CN1914055B - 在转换气缸时利用并联的混合电动力来补偿dod发动机的扭矩的方法 - Google Patents

在转换气缸时利用并联的混合电动力来补偿dod发动机的扭矩的方法 Download PDF

Info

Publication number
CN1914055B
CN1914055B CN2005800031314A CN200580003131A CN1914055B CN 1914055 B CN1914055 B CN 1914055B CN 2005800031314 A CN2005800031314 A CN 2005800031314A CN 200580003131 A CN200580003131 A CN 200580003131A CN 1914055 B CN1914055 B CN 1914055B
Authority
CN
China
Prior art keywords
ice
torsion
moment
motor
torque control
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
CN2005800031314A
Other languages
English (en)
Other versions
CN1914055A (zh
Inventor
W·C·阿尔伯特森
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Motors Liquidation Co
Original Assignee
Motors Liquidation Co
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Motors Liquidation Co filed Critical Motors Liquidation Co
Publication of CN1914055A publication Critical patent/CN1914055A/zh
Application granted granted Critical
Publication of CN1914055B publication Critical patent/CN1914055B/zh
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W20/00Control systems specially adapted for hybrid vehicles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60KARRANGEMENT OR MOUNTING OF PROPULSION UNITS OR OF TRANSMISSIONS IN VEHICLES; ARRANGEMENT OR MOUNTING OF PLURAL DIVERSE PRIME-MOVERS IN VEHICLES; AUXILIARY DRIVES FOR VEHICLES; INSTRUMENTATION OR DASHBOARDS FOR VEHICLES; ARRANGEMENTS IN CONNECTION WITH COOLING, AIR INTAKE, GAS EXHAUST OR FUEL SUPPLY OF PROPULSION UNITS IN VEHICLES
    • B60K6/00Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00
    • B60K6/20Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00 the prime-movers consisting of electric motors and internal combustion engines, e.g. HEVs
    • B60K6/42Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00 the prime-movers consisting of electric motors and internal combustion engines, e.g. HEVs characterised by the architecture of the hybrid electric vehicle
    • B60K6/48Parallel type
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60KARRANGEMENT OR MOUNTING OF PROPULSION UNITS OR OF TRANSMISSIONS IN VEHICLES; ARRANGEMENT OR MOUNTING OF PLURAL DIVERSE PRIME-MOVERS IN VEHICLES; AUXILIARY DRIVES FOR VEHICLES; INSTRUMENTATION OR DASHBOARDS FOR VEHICLES; ARRANGEMENTS IN CONNECTION WITH COOLING, AIR INTAKE, GAS EXHAUST OR FUEL SUPPLY OF PROPULSION UNITS IN VEHICLES
    • B60K6/00Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00
    • B60K6/20Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00 the prime-movers consisting of electric motors and internal combustion engines, e.g. HEVs
    • B60K6/50Architecture of the driveline characterised by arrangement or kind of transmission units
    • B60K6/54Transmission for changing ratio
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W10/00Conjoint control of vehicle sub-units of different type or different function
    • B60W10/04Conjoint control of vehicle sub-units of different type or different function including control of propulsion units
    • B60W10/06Conjoint control of vehicle sub-units of different type or different function including control of propulsion units including control of combustion engines
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W10/00Conjoint control of vehicle sub-units of different type or different function
    • B60W10/04Conjoint control of vehicle sub-units of different type or different function including control of propulsion units
    • B60W10/08Conjoint control of vehicle sub-units of different type or different function including control of propulsion units including control of electric propulsion units, e.g. motors or generators
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W30/00Purposes of road vehicle drive control systems not related to the control of a particular sub-unit, e.g. of systems using conjoint control of vehicle sub-units
    • B60W30/18Propelling the vehicle
    • B60W30/182Selecting between different operative modes, e.g. comfort and performance modes
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/008Controlling each cylinder individually
    • F02D41/0087Selective cylinder activation, i.e. partial cylinder operation
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/02Circuit arrangements for generating control signals
    • F02D41/14Introducing closed-loop corrections
    • F02D41/1497With detection of the mechanical response of the engine
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D2200/00Input parameters for engine control
    • F02D2200/02Input parameters for engine control the parameters being related to the engine
    • F02D2200/10Parameters related to the engine output, e.g. engine torque or engine speed
    • F02D2200/1002Output torque
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D2250/00Engine control related to specific problems or objectives
    • F02D2250/28Control for reducing torsional vibrations, e.g. at acceleration
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/62Hybrid vehicles

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • Transportation (AREA)
  • General Engineering & Computer Science (AREA)
  • Automation & Control Theory (AREA)
  • Electric Propulsion And Braking For Vehicles (AREA)
  • Hybrid Electric Vehicles (AREA)
  • Output Control And Ontrol Of Special Type Engine (AREA)

Abstract

一种利用可变排量(DOD)的内燃机(ICE)、电机和电池来控制混合动力电动车中的扭矩的方法。这种方法包括,利用电机来消除在DOD过渡期间ICE扭矩的扰动。

Description

在转换气缸时利用并联的混合电动力来补偿DOD发动机的扭矩的方法
发明领域
本发明涉及一种用于车辆的发动机控制系统,具体涉及一种用于混合动力电动车(HEV)中的可变排量(DOD)发动机的扭矩控制系统。
发明背景
目前存在日益增加的对提高燃料经济性、减少排放物和降低车辆噪音水平的需求。作为内燃机(ICE)的备选方案,汽车制造商已经研制出了混合动力系统,其包括电力牵引电动机和内燃机。在操作期间,HEV使用这其中的一个或两个动力源来提高效率。
HEV使用并联的传动系构造或串联的传动系构造。在并联的HEV中,电动机与ICE并联地工作,将发动机的功率和范围优势与电动机的效率及再生电能力结合起来。在串联的HEV中,ICE驱动交流发电机为电动机产生电力,其驱动变速差速器。这就允许电动机表现出某些ICE的功率响应能力,从而允许使用更小且更有效的发动机。
在这两种配置中,电机将能量存储在电池中,并使用所存储的能量为车辆提供动力。当车辆停止或空转时,HEV关闭ICE。电机推动车辆并最后重新起动ICE。电机在再生电式制动期间将制动能量存储在电池中。
HEV中的ICE可包括发动机控制系统,其在低负荷情形下使汽缸不起作用。例如,八缸发动机可在使用四个汽缸的条件下进行操作,从而通过减少泵送损失来提高燃料经济性。这个过程通常称为可变排量(DOD)。此处所用的启用模式指使用全部发动机气缸的操作。停用模式指使用少于全部发动机汽缸(一个或多个汽缸没有被启用)的操作。启用过渡模式指停用模式过渡到启用模式。停用过渡模式指从启用模式过渡至停用模式。
为了在启用模式和停用模式之间平滑地过渡,ICE优选在最小扰动的条件下产生扭矩。否则,过渡对于驾驶员而言将不是很清楚的。换句话说,过大的扭矩将造成发动机喘振,不足的扭矩将造成发动机拉缸,这两者都将有损驾驶体验。
传统的点火延迟技术用于补偿在过渡期间瞬时增加的扭矩。延迟点火就延迟了峰值压力的时间,其减小了扭矩输出。这些技术并不理想,因为他们减小了发动机的整个扭矩输出。
发明概要
根据本发明的一种用于对混合动力电动车中的扭矩进行控制的方法使用了可变排量(DOD)内燃机(ICE)、电机和电池。这种扭矩控制方法包括利用电机来消除在DOD过渡期间ICE扭矩的扰动。
在本发明的另一特征中,当ICE扭矩大于所需扭矩时,就从过大的ICE扭矩中产生电力。所产生的电力存储在电池中。
在本发明的又一特征中,当ICE扭矩小于所需扭矩时,电机用于提供扭矩。除了ICE扭矩之外,还提供了电机扭矩。
从后文所提供的详细描述中,将清楚本发明可适用的其它领域。应该理解,这些详细描述和特定示例虽然显示了本发明的优选实施例,但是这只是用于示例性目的,并非试图限制本发明的范围。
附图简介
从详细说明和附图中,将更全面地了解本发明,其中:
图1是带有可变排量ICE和控制器的并联HEV的功能框图,该控制器在DOD过渡期间控制混合动力系统;
图2是HEV的扭矩控制系统在进入启用过渡模式时以及在进入停用过渡模式之后不久的功能框图;
图3是HEV的扭矩控制系统在进入停用过渡模式时以及在进入启用过渡模式之后不久的功能框图;
图4是扭矩控制模块的功能框图;
图5是代表在启用过渡模式期间在扭矩需求增加时发动机扭矩、电机扭矩和总扭矩的预测值的曲线图;
图6是代表在停用过渡模式期间在扭矩需求下降时发动机扭矩、电机扭矩和总扭矩的预测值的曲线图;
图7是显示了在启用过渡模式期间扭矩控制模块的流程图;和
图8是显示了在停用过渡模式期间扭矩控制模块的流程图。
优选实施例的详细描述
以下对优选实施例的细节描述在本质上只是示例性的,而并决非试图限制本发明、其应用或用途。本文所用的用语“模块”指特定用途的集成电路(ASIC)、电子电路、处理器(共享式的、专用式的或集群式的)和内存,其可执行一个或多个软件或固件程序、组合逻辑电路,或提供所述功能的任何其它合适器件。出于清楚起见,在附图纸相同的标号将用于标识相似的元件。
参看图1,其显示了并联的混合动力电动车10。并联的HEV 10配备了可变排量ICE 12和电驱动系统(EDS)14。这其中之一或这两者都可用于为车轮16提供动力。可变排量ICE 12包括N个汽缸18,其在发动机操作期间选择性地停用。虽然图1显示了六个气缸(N=6),但是可以理解,ICE 12可包括更多或更少的气缸18。例如,可设想具有4、5、6、8、10、12和16个气缸的发动机。虽然图1显示了V6发动机,但是,发动机12也可以是直列式发动机。
现在参看图2和图3,EDS14包括电机20、逆变器22和至少一个电池24。如图2中所示,电机20用作电动机,以便通过变速器26来推动车辆10,或者如图3中所示用作发电机,以便对电池组24充电。电机20优选是交流感应电机,但是,也可包括任何已知的电动机/发电机技术,包括但不限于直流电机、同步电机和切换式磁阻电机。
电池24可以是充电电池,其在ICE 12进行再生电式制动和充电期间存储能量。所储存的能量在需要时用于为电机20提供动力。电池24可包括任何合适的电池技术,包括但不限于铅酸蓄电池、锂离子电池和锂聚合物电池。
在较轻的发动机负荷期间,控制器28与ICE 12连通,从而实现可变排量。通过使一个或多个气缸18停用来实现DOD。当一个或多个气缸不起作用时,ICE 12就被称为在停用模式下操作。在一个典型的实施例中,N/2气缸18-2不起作用。当气缸18-2停用时,控制器28与ICE12通讯,以增加其余气缸18-1的功率输出。气缸在请求增加扭矩时被重新启用。当所有气缸起作用时,ICE 12被称为在启用模式下操作。
在启用模式和停用模式之间的过渡期间,发动机扭矩可能发生瞬时波动。这种波动或扭矩扰动是由于进气歧管的充气和排空、充电过程和被停用系统的机械响应所引起的结果。现在参看图4,扭矩控制模块30产生了消除扰动的电驱动系统指令32。EDS指令32基于发动机扭矩值34、所需的扭矩值36和DOD模式38。发动机扭矩发生器39根据所测量的气流流率、空气燃料比和/或其它环境因素来确定发动机扭矩34的值。所需的扭矩发生器40根据所测量的节流面积和/或其它环境因素来确定所需的扭矩36。DOD模式发生器41基于ICE12是否在启用模式、停用模式、停用过渡模式或启用过渡模式下操作来确定DOD模式38。
现在参看图5和图6,扭矩控制模块30通过命令EDS14使电机扭矩42和发动机扭矩34的总和几乎等于所需的扭矩36,来消除扭矩扰动。图5是预测的电机扭矩42、预测的发动机扭矩34和预测的所需扭矩36的曲线图,其显示了在启用过渡模式期间对所产生的总扭矩44进行合计的预测效果。图6是预测的电机扭矩42、预测的发动机扭矩34和预测的所需扭矩36的曲线图,其显示了在停用过渡模式期间对所产生的总扭矩44进行合计的预测效果。
现在参看图7,用于启用过渡模式的扭矩控制系统如下所述地操作。当在步骤100中第一次进入启用过渡模式时,计算发动机扭矩34和所需的扭矩36。如果在步骤102中发动机扭矩34小于所需扭矩36,那么就可通过在步骤104中命令电机20将存储在电池24中的电力转化成电机扭矩42(同样如图3中所示),从而对发动机扭矩34的瞬时不足进行补偿。除了发动机扭矩34之外,还提供了电机扭矩42。
在步骤106中进入启用过渡模式之后不久,ICE 12可能产生过大的扭矩。如果在步骤108中发动机扭矩34大于所需扭矩36,那么就可命令电机20用作发电机,如图4中所示。在步骤110中,电机20将过大的扭矩转换成电力,并将电力存储在电池24中,以备后用。一旦ICE于步骤112中达到启用模式,混合动力系统就开始正常工作。
相反的扭矩控制系统可应用于停用过渡模式。现在参看图8,当在步骤200中第一次进入停用过渡模式时,ICE12产生过大的扭矩。如果在步骤202中发动机扭矩34大于所需扭矩36,则在步骤204中电机20将过大的扭矩转换成电力,并将电力存储在电池24中,以备后用(同样如图3中所示)。在步骤206中进入停用过渡模式之后不久,发动机扭矩34可能出现瞬时不足。如果在步骤208中发动机扭矩34小于所需扭矩36,那么在步骤210中电机20将存储在电池24中的电力转化成扭矩,如图3中所示。除了发动机扭矩34之外,还提供了电机扭矩42。一旦ICE在步骤212中达到停用模式,混合动力系统就开始正常工作。
这种在气缸转换时利用电机20来补偿发动机扭矩34的方法将提高空气燃料比,并通过消除对延迟点火的需求而减少了排气系统的加热。此外,所传递的扭矩将更紧密地匹配驾驶员请求的扭矩。
本领域中的技术人员现在从前面的描述中应该理解,本发明的广义讲述内容可以各种形式来实施。因此,虽然已经结合特定示例来描述了本发明,但是,本发明的真实范围不应受到这样的限制,因为在研读了附图、说明书和所附权利要求之后,其它的修改对于本领域技术人员而言是显而易见的。

Claims (24)

1.一种利用可变排量(DOD)内燃机(ICE)、电机和电池对混合动力电动车中的扭矩进行控制的方法,所述方法包括:
在全部发动机汽缸启用的启用模式下操作所述ICE;
使所述ICE从启用模式过渡到少于全部发动机汽缸启用的停用模式;和
利用所述电机在停用过渡期间消除ICE扭矩的扰动。
2.根据权利要求1所述的方法,其特征在于,消除扰动的步骤包括,当ICE扭矩大于所需扭矩时,从过大的ICE扭矩中产生电力。
3.根据权利要求2所述的方法,其特征在于,还包括将所述电力存储在所述电池中。
4.根据权利要求1所述的方法,其特征在于,消除扰动的步骤包括,当ICE扭矩小于所需扭矩时,利用所述电机来提供扭矩。
5.根据权利要求1所述的方法,其特征在于,所述方法还包括:
使ICE从停用模式过渡到启用模式;和
利用电机在重新启用过渡期间消除ICE扭矩的扰动。
6.根据权利要求5所述的方法,其特征在于,消除扰动的步骤包括,当ICE扭矩小于所需扭矩时,利用所述电机来提供扭矩。
7.根据权利要求5所述的方法,其特征在于,消除扰动的步骤包括,当ICE扭矩大于所需扭矩时,从过大的ICE扭矩中产生电力。
8.根据权利要求7所述的方法,其特征在于,将所述电力存储在所述电池中。
9.一种利用可变排量(DOD)内燃机(ICE)、电机和电池对混合动力电动车中的扭矩进行控制的方法,所述方法包括:
在少于全部发动机汽缸启用的停用模式下操作所述ICE;
使所述ICE从停用模式过渡到全部发动机汽缸启用的启用模式;和
利用所述电机在重新启用过渡期间消除ICE扭矩的扰动。
10.根据权利要求9所述的方法,其特征在于,消除扰动的步骤包括,当ICE扭矩小于所需扭矩时,利用所述电机来提供扭矩。
11.根据权利要求9所述的方法,其特征在于,消除扰动的步骤包括,当ICE扭矩大于所需扭矩时,利用所述电机从过大的ICE扭矩中产生电力。
12.根据权利要求11所述的方法,其特征在于,将所述电力存储在所述电池中。
13.根据权利要求9所述的方法,其特征在于,所述方法还包括:
使所述ICE从启用模式过渡到停用模式;和
利用所述电机在停用过渡期间消除ICE扭矩的扰动。
14.根据权利要求13所述的方法,其特征在于,消除ICE扭矩的扰动的步骤包括,当ICE扭矩小于所需扭矩时,利用所述电机来提供扭矩。
15.根据权利要求13所述的方法,其特征在于,消除扰动的步骤包括,当ICE扭矩大于所需扭矩时,利用所述电机从过大的ICE扭矩中产生电力。
16.根据权利要求15所述的方法,其特征在于,将所述电力存储在所述电池中。
17.一种用于带可变排量(DOD)内燃机(ICE)的混合动力电动车的扭矩控制系统,所述内燃机(ICE)可在全部发动机汽缸启用的启用模式和少于全部发动机汽缸启用的停用模式下操作,所述扭矩控制系统包括:
电机;和
扭矩控制模块,其利用所述电机在从停用模式过渡到启用模式或从启用模式过渡到停用模式的DOD模式过渡期间消除ICE扭矩的扰动。
18.根据权利要求17所述的扭矩控制系统,其特征在于,当所述可变排量ICE第一次过渡到启用模式时,所述扭矩控制模块命令所述电机产生扭矩。
19.根据权利要求17所述的扭矩控制系统,其特征在于,在所述可变排量ICE进入停用模式之后不久,所述扭矩控制模块命令所述电机产生扭矩。
20.根据权利要求17所述的扭矩控制系统,其特征在于,当所述可变排量ICE进入停用模式时,所述扭矩控制模块命令所述电机从ICE扭矩中产生电力。
21.根据权利要求17所述的扭矩控制系统,其特征在于,在所述可变排量ICE进入启用模式之后不久,所述扭矩控制模块命令所述电机从ICE扭矩中产生电力。
22.根据权利要求17所述的扭矩控制系统,其特征在于,所述扭矩控制系统还包括:
连接在所述电机上的逆变器;和
至少一个连接在所述逆变器上的电池。
23.根据权利要求22所述的扭矩控制系统,其特征在于,所述电池可以是铅酸蓄电池、锂离子电池和锂聚合物电池中的其中一种电池。
24.根据权利要求17所述的扭矩控制系统,其特征在于,当ICE扭矩不等于所需扭矩时,所述扭矩控制模块命令所述电机消除ICE扭矩的扰动。
CN2005800031314A 2004-01-28 2005-01-27 在转换气缸时利用并联的混合电动力来补偿dod发动机的扭矩的方法 Expired - Fee Related CN1914055B (zh)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
US10/766,100 US7232401B2 (en) 2004-01-28 2004-01-28 Method of compensating torque at cylinder switching on a DOD engine with electric parallel hybrid
US10/766,100 2004-01-28
PCT/US2005/002355 WO2005073004A1 (en) 2004-01-28 2005-01-27 Method of compensating torque at cylinder switching on a dod engine with electric parallel hybrid

Publications (2)

Publication Number Publication Date
CN1914055A CN1914055A (zh) 2007-02-14
CN1914055B true CN1914055B (zh) 2010-09-08

Family

ID=34795592

Family Applications (1)

Application Number Title Priority Date Filing Date
CN2005800031314A Expired - Fee Related CN1914055B (zh) 2004-01-28 2005-01-27 在转换气缸时利用并联的混合电动力来补偿dod发动机的扭矩的方法

Country Status (4)

Country Link
US (1) US7232401B2 (zh)
CN (1) CN1914055B (zh)
DE (1) DE112005000084A5 (zh)
WO (1) WO2005073004A1 (zh)

Families Citing this family (35)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006060936A (ja) * 2004-08-20 2006-03-02 Denso Corp 車両挙動制御システム
US7509201B2 (en) * 2005-01-26 2009-03-24 General Motors Corporation Sensor feedback control for noise and vibration
US7188023B1 (en) * 2005-10-27 2007-03-06 Gm Global Technology Operations, Inc. Misfire detection system for displacement on demand (DOD) engine
JP2007126073A (ja) * 2005-11-07 2007-05-24 Nissan Motor Co Ltd エンジンの振動抑制装置
DE102006007983A1 (de) * 2006-02-21 2007-08-23 Robert Bosch Gmbh Verfahren zur Verbrauchsoptimierung eines Hybridantriebs
FR2904366B1 (fr) * 2006-07-25 2008-10-03 Valeo Sys Controle Moteur Sas Moteur thermique a desactivation de chambre de combustion et compensation des desequilibrages produits et systemes de desactivation correspondant
SE0601773L (sv) * 2006-08-29 2008-03-01 Cargine Engineering Ab Fordonsdrivsystem
DE202006019422U1 (de) * 2006-11-06 2008-04-10 Faun Umwelttechnik Gmbh & Co. Kg Hybridantrieb
US8464690B2 (en) 2008-07-11 2013-06-18 Tula Technology, Inc. Hybrid vehicle with cylinder deactivation
US8150595B2 (en) * 2008-08-15 2012-04-03 GM Global Technology Operations LLC Method for torque management in a hybrid vehicle equipped with active fuel management
US9834198B2 (en) * 2009-07-14 2017-12-05 Ford Global Technologies, Llc Generator power control
US8346418B2 (en) * 2009-11-30 2013-01-01 GM Global Technology Operations LLC Method of smoothing output torque
WO2013059365A1 (en) * 2011-10-17 2013-04-25 Tula Technology, Inc. Hybrid vehicle with cylinder deactivation
US10400691B2 (en) 2013-10-09 2019-09-03 Tula Technology, Inc. Noise/vibration reduction control
US20150100221A1 (en) * 2013-10-09 2015-04-09 Tula Technology Inc. Noise/vibration reduction control
US9509238B2 (en) * 2014-11-17 2016-11-29 Ford Global Technologies, Llc Method and system for traction motor torque ripple compensation
US20170342922A1 (en) * 2015-01-12 2017-11-30 Tula Technology, Inc. Engine torque smoothing
US10344692B2 (en) 2015-01-12 2019-07-09 Tula Technology, Inc. Adaptive torque mitigation by micro-hybrid system
US10060368B2 (en) 2015-01-12 2018-08-28 Tula Technology, Inc. Engine torque smoothing
US10578037B2 (en) 2015-01-12 2020-03-03 Tula Technology, Inc. Adaptive torque mitigation by micro-hybrid system
CN110043378B (zh) 2015-01-12 2021-10-29 图拉技术公司 动力传动系控制器及操作内燃发动机的方法
US10196995B2 (en) 2015-01-12 2019-02-05 Tula Technology, Inc. Engine torque smoothing
US10086820B2 (en) 2015-09-17 2018-10-02 Hyundai Motor Company Non-uniform displacement engine control system and method having transient state control mode
DE102016117299A1 (de) 2015-09-17 2017-03-23 Hyundai Motor Company Nutzerschnittstellenvorrichtung eines Ungleichmäßiger-Hubraum- Verbrennungsmotor-Steuersystems und Steuerverfahren der Nutzerschnittstellenvorrichtung des Ungleichmäßiger-Hubraum- Verbrennungsmotor-Steuersystems
KR101714223B1 (ko) * 2015-09-17 2017-03-08 현대자동차주식회사 모터에 의하여 동력 보조되는 비균등 배기량 엔진 제어 시스템 및 그 제어 방법
JP6890392B2 (ja) 2015-09-17 2021-06-18 現代自動車株式会社Hyundai Motor Company シリンダーの休止を用いる非均等排気量エンジン制御システム及びその制御方法
DE102016117300A1 (de) 2015-09-17 2017-03-23 Hyundai Motor Company Ungleichmäßiger-Hubraum-Verbrennungsmotor-Steuersystem mit unterschiedlichen Steuerungsmodi basierend auf einem Ladezustand einer Batterie und Verfahren zum Steuern eines Ungleichmäßiger-Hubraum-Verbrennungsmotors mit unterschiedlichen Steuerungsmodi basierend auf einem Ladezustand einer Batterie
GB2548108B (en) * 2016-03-07 2018-07-18 Ford Global Tech Llc Method of controlling a vehicle
US9827989B1 (en) * 2016-05-24 2017-11-28 GM Global Technology Operations LLC Vehicle noise and vibration interface optimization
US10954877B2 (en) 2017-03-13 2021-03-23 Tula Technology, Inc. Adaptive torque mitigation by micro-hybrid system
US10493836B2 (en) 2018-02-12 2019-12-03 Tula Technology, Inc. Noise/vibration control using variable spring absorber
US10883566B2 (en) * 2018-05-09 2021-01-05 Paccar Inc Systems and methods for reducing noise, vibration and/or harshness associated with cylinder deactivation in internal combustion engines
US10883431B2 (en) 2018-09-21 2021-01-05 GM Global Technology Operations LLC Managing torque delivery during dynamic fuel management transitions
US11555461B2 (en) 2020-10-20 2023-01-17 Tula Technology, Inc. Noise, vibration and harshness reduction in a skip fire engine control system
US11499490B1 (en) * 2021-12-07 2022-11-15 Cummins Inc. Systems and methods to minimize emissions spikes when reactivating or deactivating a combustion cylinder

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6291902B1 (en) * 1999-01-18 2001-09-18 Nissan Motor Co., Ltd. Engine start control system
GB2361220A (en) * 2000-04-11 2001-10-17 Ford Global Tech Inc Parallel hybrid vehicle having an electric motor and an internal combustion engine with a variable number of active cylinders
US6405701B1 (en) * 1995-08-31 2002-06-18 Isad Electronic Systems Gmbh & Co. Kg System for actively reducing rotational nonuniformity of a shaft, in particular, the drive shaft of an internal combustion engine, and method for this
CN1400119A (zh) * 2001-08-01 2003-03-05 本田技研工业株式会社 混合车辆的控制装置
US6619258B2 (en) * 2002-01-15 2003-09-16 Delphi Technologies, Inc. System for controllably disabling cylinders in an internal combustion engine
US6655353B1 (en) * 2002-05-17 2003-12-02 General Motors Corporation Cylinder deactivation engine control system with torque matching
US6834632B2 (en) * 2003-02-13 2004-12-28 Toyota Jidosha Kabushiki Kaisha Stop and start control apparatus of internal combustion engine

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0755816A3 (en) * 1995-07-28 1998-09-02 Isuzu Ceramics Research Institute Co., Ltd. Hybrid electric vehicle
JP3578071B2 (ja) * 2000-09-14 2004-10-20 トヨタ自動車株式会社 可変気筒エンジンの制御装置および車両の制御装置
US6581705B2 (en) * 2001-06-29 2003-06-24 Ford Global Technologies, Llc Method for starting an engine in a parallel hybrid electric vehicle
JP3535140B2 (ja) * 2002-05-23 2004-06-07 本田技研工業株式会社 ハイブリッド車両
JP3701649B2 (ja) * 2002-11-15 2005-10-05 本田技研工業株式会社 ハイブリッド車両の駆動力制御装置
US6806667B1 (en) * 2003-05-23 2004-10-19 Toyota Jidosha Kabushiki Kaisha Control unit and control method for controlling vibration of an electric vehicle
US7059997B2 (en) * 2003-08-04 2006-06-13 Kabushiki Kaisha Toyota Chuo Kenkyusho Engine system with cylinder number variable engine and method for controlling the engine system
US7308959B2 (en) * 2003-09-15 2007-12-18 General Motors Corporation Displacement on demand with regenerative braking
US6876098B1 (en) * 2003-09-25 2005-04-05 The United States Of America As Represented By The Administrator Of The Environmental Protection Agency Methods of operating a series hybrid vehicle
US7530413B2 (en) * 2004-08-13 2009-05-12 General Motors Corporation Reducing torque disturbances and improving fuel economy in hybrid electric powertrains
US7220217B2 (en) * 2005-01-26 2007-05-22 General Motors Corporation Engine spin-up control with natural torque smoothing

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6405701B1 (en) * 1995-08-31 2002-06-18 Isad Electronic Systems Gmbh & Co. Kg System for actively reducing rotational nonuniformity of a shaft, in particular, the drive shaft of an internal combustion engine, and method for this
US6291902B1 (en) * 1999-01-18 2001-09-18 Nissan Motor Co., Ltd. Engine start control system
GB2361220A (en) * 2000-04-11 2001-10-17 Ford Global Tech Inc Parallel hybrid vehicle having an electric motor and an internal combustion engine with a variable number of active cylinders
CN1400119A (zh) * 2001-08-01 2003-03-05 本田技研工业株式会社 混合车辆的控制装置
US6619258B2 (en) * 2002-01-15 2003-09-16 Delphi Technologies, Inc. System for controllably disabling cylinders in an internal combustion engine
US6655353B1 (en) * 2002-05-17 2003-12-02 General Motors Corporation Cylinder deactivation engine control system with torque matching
US6834632B2 (en) * 2003-02-13 2004-12-28 Toyota Jidosha Kabushiki Kaisha Stop and start control apparatus of internal combustion engine

Also Published As

Publication number Publication date
CN1914055A (zh) 2007-02-14
DE112005000084A5 (de) 2011-10-13
WO2005073004A1 (en) 2005-08-11
US7232401B2 (en) 2007-06-19
US20050164826A1 (en) 2005-07-28

Similar Documents

Publication Publication Date Title
CN1914055B (zh) 在转换气缸时利用并联的混合电动力来补偿dod发动机的扭矩的方法
KR101897836B1 (ko) 차량을 하이브리드 차량으로 변환하는 방법
US6608396B2 (en) Electrical motor power management system
JP5331493B2 (ja) 電池制御装置
CN101553967B (zh) 二次电池的充放电控制装置以及具有其的车辆
US8378623B2 (en) Apparatus and method for charging an electric vehicle
US20080011528A1 (en) Vehicular Electrical System and Control Method Therefor
CN107206903A (zh) 用于车辆系统和方法的半有源部分并行电池配置
CN105391108A (zh) 一种蓄电池组和包含该蓄电池组的混合动力车辆
KR20120065411A (ko) 차량에 대한 출력요구가 감소된 하이브리드 구동시스템
CN101227099A (zh) 混合动力电动车辆中使用插入式充电器的电池均衡
WO2010056583A2 (en) Cost effective configuration for supercapacitors for hev
CN108223151B (zh) 用于控制车辆发动机的启动的装置和方法
KR20120083411A (ko) 원동기로서 엔진을 가지는 차량용 하이브리드 구동시스템
CN102756728A (zh) 油电混合动力车及其启动方法
KR101307911B1 (ko) 플러그인 하이브리드 차량용 오일펌프 제어장치
EP3233560B1 (en) A method and device for charging an electric energy storage system in a vehicle
CN201800715U (zh) 插电式混合动力车的串联式混合动力控制系统
CN101797895A (zh) 电能动力系统
Hatami et al. Power management strategy for hybrid vehicle using a three-port bidirectional DC-DC converter
CN103538482A (zh) 一种可助力及回收制动能量的汽车起停系统
CN114389323A (zh) 用于降低停车车辆的总功耗的方法
KR101634930B1 (ko) 마일드 하이브리드 장치 및 제어 방법
KR20100035265A (ko) 플라이휠을 이용한 직렬형 하이브리드 추진시스템 및 구동방법
JP2006341708A (ja) ハイブリッド車の制御装置

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C14 Grant of patent or utility model
GR01 Patent grant
CF01 Termination of patent right due to non-payment of annual fee

Granted publication date: 20100908

Termination date: 20190127

CF01 Termination of patent right due to non-payment of annual fee