン株式会社 決定方法、プログラム及び露光方法
KR101526008B1 (ko) * 2013-05-31 2015-06-04 제일모직주식회사 광학필름의 이미지 블러 평가방법
KR102120809B1 (ko) * 2013-10-15 2020-06-09 삼성전자주식회사 광학필름의 이미지 블러 평가 방법 및 이미지 블러가 감소된 광학 필름

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5696848A (en) * 1995-03-09 1997-12-09 Eastman Kodak Company System for creating a high resolution image from a sequence of lower resolution motion images
US6368763B2 (en) * 1998-11-23 2002-04-09 U.S. Philips Corporation Method of detecting aberrations of an optical imaging system
US7423739B2 (en) * 2001-12-24 2008-09-09 Koninklijke Philips Electronics N.V. Method of and system for determining the aberration of an imaging system test object and detector for use with the method
US6839126B2 (en) * 2002-01-03 2005-01-04 United Microelectronics Corp. Photolithography process with multiple exposures
JP4474246B2 (ja) * 2003-09-19 2010-06-02 富士フイルム株式会社 ポジ型レジスト組成物及びそれを用いたパターン形成方法

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102598687B (zh) * 2009-10-10 2014-11-26 汤姆森特许公司 计算视频图像中的模糊的方法和装置
CN109633896A (zh) * 2017-10-09 2019-04-16 艾菲瑞斯特有限公司 具有制作误差的容差的透镜设计
CN109633896B (zh) * 2017-10-09 2022-06-14 艾菲瑞斯特有限公司 具有制作误差的容差的透镜设计
US11493670B2 (en) 2017-10-09 2022-11-08 Iphysicist Ltd. Lens design with tolerance of fabrication errors
CN109064517A (zh) * 2018-06-28 2018-12-21 上海复瞻智能科技有限公司 一种光轴垂直度调整方法及装置
CN109064517B (zh) * 2018-06-28 2021-07-27 上海复瞻智能科技有限公司 一种光轴垂直度调整方法及装置

Also Published As

Publication number Publication date
JP2007523373A (ja) 2007-08-16
WO2005083525A2 (en) 2005-09-09
TW200532400A (en) 2005-10-01
US20080226152A1 (en) 2008-09-18
EP1721216A2 (en) 2006-11-15
KR20070019976A (ko) 2007-02-16
WO2005083525A3 (en) 2006-05-18

Similar Documents

Publication Publication Date Title
CN1922549A (zh) 确定成像系统中的图像模糊
US11257207B2 (en) Inspection of reticles using machine learning
JP6411336B2 (ja) 超紫外線レチクルの検査装置および方法
US7107571B2 (en) Visual analysis and verification system using advanced tools
KR102112901B1 (ko) 마이크로리소그래피를 위한 패턴의 자격인정
CN1975582A (zh) 光刻设备和器件制造方法
JP2022502839A (ja) 極紫外線フォトマスク上で検出される欠陥の処理
CN107438842A (zh) 通过机器学习的特征搜索
US8219942B2 (en) Pattern verification-test method, optical image intensity distribution acquisition method, and computer program
CN1892431A (zh) 表征方法、表征处理操作的方法、以及装置制造方法
CN1760764A (zh) 光刻设备和器件制造方法
US6976240B2 (en) Simulation using design geometry information
CN1275171C (zh) 装置制造方法,掩模组,数据组,掩模图案化方法及程序
CN1510520A (zh) 通过照明源优化提供透镜像差补偿的方法和设备
Mangat et al. Mask blank defect printability comparison using optical and SEM mask and wafer inspection and bright field actinic mask imaging
Weiss et al. Actinic review of EUV masks: first results from the AIMS EUV system integration
CN1573548A (zh) 光刻胶灵敏度的评价方法和光刻胶的制造方法
Kamo et al. Evaluation of extreme ultraviolet mask defect using blank inspection, patterned mask inspection, and wafer inspection
Naulleau et al. Extreme ultraviolet mask roughness: requirements, characterization, and modeling
Capelli et al. AIMS™ EUV tool platform: aerial-image based qualification of EUV masks
Broadbent Jr et al. 1X HP EUV reticle inspection with a 193nm inspection system
CN1856743A (zh) 相移掩模对准方法和器件
Amano et al. Phase defect detection signal analysis: dependence of defect size variation
CN1238687C (zh) 利用衍射特征的分析对焦点中心的判断
Higgins et al. Integration of an EUV metal layer: a 20/14nm demo

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C02 Deemed withdrawal of patent application after publication (patent law 2001)
WD01 Invention patent application deemed withdrawn after publication