CN1904544B - Laser tracking interferometer - Google Patents

Laser tracking interferometer Download PDF

Info

Publication number
CN1904544B
CN1904544B CN 200610107610 CN200610107610A CN1904544B CN 1904544 B CN1904544 B CN 1904544B CN 200610107610 CN200610107610 CN 200610107610 CN 200610107610 A CN200610107610 A CN 200610107610A CN 1904544 B CN1904544 B CN 1904544B
Authority
CN
China
Prior art keywords
displacement
retroreflector
interferometer
laser interferometer
reference sphere
Prior art date
Application number
CN 200610107610
Other languages
Chinese (zh)
Other versions
CN1904544A (en
Inventor
原慎一
武富尚之
谷中慎一郎
阿部诚
Original Assignee
三丰株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority to JP216110/05 priority Critical
Priority to JP2005216110 priority
Application filed by 三丰株式会社 filed Critical 三丰株式会社
Publication of CN1904544A publication Critical patent/CN1904544A/en
Application granted granted Critical
Publication of CN1904544B publication Critical patent/CN1904544B/en

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S17/00Systems using the reflection or reradiation of electromagnetic waves other than radio waves, e.g. lidar systems
    • G01S17/02Systems using the reflection of electromagnetic waves other than radio waves
    • G01S17/06Systems determining position data of a target
    • G01S17/08Systems determining position data of a target for measuring distance only
    • G01S17/32Systems determining position data of a target for measuring distance only using transmission of continuous unmodulated waves, amplitude-, frequency-, or phase-modulated waves
    • G01S17/36Systems determining position data of a target for measuring distance only using transmission of continuous unmodulated waves, amplitude-, frequency-, or phase-modulated waves with phase comparison between the received signal and the contemporaneously transmitted signal
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01BMEASURING LENGTH, THICKNESS OR SIMILAR LINEAR DIMENSIONS; MEASURING ANGLES; MEASURING AREAS; MEASURING IRREGULARITIES OF SURFACES OR CONTOURS
    • G01B11/00Measuring arrangements characterised by the use of optical means
    • G01B11/02Measuring arrangements characterised by the use of optical means for measuring length, width or thickness
    • G01B11/03Measuring arrangements characterised by the use of optical means for measuring length, width or thickness by measuring coordinates of points
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S17/00Systems using the reflection or reradiation of electromagnetic waves other than radio waves, e.g. lidar systems
    • G01S17/02Systems using the reflection of electromagnetic waves other than radio waves
    • G01S17/06Systems determining position data of a target
    • G01S17/42Simultaneous measurement of distance and other co-ordinates
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S17/00Systems using the reflection or reradiation of electromagnetic waves other than radio waves, e.g. lidar systems
    • G01S17/66Tracking systems using electromagnetic waves other than radio waves
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S7/00Details of systems according to groups G01S13/00, G01S15/00, G01S17/00
    • G01S7/48Details of systems according to groups G01S13/00, G01S15/00, G01S17/00 of systems according to group G01S17/00
    • G01S7/481Constructional features, e.g. arrangements of optical elements
    • G01S7/4811Constructional features, e.g. arrangements of optical elements common to transmitter and receiver
    • G01S7/4812Constructional features, e.g. arrangements of optical elements common to transmitter and receiver transmitted and received beams following a coaxial path
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S7/00Details of systems according to groups G01S13/00, G01S15/00, G01S17/00
    • G01S7/48Details of systems according to groups G01S13/00, G01S15/00, G01S17/00 of systems according to group G01S17/00
    • G01S7/497Means for monitoring or calibrating

Abstract

A laser tracking interferometer directs a laser beam to a retroreflector serving as an object to be measured to sense a displacement of the retroreflector using interference with a laser beam back reflected from the retroreflector as well as to track the retroreflector using a change in position of the optical axis of the laser beam. The laser tracking interferometer includes: a reference sphere disposed at a fixed location; a carriage configured to rotate about a center of the reference sphere; a laser interferometer for providing a displacement signal corresponding to a displacement of the retroreflector, and a displacement gage for providing a displacement signal corresponding to a relative displacement between the reference sphere and the displacement gage, the laser interferometer andthe displacement gage being disposed on the carriage; a data processing apparatus for computing a displacement of the retroreflector with respect to the reference sphere in accordance with the displacement signal provided by the displacement gage and the displacement signal provided by the laser interferometer; a position sensitive detector for providing a position signal corresponding to the amount of deviation of a laser beam when the laser beam is reflected off the retroreflector back into the laser interferometer and deviated in a direction orthogonal to its optical axis; and a controllerfor controlling rotation of the carriage based on the position signal from the position detector so that the amount of deviation becomes zero. This makes the laser tracking interferometer is robust to the runout of the rotational mechanism. The laser tracking interferometer is less susceptible to flaws and dust particles on the surface of the reference sphere, and is capable of employing a relatively inexpensive reference sphere.

Description

追踪式激光干涉仪 Tracking type laser interferometer

技术领域 FIELD

[0001] 本发明涉及用于追踪移动体,并且高精度地测定该移动体的位移或位置的追踪式 [0001] The present invention relates to a moving body tracking, tracking and accurate measurement of displacement or position of the moving body

激光干涉仪。 Laser interferometer. 特别地涉及向作为被测定体的后向反射器照射激光束,通过利用该后向反射器向返回方向反射的激光束的干涉检测后向反射器的位移,并且利用上述激光束的光轴的位置变化进行追踪的追踪式激光干涉仪的改良。 Particularly it relates to a laser beam to the reflector body to be measured by the interferometric displacement detecting reflector after the laser beam reflected back in the return direction to the reflector, and with the optical axis of the laser beam change tracking type laser position interferometer tracking improvements.

背景技术 Background technique

[0002] 众所周知,有向作为被测定体的后向反射器照射激光束,通过利用该后向反射器向返回方向反射的激光束的干涉检测后向反射器的位移,并且利用上述激光束的光轴的位置变化进行追踪的追踪式激光干涉仪 [0002] It is well known directional beam and a laser beam reflector as the body to be measured, the interference of the laser beam reflected by the use of the retroreflector in the return direction of the rear detector retroreflector displacement, and using the laser beam change in position of the optical axis to track the tracking type laser interferometer

[0003] 例如,美国专利第6147748号说明书(以下称为专利文献1)中,如图l(整体结构)及图2(激光干涉仪的详细结构)所示,记载有用于测定作为被测定体的后向反射器IO 和基准球12的中心C的相对位移的追踪式激光干涉仪。 [0003] For example, U.S. Pat. Specification No. 6,147,748 (hereinafter referred to as Patent Document 1), as L (overall configuration) FIG. 2 (a detailed structure of a laser interferometer) and as shown, there is described for measuring a body to be measured IO retroreflector and the reference sphere relative displacement of the center C of the 12 tracking type laser interferometer.

[0004] 该激光干涉仪具有基准球12、以该基准球12的中心C作为中心旋转的滑架14、设置在该滑架14上的具有光源(图示省略)的激光干涉仪16、将基准球12的中心C或表面作为焦点而汇聚测定光的汇聚透镜18。 [0004] The laser interferometer includes a reference sphere 12 to the center C of the reference sphere 12 as a center of rotation of the carriage 14, disposed on the carriage 14 includes a light source (not shown) of the laser interferometer 16, the or the surface of the center C of the reference sphere 12 as a focus and convergence measurement light converging lens 18.

[0005] 在这样的结构中,如图2所示,从光源射出的光线,经由光纤20及准直透镜22射入无偏振光分光器(NPBS) 24,通过该NPBS24 —部分被反射,经由偏振板26及光纤28,作为用于补偿光纤内的交调失真的光参照计数信号被导向光检测器(图示省略)。 [0005] In this configuration, shown in Figure 2, light emitted from the light source, the non-polarized beam splitter (NPBS) 24 is incident via the optical fiber 22 and the collimator lens 20, by which NPBS24 - reflected portion via polarizing plate 26 and the optical fiber 28, as an optical reference signal for counting the intermodulation distortion compensating optical fiber is guided to a light detector (not shown). 且,透过上述NPBS24的光,通过偏振光分光器(PBS) 30被分为两束, 一束直行而成为用于获得测定光的干涉光的参照光。 And, the light transmitted through the above-described NPBS24 by the polarizing beam splitter (PBS) 30 is divided into two beams, a bundle of straight and become reference light for obtaining interference light is measured. 另一束被PBS30反射,经由1/4波长(A /4)板32及上述汇聚透镜18, 作为测定光向上述基准球12的中心C或表面射出。 Other beam is reflected PBS30, (A / 4) plate 32 and said condenser lens 18, a measurement light is emitted toward the center C of the sphere or the reference surface 12 via the 1/4 wavelength.

[0006] 在该基准球12的表面被反射的测定光,经由上述汇聚透镜18、 A /4板32、PBS30、 入/4板34、NPBS36,射向上述后向反射器10。 [0006] The reference surface of the measuring light reflected by the ball 12, via the condenser lens 18, A / 4 plate 32, PBS30, the / 4 plate 34, NPBS36, directed to the rear reflector 10.

[0007] 被该后向反射器10反射的测定光,再次射入激光干涉仪16。 [0007] The rearward measurement light is reflected by the reflector 10, enters the laser interferometer 16 again. 射入激光干涉仪16 Incident laser interferometer 16

的测定光的一部分,被上述NPBS36反射,射入位置检测器(PSB)38。 A portion of the measurement light is reflected NPBS36 above, incident position detector (PSB) 38. 且,剩余部分经由上述 And the remainder via the

入/4板34、 NPBS30、偏振板40、光纤42,与上述参照光干涉,射入上述光检测器。 The / 4 plate 34, NPBS30, a polarizing plate 40, the optical fiber 42, interference with the reference light, incident on the photodetector.

[0008] 光检测器的输出,由于对应于入射的干涉光的干涉条纹而变化,所以利用该光检 [0008] The output of the photodetector due to the interference of incident light corresponding to the interference fringes is changed, the light with which the subject

测器的输出,可测定将基准球12的中心C作为基准的后向反射器10的位移。 The output of the detector, the displacement can be measured to the reflector 10 after the reference ball center C 12 as a reference.

[0009] 高精度的基准球12的表面由于距基准球12的中心C的距离是高精度且一定,所 [0009] surface of the reference sphere 12 with high accuracy since the distance from the center C of the reference sphere 12 is constant with high accuracy, the

以即使在激光干涉仪16追踪后向反射器10在基准球12的中心C的周围转动的情况下,也 In the case where the reflector 10 around the center C of the reference sphere 12 rotating even when the tracking laser interferometer 16, and

可高精度地检测出以基准球12的中心C为基准的后向反射器10的位移。 It can accurately detect the displacement of the retro-reflector 10 after the reference sphere 12 to the center C as a reference.

[0010] 进行对后向反射器10的追踪如下所述。 [0010] Tracking the retroreflector 10 as follows after the pair. 即,射入激光干涉仪16的测定光,一部分 That is, light incident on the laser interferometer 16 is measured, a portion of

射入PSD38,通过使该PSD38上的测定光的位置总保持一定而控制滑架14的位置,可自动地 PSD38 incident, by making the measurement light on the PSD38 position is always maintained constant while controlling the position of the carriage 14 may be automatically

追踪后向反射器10。 Retroreflector 10 back tracking. 这是由于与测定光的光轴垂直方向的后向反射器10的位移相对应,利 This is due to the measurement optical axis direction of light corresponds to the displacement of the reflector 10, Lee

用射入PSD38的测定光的位置变化,如果后向反射器10在与测定光的光轴垂直的方向上产生位移,则从向后方射器10返回的测定光的光轴平行地进行位移。 A change in the position of the measuring light incident PSD38, if post 10 is displaced in a direction perpendicular to the optical axis of measurement light to the reflector, rearward displaced from the reflector 10 parallel to the axis of the measuring light returned.

[0011] 在日本专利第2603429号公报(以下称为专利文献2)中,如图3所示,记载有用于测定成为基准的逆反射体106和作为目标的逆反射体(后向反射器)IIO的相对位移的追踪式激光干涉仪。 [0011] (hereinafter, referred to as Patent Document 2) as shown in FIG 3, according to the retroreflector 106 and the reference body as a retroreflective target for measurement becomes (retroreflector) in Japanese Patent Publication No. 2,603,429 IIO relative displacement of the tracking type laser interferometer.

[0012] 该干涉仪具有:设置在固定位置上的第一逆反射体106、设置在移动体上的第二逆反射体110、以上述第一逆反射体106为中心在正交的X轴及Y轴周围分别自由旋转的旋转部108、将从激光光源(省略图示)发出的激光束不受上述旋转部108的摆动影响地导向该旋转部108的装置、固定设置在上述旋转部108上的由多个光学零部件(A /4板148、 164、棱镜150、152、158、160、162、PBS154)构成的光学系统。 [0012] The interferometer having: a first retroreflector disposed at a fixed position 106, a second retroreflector 110 is provided in the moving body to the first retroreflector 106 in the center axis perpendicular to the X and a rotation around the Y-axis unit 108 are free to rotate, the laser from the laser light source (not shown) swing beam emitted from impact of the rotational portion 108 is guided to the rotary part means, fixed portion 108 of the rotary 108 a plurality of optical systems on the optical component (a / 4 plate 148, 164, a prism 150,152,158,160,162, PBS154) configuration.

[0013] 该光学系统利用PBS154将导向旋转部108的激光束分割,使分割了的部分的激光束经由与X轴正交的光路向上述第一逆反射体106入射,并且使另一部分的激光束沿上述光路的延长方向射出,射入上述第二逆反射体IIO,可分别得到来自上述第1及第2逆反射体106、 110的反射光。 [0013] The optical rotation of the guide system utilizes PBS154 portion of the laser beam 108 is split, the split portion of the laser beam is incident to the first retroreflector 106 via an optical path perpendicular to the axis X, and that the other part of the laser beam in the extension direction of the light path emitted, the second incident the IIO retroreflective member, respectively, to obtain reflected light from the first and second retroreflective member 106, 110.

[0014] 进一步地,还具有检测部(省略图示)、4分割光电二极管(QPD)112、和控制装置(图略),上述该检测部,其根据经由上述光学系统而得到的2个反射光的干涉,检测第二逆反射体110的移动量;上述四分割光电二极管(QPD) 112,其固定设置在上述旋转部108上, 来自上述第二逆反射体110的反射光的一部分入射,并且作为输出对应向上述第二逆反射体110入射的激光束的偏移量的位置信号的位置检测装置;上述控制装置,根据来自该位置检测装置的位置信号使上述偏移量为零而控制上述旋转部108的X轴及Y轴周围的旋转位置。 [0014] Further, the detecting portion further includes a (not shown), 112, and control means quadrant photodiode (the QPD) (not shown), the above-described detecting unit, based on 2 via the reflection optical system obtained interference light detecting an amount of movement of the second retroreflector 110; and the quadrant photodiode (QPD) 112, which is fixed on the rotating portion 108, part of the incident reflected light from the retroreflective second body 110, and as an offset to the output of the corresponding second incident on retroreflective member 110 of the laser beam position signal position detecting means; wherein the control means, based on the position signal from the position detecting means so that the shift amount of zero and control around the X-axis and Y-axis rotational position of the rotating portion 108.

[0015] 在专利公开2002-98510号公报中(以下称为专利文献3)中,公开有在干涉光学系统的光路中设置摆头运动光摆杆(首振0運動光t:)以代替上述基准球,激光光线向该摆头运动光摆杆的反射面的中心入射,通过控制摆头运动光摆杆,使该反射光线可向任意方向变化,将反射光线向作为测量对象的后向反射器照射且进行追踪的光线追踪式激光干涉测长器。 [0015] Patent Publication No. 2002-98510 (hereinafter referred to as Patent Document 3) discloses a swiveling motion is provided in the optical path of the pendulum light interference optical system (first motion oscillator 0 in place of the light t :) the reference sphere, the laser beam toward the center of swing motion of the incident light reflecting surface of the pendulum, by controlling the swing motion of the pendulum light so that the reflected light can change in any direction, the light reflected back to the reflector to be measured irradiate the ray tracing and tracking type laser interferometer length measuring machine.

[0016] 但是,在专利文献l记载的技术中,(1)在测定光以基准球12的中心C为焦点而聚光的情况下,存在着相对于旋转机构的径向跳动(在旋转机构旋转时旋转机构上的某个点画出的实际的轨迹和理想的轨迹的偏移)容易受到影响的问题。 In the case [0016] However, in the technique described in Patent Document l, (1) the measurement light to the center C of the reference sphere 12 and the focus of the condenser, there is radial play with respect to rotation mechanism (rotation mechanism in the a point on the rotating mechanism of the actual trajectory and desired trajectory drawn offset rotation) susceptible to problems. 即,如果旋转机构的径向跳动导致测定光的焦点中心从C的位置偏移,从光检测器产生的信号S/N变差,不能进行位移测定。 That is, if the radial runout of the rotating mechanism resulting in the focal point is shifted from the center of the measurement light position C, the signal S generated from the photodetector / N is deteriorated, the displacement can not be measured. 因此,容易受到旋转机构的径向跳动的影响。 Therefore, susceptible to radial runout of the rotating mechanism. 并且,(2)在将基准球12的表面作为焦点的情况下,存在着容易受到基准面表面的瑕疵或尘埃的影响,特别地,焦点的直径越小,越容易受到小的瑕疵或尘埃的影响的问题。 And, (2) in the case where the surface of the reference sphere 12 as a focus, there is easily affected by a flaw or dust plane surface, in particular, the smaller the diameter of the focus, the more vulnerable to dust or small flaws Word problems.

[0017] 即使在专利文献2的技术中,对于作为基准球的逆反射体106,使用了金属球或金属涂层的玻璃球的情况下,与专利文献l相同,也存在着(1)把基准球的中心作为焦点的情况下,相对于旋转机构的径向跳动而不可靠,(2)把基准球的表面作为焦点的情况下,容易受到基准球表面的瑕疵或尘埃的影响的问题。 [0017] Even in the case where the technique of Patent Document 2, for a reference sphere of the retroreflector 106, using glass beads or metal balls of metal coated with the same Patent Document l, there are (1) the problem where the center of the reference sphere, as the focal point, relative to the radial runout of the rotational mechanism unreliable, (2) where the surface of the reference sphere, as the focal point, or blemishes susceptible to dust the reference sphere surface.

[0018] 在把折射率为2. 0的材料制成的球作为基准球而进行使用的情况下,加之上述(2)的问题点,这样的球一般不被销售,所以存在着基准球的价格高,而难得到的问题。 [0018] In the case where the ball is made of a material having a refractive index of 2.0 as a reference for the use of balls, coupled with the problems (2), so the ball is generally not sold, there is a reference sphere high prices, while rare to problems. [0019] 在专利文献3记载的技术中,激光束的中心和反射镜的旋转中心不一致的情况下,该误差成为测长的误差的主要原因,很难高精度地测定激光束的中心位置,所很难使其与反射镜的旋转中心高精度地一致。 [0019] In the technique disclosed in Patent Document 3, when the rotation center of the mirror and the center of the laser beam does not coincide, the error becomes a factor of error in length measurement, the center position of the laser beam is difficult to determine accurately, the high accuracy is difficult to match the center of rotation of the mirror. 且,因为利用了拉伸弹簧的张力使钢球和半球加压地就位,所以3点球面座的钢球和反射镜的半球部分的摩擦变大,很难进行精密的控制。 And, because of the use of the tension of the tension spring and steel ball seated hemispherical pressure, the friction of the hemispherical portion of the ball and the mirror holder 3 faces the penalty becomes large, precise control difficult. 进一步地,高精度的球制作起来比较容易,但是高精度的半球很贵,存在着半球形状的反射镜的制作成本上升的问题。 Furthermore, production of high-precision ball is easier, but expensive precision hemisphere, there is a problem of increase in production cost hemispherical mirror of.

发明内容 SUMMARY

[0020] 本发明是为了消除上述现有的问题点的发明,目的在于提供一种追踪式激光干涉仪,其相对于旋转机构的径向跳动可靠,且不容易受到基准球表面的瑕疵或尘埃的影响,还可使用较低廉的基准球。 [0020] The present invention is to eliminate the above-described problems of the conventional invention aims to provide a tracking type laser interferometer, which is relative to the radial runout of the rotational mechanism and reliable, and not susceptible to dust or flaws of the reference spherical surface the impact can also use cheaper reference sphere.

[0021] 本发明的追踪式激光干涉仪,为了解决上述问题,向作为被测定体的后向反射器照射,利用该后向反射器向返回方向反射的激光束的干涉,检测后向反射器的位移,并且利用上述激光束的光轴的位置的变化进行追踪,其中,具有:固定设置的基准球;以该基准球的中心作为中心转动的滑架;设置在该滑架上的输出对应上述后向反射器的位移的位移信 [0021] The tracking type laser interferometer according to the present invention, to solve the above problems, to a rear body to be measured to the reflector irradiated by the interference laser beam of the back reflector to the return direction to the reflector, the detector retroreflector displacement, and using the change in position of the optical axis of the laser beam to track, wherein: a reference sphere is fixed; the center of the sphere as the center of rotation of the reference carriage; provided corresponding to the output of the carriage the rear channel displaced displacement of the reflector

号的激光干涉仪,以及设置在该滑架上的输出对应上述基准球和位移计的相对位移的位移信号的位移计;由该位移计输出的位移信号和激光干涉仪输出的位移信号算出将基准球作为基准的后向反射器的位移的数据处理装置;从上述后向反射器反射并返回到激光干涉仪的激光束,在与其光轴正交的方向上偏移时,输出对应该偏移量的输出位置信号的位置检测装置;根据来自该位置检测装置的位置信号,使上述偏移量为零而控制滑架转动的控制装置。 No. laser interferometer, and the corresponding displacement gauge provided displacement signal and the relative displacement of the reference sphere at the output of the displacement gauge carriage; and a laser interferometer displacement signal outputted from the displacement signal output from the displacement gauge will be calculated from the data processing device as a reference ball after displacement to a reference reflector; from the retroreflector to the laser beam reflected and returned laser interferometer, the optical axis is shifted in the direction perpendicular thereto, the output of the bias should be shift position detecting means of the amount of output position signals; based on the position signal from the position detecting means, so that the shift amount is zero and the control means controls rotation of the carriage.

[0022] 上述的激光干涉仪可以是迈克耳逊干涉仪。 [0022] The laser interferometer may be a Michelson interferometer.

[0023] 可将上述位移计设置在上述基准球的两侧,不受温度变动的影响。 [0023] The above-described displacement gauge may be provided on both sides of the reference sphere, independent of temperature variations. [0024] 上述位移计可以是静电电容式位移计或涡流式位移计。 [0024] The displacement gauge may be an electrostatic capacitance type displacement gauge or an eddy current displacement meter. [0025] 上述基准球可以是金属制。 [0025] The reference sphere may be a metal.

[0026] 上述位置检测装置可以是4分割光电二极管(QPD)或二维位置检测形检测器(PSD)。 [0026] The position detecting means may be a quadrant photodiode (the QPD) or a two-dimensional position detector type detector (PSD).

[0027] 通过本发明,将输出对应基准球和位移计的相对位移的位移信号的位移计设置在滑架上,利用该位移计和激光干涉仪测定距离,所以原理上不受旋转机构的径向跳动的影响,相对于旋转机构的径向跳动非常可靠。 [0027] By the present invention, the output signal of the displacement gauge is provided corresponding to the displacement of the reference sphere and the relative displacement of the displacement gauge in the carriage, the distance measured by using the displacement gauge and the laser interferometer, it is not in principle the diameter of the rotating mechanism the influence of jitter, relative to the radial runout of the rotational mechanism is very reliable. 且因为不向基准球表面照射激光束,所以相对于基准球表面的瑕疵或尘埃可靠。 And since no laser beam is irradiated to the reference sphere surface, relative to the reference spherical surface flaws or dust reliably. 可使用较为低廉的基准球。 You can use relatively cheap base ball.

[0028] 通过下述优选实施例的具体说明,将了解到本发明的这些以及其他的新特征和优点。 Specific description of the [0028] through the following preferred embodiments, will appreciate these and other novel features and advantages of the present invention.

附图说明 BRIEF DESCRIPTION

[0029] 参考附图说明优选实施例,对具有相同功能的组件付与相同的标号。 [0029] with reference to the accompanying drawings illustrating the preferred embodiments, the same reference numerals to pay the component having the same function. [0030] 图1是表示专利文献1记载的追踪式激光干涉仪的主要结构的剖面图; [0031] 图2是表示相同的干涉仪部分的详细结构的光路图; [0032] 图3是表示专利文献2记载的追踪式激光干涉仪的主要结构的光路图。 [0030] FIG. 1 is a sectional view showing a main configuration of a tracking type laser interferometer described in Patent Document 1; [0031] FIG. 2 shows an optical path diagram showing a detailed configuration of the same interferometer portion; [0032] FIG. 3 shows a Patent Document 2 illustrates a main structure of an optical path tracking type laser interferometer described. [0033] 图4是表示本发明的第1实施方式的主要结构的剖面图;[0034] 图5是表示本发明的第1实施方式的立体图; [0033] FIG. 4 is a sectional view showing a main configuration of a first embodiment of the present invention; [0034] FIG. 5 is a perspective view of a first embodiment of the present invention;

[0035] 图6是表示本发明的第1实施方式的干涉仪部分的光路图; [0035] FIG. 6 is an optical path diagram showing a first portion of the interferometer embodiment of the present invention;

[0036] 图7是表示本发明第2实施方式的主要结构的剖面图。 [0036] FIG. 7 is a sectional view showing the main configuration of a second embodiment of the present invention.

具体实施方式 Detailed ways

[0037] 参照以下附图详细说明本发明的实施方式。 Detailed description of embodiments of the present invention [0037] reference to the following drawings.

[0038] 本发明的第1实施方式,如图4 (整体图)、图5 (主要部分的立体图)及图6 (干涉仪部分的光路图)所示,具有:固定设置的基准球212 ;以该基准球212的中心C为中心转动设置的滑架214 ;设置在该滑架214上的输出对应于作为被测定体的后向反射器210的位移的位移信号的激光干涉仪216,以及用于输出对应于基准球212和位移计的相对位移的位移信号的,与激光束同轴并且夹着基准球212相对其两侧设置的位移计218、219 ;利用该位移计218、219输出的位移信号和上述激光干涉仪216输出的位移信号,算出以基准球212为基准的后向反射器210的位移的数据处理装置250(图5);当从上述后向反射器210 反射而返回激光干涉仪216的激光束在与该光轴正交的方向移动时,作为输出对应该偏移量的位置信号的位置检测装置的QPD238(图6);根据来自上述位置检测装置的位置信号, 作为使 [0038] The first embodiment of the present invention, FIG. 4 (overall view), FIG. 5 (main perspective view of a portion) and 6 (the interferometer part of the light path view), comprising: a fixed reference sphere 212; in this reference sphere 212 from the center C as the center of the carriage rotatably disposed 214; an output is provided on the carriage 214 corresponding to a rear body to be measured interferometer 216 to the laser displacement signal of a displacement of the reflector 210, and for outputting a corresponding displacement signal and the reference sphere 212 relative displacement of the displacement gauge, a laser beam coaxially with the reference ball 212 and sandwiching the relative displacement meter provided on both sides 218, 219; 218, 219 output by using the displacement meter displacement signal and said laser interferometer displacement signal output 216, calculated by the reference sphere 212 to the data processing device 250 displaced after a reference retroreflector 210 (FIG. 5); when returned from reflected from the retroreflector 210 laser interferometer laser beam 216 is moved in a direction perpendicular to the optical axis, position detecting means as an output of QPD238 be offset position signal (FIG. 6); the position signal from the position detecting means, as the 上述偏移量为零而控制滑架214的转动的控制装置的X轴电动机252X及Y轴电动机252Y。 The offset amount is zero and the X-axis motor control device controls the rotation of the carriage 214 and the Y-axis motor 252X 252Y.

[0039] 作为上述位移计218、219,可使用例如静电电容式位移计或涡流式位移计。 [0039] As the displacement gauge 218, 219, may be used, for example, capacitance-type displacement gauge or an eddy current displacement meter. 这些位移计的传感器的有效面积比尘埃或瑕疵大,传感器的横分解能力比较低,不容易受到基准球212表面上的尘埃或瑕疵的影响。 The displacement gauge sensor is larger than the effective area of ​​the dust or flaw, cross-decomposing ability of the sensor is relatively low, is not susceptible to dust or flaws on the surface of the reference sphere 212. 另外,作为位移计218、219,可使用光纤传感器或各种接触式的位移传感器。 As the displacement gauge 218 and 219, a displacement sensor may be used a variety of fiber optic sensors or contact type.

[0040] 作为上述基准球212,可使用市面上销售的金属制的球。 [0040] 212, may be used on the market of metal balls as the reference sphere. 该球在工业上被广泛地使用,与专利文献2中使用的用折射率2.0的材料制作的球相比,便宜很多。 The ball is widely used in industry, Patent Document 2 and the refractive index of the material used in making a ball of 2.0 compared to much cheaper. 另外,基准球212可使用金属制的以外的,陶瓷制、半导体制、玻璃制或金属涂层的球。 , Ceramic, semiconductor manufacturing, metal coating of glass or another ball, the reference sphere 212 may be made of a metal other than. 但是,将涡流传感 However, the eddy current sensor

器作为位移传感器使用的情况下,必须使用金属制或金属涂层的球。 As used in the case where the displacement sensor must use a metal ball or a metal coating. [0041] 上述QPD238可以是二维PSD。 [0041] The QPD238 may be a two-dimensional PSD.

[0042] 在图5中,260是在Y周周围自由转动支承滑架214的支承框,262是在X轴周围自由转动支承该支承框260的基座,在图6中,220是用于将来自光源(省略图示)的光向激光干涉仪216入射的光纤,222是准直透镜,230是PBS, 226是A /4板,236是NPBS, 240 是偏振板,270是用于反射参照光的平面镜,272是用于检测干涉光强度的光检测器。 [0042] In FIG. 5, 260 is rotatably supported by the supporting frame of the carriage 214 is freely around the periphery of Y, about the X-axis 262 is rotatably supported by the base 260 of the support frame, in FIG. 6, 220 is a from a light source (not shown) of the light incident on the interferometer laser fiber 216, collimator lens 222, 230 is a PBS, 226 is a / 4 plate 236 is NPBS, 240 is a polarizing plate, 270 is a reflection reference light mirror, 272 for detecting the light intensity of the interference light detector. [0043] 下面,详细说明位移的测定方法。 [0043] Next, a detailed measurement method described displacement.

[0044] 作为位置的基准点而使用的固定基准球212和后向反射器210之间的长度变化量 [0044] fixed reference sphere used as the reference point position 212 and the amount of change in length between the retroreflector 210

(位移)AL,通过下面的式子算出。 (Displacement) AL, is calculated by the following equation.

[0045] AL = ( A L2_ A L3) /2+ AL丄...(1) [0045] AL = (A L2_ A L3) / 2 + AL Shang ... (1)

[0046] 这里,Al^是利用上述激光干涉仪216检测的激光干涉仪216和后向反射器210 的相对位移(距离增加方向为+) 。 [0046] Here, Al ^ using the laser interferometer laser gauge interferometer detector 216 and 216 displaced relative to the reflector 210 (the direction of increasing distance +). AL2是设置在激光干涉仪216和基准球212之间的位移计218和基准球212的表面的相对位移(距离增加方向为+) 。 AL2 is disposed relative displacement interferometric displacement gauge surface 218 and the reference sphere 212 between the device 216 and the reference sphere 212 in the laser (direction + distance increases). AL3是位移计219和基准球212的表面的相对位移(距离增加方向为+)。 AL3 is a displacement gauge 219 and the surface of the reference sphere 212 relative displacement (distance increasing direction is +).

[0047] 对高精度的基准球212的表面来说,由于距基准球212的中心C的距离为高精度且一定,所以即使在滑架214以C为中心转动的情况下,也可高精度地测定以基准球212的中心C为基准的后向反射器210的位移。 [0047] surface of the reference sphere 212 with high accuracy, since the distance from the center C of the reference sphere 212 is constant with high precision, even in the center of the carriage 214 is rotated in case C, can be accurately after displacement of the reference sphere at the center C 212 as a reference retroreflector 210 is measured.

[0048] 如图6所示,上述A"的测定,可利用将后向反射器210作为被测定体的公知的迈克耳逊干涉仪的测定方法来测定。 [0048] As shown in FIG. 6, the measurement of the A "may be utilized to retroreflector 210 to be measured is determined as a known body Michelson interferometer measuring instrument method.

[0049] 即,来自未图示的光源向光纤220入射并从准直透镜222射出的光线, 一部分作为参照光被使用,剩余部分作为测定光被使用。 [0049] That is, from a light source (not shown) to the optical fiber 220 enters the collimator lens 222 and emitted from the light portion is used as reference light, the remaining portion is used as a measurement light.

[0050] 参照光透过PBS230,被平面镜270反射,再被PBS230反射并射向光检测器272。 [0050] Referring PBS230 light transmission, reflection by a plane mirror 270, and then is reflected toward PBS230 photodetector 272.

[0051] 最初被PBS230反射的测定光射朝向后方射器210。 [0051] Initially the measurement outgoing light reflected PBS230 emitter 210 rearward. 被该后向反射器210反射的 This is reflected by the rear reflector 210

测定光返回而向激光干涉仪216入射,其中一部分被NPBS236反射向4分割QPD238入射。 Determination of the return light incident to the laser interferometer 216, wherein the reflected portion is incident on the four-divided NPBS236 QPD238.

且,透过NPBS236的测定光与上述参照光干涉并向光检测器272入射。 And, transmitting the measuring light and the reference NPBS236 interference light is incident to the photodetector 272.

[0052] 该光检测器272的输出,对应入射的干涉光的干涉条纹而变化,所以利用该光检 Output [0052] The light detector 272, corresponding to the interference fringe of incident light varies, the light with which the subject

测器272的输出,可测定激光干涉仪216和后向反射器210的相对位移AL1Q An output detector 272, a relative displacement may be measured by a laser interferometer AL1Q retroreflector 216 and 210 after the instrument

[0053] 上述后向反射器210的自动追踪,利用与专利文献1或2所示的方法相同的方法进行。 [0053] The automatic tracking retroreflector 210, using the same method as shown in Patent Document 1 or 2 is performed.

[0054] gp,向激光反射仪216入射的测定光, 一部分向QPD238入射,通过使该QPD238上的测定光的位置总是保持一定而使电动机252X、Y并旋转控制滑架214的位置,由此可自动地追踪后向反射器210。 [0054] gp, to the measurement light incident laser reflectometer 216, a portion of the QPD238 incident light through the measurement on the position is always kept constant QPD238 the motor 252X, Y and rotational position of the carriage 214 controlled by the this can automatically track the retroreflector 210. 这里对应于相对测定光的光轴的垂直方向的后向反射器210的位移,利用向QPD238入射的测定光的位移产生位移。 After this corresponds to the vertical direction relative to the optical axis of measurement light toward the reflector 210 is displaced by displacement of the displacement measurement light incident QPD238. S卩,后向反射器210相对于测定光的光轴产生垂直方向的位移后,从向后方射器210返回的测定光的光轴平行地产生位移,所以, 使从QPD238向数据处理装置250输出的位移信号总保持一定地驱动X轴电动机252X及Y 轴电动机252Y,由此自动追踪后向反射器210。 After Jie S, the displacement in the vertical direction to the optical axis of the reflector 210 relative to the measurement light, displaced from the optical axis of the measurement light 210 returns to the rear ejector in parallel, so that from the data processing apparatus 250 QPD238 displacement signal output from the drive is always maintained constant X-axis motor and the Y-axis motor 252X 252Y, thereby automatically tracking the retroreflector 210.

[0055] 在本实施方式中,将位移计218、219设置在基准球212的两侧,是为了补偿位移计218、219的温度漂移。 [0055] In the present embodiment, the displacement meters 218 and 219 disposed at both sides of the reference sphere 212 is to compensate for the displacement gauge 218, temperature drift. 即,若位移计218和219的温度漂移的倾向相同,则(1)式中求得的位移Ak不受位移计的温度漂移的影响。 That is, when the displacement gauge 218 and 219 of the same temperature drift tendency, then (1) wherein Ak determined from the displacement of the displacement gauge the influence of temperature drift. 例如,位移计218测得的变化量AL2由温度漂移产生误差AD,而成为AL2+AD。 For example, the displacement gauge 218 the amount of change measured by the temperature drift error AL2 the AD, and become AL2 + AD. 若位移计218和219的温度漂移的倾向相等,则此时位移计219测得的变化量Al^也由于温度漂移产生误差,而成为AL3+AD。 If the displacement meter 218 and 219 tends to temperature drift equal, the amount of change in this time the measured displacement gauge 219 Al ^ also an error due to temperature drift, and become AL3 + AD. 此时,AL变为如下式所示,AL不受位移计的温度漂移的影响。 At this time, as shown in the following formula becomes AL, AL not affect the temperature drift of the displacement gauge. [0056] AL = { A L2+ A D- ( A L3+ AD)} /2+ A [0057] = (AL2-AL3)/2+A1^ ... (2) [0056] AL = {A L2 + A D- (A L3 + AD)} / 2 + A [0057] = (AL2-AL3) / 2 + A1 ^ ... (2)

[0058] 同样地,在基准球212各方向相同地热膨胀的情况下,可对该基准球212的热膨胀进行补偿。 [0058] Similarly, in the case where the reference sphere 212 in the same manner in each direction thermal expansion, the thermal expansion can be compensated for the reference sphere 212.

[0059] 因此,在位移计218、219设置在基准球212的两侧的情况下,可建立在温度变动上可靠的系统。 [0059] Accordingly, the displacement meter 218 and 219 provided on both sides of the case where the reference sphere 212, the temperature variation may be established and reliable system.

[0060] 下面,就本实施方式的装置表示即使对于旋转机构的径向振动也非常可靠。 [0060] Below, the present embodiment is represented by apparatus even radial vibration to the rotation mechanism is also very reliable. [0061] 滑架214在基准球212的周围转动时,即使滑架整体在激光干涉仪216的测定光的光轴方向(图4、5的Z方向)产生位移,所算出的AL也不受该位移的影响。 [0061] When the carriage 214 is rotated around the reference ball 212, even if the carriage entirety optical axis direction of the laser interferometer measurement light analyzer 216 (in the Z direction in FIG. 4 and 5) displacement, also not calculated AL the impact of the displacement. S卩,例如滑架整体在后向反射器210方向上产生位移AD。 S Jie, for example, the carriage is displaced integrally in the direction of the reflector onto the AD 210. 此时,Al^为AL「AD, A L2为AL2+AD, AL3* AL3_AD。所以,AL为下式。 [0062] AL = {( A L2+ AD) - ( A L3_ AD)} /2+ ( AL「 AD)[0063] = ( A L2_ A L3) /2+ A b ... (3) In this case, Al ^, AL "AD, A L2 is AL2 + AD, AL3 * AL3_AD Therefore, AL is the formula [0062] AL = {(A L2 + AD) - (A L3_ AD)}.. / 2 + ( AL "AD) [0063] = (A L2_ A L3) / 2 + A b ... (3)

[0064] 这样,即使滑架214在测定光的光轴方向上产生位移,算出的AL也不受该位移的影响。 [0064] Thus, even when the carriage 214 is displaced in the optical axis direction of the measurement light, AL calculated also not affected by this displacement.

[0065] 接下来,说明滑架214在基准球212的周围转动时,即使滑架整体在与测定光的光轴正交方向(直线地)产生位移,算出的AL,不受该位移的影响。 [0065] Next, even if the overall impact of the carriage 214 when the carriage is rotated around the reference sphere 212 in the direction perpendicular to the optical axis (straight line) displaced, calculated AL, unaffected by the displacement of the measuring light . 首先,Al^不受该位移的影响。 First of all, Al ^ is not affected by the displacement. 即使激光干涉仪216在与测定光的光轴正交的方向上产生位移,由于激光干涉仪216和后向反射器210的往复光程长不变化,Ak不受该位移的影响。 Even if the laser interferometer 216 is displaced in a direction perpendicular to the optical axis of measurement light, the laser interferometer 216 and the retroreflector does not change the reciprocating optical path length of 210, Ak not affected by this displacement. 这是由于后向反射器210的性质而导致的。 This is due to the nature of the reflector 210 caused. 接下来,位移计218在与测定光的光轴正交的方向上产生位移,当Al^的值只增大AE时,Al^的值也增大AE。 Next, the displacement gauge 218 is displaced in a direction perpendicular to the optical axis of measurement light, when the value is increased only Al ^ AE, also increases the value of Al ^ AE. 此时,AL为下式。 In this case, AL following formula. [0066] AL = {( A L2+ AE) - ( A L3+ AE)} /2+ AL丄[0067] = (AL2-AL3)/2+A1^ ... (4) [0066] AL = {(A L2 + AE) - (A L3 + AE)} / 2 + AL Shang [0067] = (AL2-AL3) / 2 + A1 ^ ... (4)

[0068] 所以,即使滑架整体在与测定光的光轴正交的方向上产生位移,算出的AL也不受该位移的影响。 [0068] Therefore, even if the entire carriage is displaced in a direction perpendicular to the optical axis of measurement light, AL calculated also not affected by this displacement.

[0069] 如上述的说明,即使激光干涉仪216在测定光的光轴的方向上产生位移,或是在与测定光的光轴正交的方向上产生位移,AL也将不受这些位移的影响。 [0069] As described above, even if the laser interferometer 216 is displaced in the direction of the optical axis of measurement light, or displaced in a direction perpendicular to the optical axis of the measurement light, AL these displacements will not influences. 由此,本实施例的装置对于旋转机构的径向跳动非常可靠。 Thus, the apparatus of the present embodiment is extremely reliable for the radial runout of the rotational mechanism.

[0070] 下面,图7中表示了本发明的第2实施方式的主要部分。 [0070] Next, FIG. 7 shows a main portion of a second embodiment of the present invention.

[0071] 在该第2实施方式中,只在基准球212的后向反射器210侧设置了位移计218,以测定AL。 [0071] In the second embodiment, only the reference sphere 212 provided at a rear side of the reflector 210 to the displacement meter 218 to measure the AL. 位移AL利用下式算出。 AL displacement was calculated by the following formula. [0072] AL = Al^+ALi ... (5) [0072] AL = Al ^ + ALi ... (5)

[0073] 这里,AL2以及A"的定义与第1实施方式相同。 [0073] Here, the same definitions and AL2 A "to the first embodiment.

[0074] 通过本实施方式,由于位移计有1个就可以,可便宜地制作装置。 [0074] By the present embodiment, since there is a displacement gauge can be made inexpensively means.

[0075] 另外,在本实施方式中,滑架整体在与测定光的光轴正交的方向上(直线地)产生 [0075] Further, in the present embodiment, the entirety of the carriage is generated in a direction orthogonal to the optical axis of the measurement light (linearly)

位移的情况下,Ak产生的误差原样地加在AL上,与现有技术中的将基准球12的中心C In the case of displacement, Ak error generated as it is applied to the AL, the prior art reference sphere center C 12 of

作为焦点的专利文献1的情况相比,不会有激光干涉仪输出的位移信号的S/N变差而不能 As compared with the case of Patent Document 1, the focus, there will be no interferometer laser displacement signal output from the S / N is deteriorated and can not be

测定的问题,所以相对于旋转机构的径向跳动可靠。 Problem determination, so relative to the radial runout of the rotational mechanism reliable.

[0076] 2005年7月6日申请的日本专利申请No. 2005-216110的公开内容,其说明书、附图以及权利要求的全部被引用于此,作为参考。 [0076] Japanese Patent filed July 6, 2005 the disclosure of Application No. 2005-216110, the specification, drawings and claims are all incorporated herein by reference.

[0077] 对于本领域的技术人员来说,上述实施例显然仅仅是说明性的。 [0077] to those skilled in the art, the above-described embodiments are merely illustrative embodiment clearly. 本领域的技术人员可以在不脱离本发明的精神和范围的情况下实现其他的各种变形。 Those skilled in the art can implement various other modifications without departing from the spirit and scope of the invention.

Claims (7)

  1. 一种追踪式激光干涉仪,其向作为被测定体的后向反射器照射,利用该后向反射器向返回方向反射的激光束的干涉,检测后向反射器的位移,并且利用上述激光束的光轴的位置的变化进行追踪,其特征在于:具有:固定设置的基准球;以该基准球的中心作为中心转动的滑架;设置在该滑架上的输出对应上述后向反射器的位移的位移信号的激光干涉仪以及设置在该滑架上的输出对应上述基准球和位移计的相对位移的位移信号的位移计;根据该位移计输出的位移信号和激光干涉仪输出的位移信号算出将基准球作为基准的后向反射器的位移的数据处理装置;上述后向反射器反射并返回到激光干涉仪的激光束,在与该光轴正交的方向上偏移时,输出对应该偏移量的输出位置信号的位置检测装置;根据来自该位置检测装置的位置信号,控制滑架转动以使上述 One kind of tracking type laser interferometer, which is to be measured as the retroreflector body irradiated by the laser beam after the interference is reflected in the return direction to the reflector, the reflector is displaced in the detection, using the laser beam and change in position of the optical axis of the track, comprising:: a fixed reference sphere; reference to the center of the sphere as a center of rotation of a carriage; the carriage is provided corresponding to the output to the rear reflector displacement signal and a displacement of a laser interferometer is provided corresponding to the displacement of the displacement gauge balls and the reference signal relative displacement output of the displacement meter carriage; and the displacement signal from the displacement signal output from the laser interferometer output of the displacement gauge the reference sphere is calculated as the data processing apparatus of the displacement of the reference reflector; and when said retroreflector to the laser beam reflected and returned laser interferometer, the offset in a direction orthogonal to the optical axis of the output position detecting means to be offset position signal output; the position signal from the position detecting means, controlling so that the rotation of the carriage 移量为零的控制装置。 Control means shifting amount is zero.
  2. 2. 如权利要求1所述的追踪式激光干涉仪,其特征在于: 上述激光干涉仪为迈克耳逊干涉仪。 The tracking type laser interferometer as claimed in claim 1, wherein: the laser interferometer is a Michelson interferometer.
  3. 3. 如权利要求1所述的追踪式激光干涉仪,其特征在于: 上述位移计设置在上述基准球的两侧。 Tracking type laser interferometer according to claim 1, characterized in that: both sides of the displacement gauge provided in the reference sphere.
  4. 4. 如权利要求1或3所述的追踪式激光干涉仪,其特征在于: 上述位移计为静电电容式位移计或涡流式位移计。 4. The tracking type laser interferometer of claim 1 or claim 3, wherein: the above-described displacement in terms of capacitance-type displacement gauge or an eddy current displacement meter.
  5. 5. 如权利要求1或3所述的追踪式激光干涉仪,其特征在于: 上述基准球为金属制。 5. The tracking type laser interferometer of claim 1 or claim 3, wherein: the reference sphere made of metal.
  6. 6. 如权利要求1或3所述的追踪式激光干涉仪,其特征在于: 上述位置检测装置为4分割光电二极管。 Or tracking type laser interferometer according as claimed in claim 13, wherein: the position detecting means is a quadrant photodiode.
  7. 7. 如权利要求1或3所述的追踪式激光干涉仪,其特征在于: 上述位置检测装置为二维位置检测形检测器。 7. The tracking type laser interferometer of claim 1 or claim 3, wherein: the position detecting means is a two-dimensional position detector type detector.
CN 200610107610 2005-07-26 2006-07-26 Laser tracking interferometer CN1904544B (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP216110/05 2005-07-26
JP2005216110 2005-07-26

Publications (2)

Publication Number Publication Date
CN1904544A CN1904544A (en) 2007-01-31
CN1904544B true CN1904544B (en) 2010-05-26

Family

ID=37451187

Family Applications (1)

Application Number Title Priority Date Filing Date
CN 200610107610 CN1904544B (en) 2005-07-26 2006-07-26 Laser tracking interferometer

Country Status (3)

Country Link
US (1) US7388674B2 (en)
EP (1) EP1750085B1 (en)
CN (1) CN1904544B (en)

Families Citing this family (27)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007309677A (en) * 2006-05-16 2007-11-29 Mitsutoyo Corp Method of estimating absolute distance in tracking laser interferometer, and tracking laser interferometer
JP4776473B2 (en) * 2006-08-25 2011-09-21 株式会社ミツトヨ Optical axis deflection laser interferometer, its calibration method, correction method, and measurement method
JP4771898B2 (en) * 2006-09-04 2011-09-14 株式会社ミツトヨ Laser interference tracking length measuring method and apparatus
JP2008203015A (en) * 2007-02-19 2008-09-04 Mitsutoyo Corp Optical-axis deflection type laser interferometer
JP5193490B2 (en) 2007-04-20 2013-05-08 株式会社ミツトヨ Measuring method using tracking laser interferometer
JP5244339B2 (en) * 2007-06-20 2013-07-24 株式会社ミツトヨ Tracking laser interferometer and recovery method of tracking laser interferometer
JP2009229066A (en) 2008-03-19 2009-10-08 Mitsutoyo Corp Estimation method of distance between tracking type laser interferometer and target, and tracking type laser interferometer
JP5635741B2 (en) * 2008-04-22 2014-12-03 株式会社ミツトヨ Tracking laser interferometer
US7636170B1 (en) * 2008-09-12 2009-12-22 National Formosa University Static/dynamic multi-function measuring device for linear unit
JP5702524B2 (en) * 2009-02-17 2015-04-15 株式会社ミツトヨ Tracking laser interferometer
JP5364519B2 (en) 2009-09-18 2013-12-11 株式会社ミツトヨ Tracking laser interferometer
DE102010032407B3 (en) * 2010-06-29 2011-12-15 Bundesrepublik Deutschland, vertr. durch d. Bundesministerium f. Wirtschaft und Technologie, dieses vertreten durch d. Präsidenten d. Physikalisch-Technischen Bundesanstalt Three-dimensional laser-length measuring system for neodymium-doped yttrium vanadate laser, has light sources providing laser lights, which are focused on reflector, where beam adjusting device directs laser beam toward retroreflector
JP5933190B2 (en) * 2010-06-30 2016-06-08 ドクトル・ヨハネス・ハイデンハイン・ゲゼルシヤフト・ミツト・ベシユレンクテル・ハフツングDr. Johannes Heidenhain Gesellschaft Mit Beschrankter Haftung Optical distance measuring device
CN101963271B (en) * 2010-09-29 2012-06-20 上海微电子装备有限公司 Bracket capable of improving modal performance
KR20130106408A (en) * 2010-10-25 2013-09-27 가부시키가이샤 니콘 Apparatus, optical assembly, method for inspection or measurement of an object and method for manufacturing a structure
CN102538663B (en) * 2010-12-13 2014-03-12 中国科学院沈阳自动化研究所 Two-dimensional position tracking and measuring device and measuring method thereof
EP2652519B1 (en) * 2010-12-13 2016-06-29 Paul Scherrer Institut Tracking type laser interferometer for objects with rotational degrees of freedom
GB2517624B (en) 2012-05-16 2016-08-10 Faro Tech Inc An apparatus and method to compensate bearing runout in laser tracker
US9746304B2 (en) 2012-05-16 2017-08-29 Faro Technologies, Inc. Apparatus and method to compensate bearing runout in an articulated arm coordinate measurement machine
US9482525B2 (en) 2012-05-16 2016-11-01 Faro Technologies, Inc. Apparatus to compensate bearing runout in a three-dimensional coordinate measuring system
JP6104708B2 (en) * 2013-05-24 2017-03-29 株式会社ミツトヨ Tracking laser interferometer
US9488476B2 (en) 2014-02-06 2016-11-08 Faro Technologies, Inc. Apparatus and method to compensate bearing runout in an articulated arm coordinate measurement machine
US9423282B2 (en) 2014-06-12 2016-08-23 Faro Technologies, Inc. Metrology device and a method for compensating for bearing runout error
JP6539485B2 (en) * 2015-04-21 2019-07-03 株式会社ミツトヨ Measurement system using tracking type laser interferometer and recovery method thereof
TWI595252B (en) 2016-05-10 2017-08-11 財團法人工業技術研究院 Distance measurement device and distance measuring method thereof
CN108036720B (en) * 2017-11-09 2019-10-18 中国科学院上海光学精密机械研究所 Precise rotating platform axial direction and radial pulsation measurement device and measurement method
RU2684876C1 (en) * 2018-04-05 2019-04-15 Федеральное государственное бюджетное образовательное учреждение высшего образования "Казанский национальный исследовательский технический университет им. А.Н. Туполева-КАИ" (КНИТУ-КАИ) Positioning device for assembly fitting

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6147748A (en) 1997-10-17 2000-11-14 The Secretary Of State For Trade And Industry In Her Britannic Majesty's Government Of The United Kingdom Of Great Britain And Northern Ireland Tracking system
US6563569B2 (en) 2000-09-25 2003-05-13 Agency Of Industrial Science & Technology, Ministry Of International Trade & Industry Laser tracking interferometric length measuring instrument and method of measuring length and coordinates using the same
US6667798B1 (en) 1999-07-28 2003-12-23 Leica Geosystems Ag Method and device for determining spatial positions and orientations
CN1607543A (en) 2003-10-16 2005-04-20 安捷伦科技有限公司 Tracking motion using an interference pattern

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2603429B2 (en) 1993-10-25 1997-04-23 工業技術院長 Tracking type laser interferometer
DE202004007647U1 (en) * 2004-05-10 2004-08-12 Bundesrepublik Deutschland, vertr. d. d. Bundesministerium für Wirtschaft und Arbeit, dieses vertr. d. d. Präsidenten der Physikalisch-Technischen Bundesanstalt Laser interferometer for spacing measurement has reference sphere positioned on post and base plate made of thermally invariant material

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6147748A (en) 1997-10-17 2000-11-14 The Secretary Of State For Trade And Industry In Her Britannic Majesty's Government Of The United Kingdom Of Great Britain And Northern Ireland Tracking system
US6667798B1 (en) 1999-07-28 2003-12-23 Leica Geosystems Ag Method and device for determining spatial positions and orientations
US6563569B2 (en) 2000-09-25 2003-05-13 Agency Of Industrial Science & Technology, Ministry Of International Trade & Industry Laser tracking interferometric length measuring instrument and method of measuring length and coordinates using the same
CN1607543A (en) 2003-10-16 2005-04-20 安捷伦科技有限公司 Tracking motion using an interference pattern

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
JP特开平7-332922A 1995.12.22

Also Published As

Publication number Publication date
EP1750085A3 (en) 2012-04-18
CN1904544A (en) 2007-01-31
US7388674B2 (en) 2008-06-17
US20070024861A1 (en) 2007-02-01
EP1750085B1 (en) 2013-07-31
EP1750085A2 (en) 2007-02-07

Similar Documents

Publication Publication Date Title
CN101553707B (en) Coordinate measurement instrument
JP2752003B2 (en) Test interferometer having a scanning function
JP3427182B6 (en) Beam tracking type laser interferometer with swinging optical lever
JP4516710B2 (en) Method and apparatus for determining spatial position and orientation
US6147748A (en) Tracking system
JP2913984B2 (en) Inclination angle measuring device
US20020179866A1 (en) System and method for determining a position or/and orientation of two objects relative to each other as well as beam guiding arrangement, interferometer arrangement and device for changing an optical path length for use in such a system and method
US20030193664A1 (en) Laser alignment system with plural lasers for impingement on a single target
US7872733B2 (en) Tracking type laser interferometer and method for resetting the same
EP1086354B1 (en) Surface sensing device with optical sensor
CN1281921C (en) 2D photoelectric auto collimation equipment and measuring method based on dynamic differential compensation process
US5517307A (en) Probe measurement apparatus using a curved grating displacement interferometer
US5530549A (en) Probing retroreflector and methods of measuring surfaces therewith
US7440113B2 (en) Littrow interferometer
EP0279347B1 (en) Optical axis displacement sensor
CN102472616A (en) Coordinate measuring machine (cmm) and method of compensating errors in a cmm
US8928891B2 (en) Optical distance sensor with tilt error correction
CN101144730A (en) Position measuring device
JPH10260009A (en) Coordinate measuring device
CN101970980A (en) Reference sphere detecting device, reference sphere position detecting device, and three-dimensional coordinate measuring device
US20080047335A1 (en) Measuring apparatus
EP0415579A1 (en) Touch probe
JPH08505951A (en) Apparatus for analyzing a substance located on the optical sensor surface
JP3725817B2 (en) Aspheric lens decentration measuring method and decentration measuring apparatus
CN101339012B (en) Rolling angle measurement method and device based on grating

Legal Events

Date Code Title Description
C06 Publication
C10 Request of examination as to substance
C14 Granted