CN1882393A - 金属/矿物回收和废物处理方法 - Google Patents

金属/矿物回收和废物处理方法 Download PDF

Info

Publication number
CN1882393A
CN1882393A CN200480034231.9A CN200480034231A CN1882393A CN 1882393 A CN1882393 A CN 1882393A CN 200480034231 A CN200480034231 A CN 200480034231A CN 1882393 A CN1882393 A CN 1882393A
Authority
CN
China
Prior art keywords
flocculant
mineral
metals
waste
minerals
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN200480034231.9A
Other languages
English (en)
Inventor
P·J·德怀尔
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Ciba Specialty Chemicals Water Treatments Ltd
Original Assignee
Ciba Specialty Chemicals Water Treatments Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ciba Specialty Chemicals Water Treatments Ltd filed Critical Ciba Specialty Chemicals Water Treatments Ltd
Publication of CN1882393A publication Critical patent/CN1882393A/zh
Pending legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P10/00Technologies related to metal processing
    • Y02P10/20Recycling

Landscapes

  • Separation Of Suspended Particles By Flocculating Agents (AREA)

Abstract

一种金属/矿物回收和废物处理方法,包括主要分离阶段,其中载有金属/矿物的矿石加水配成淤浆并被分离为富集级分和含水金属/矿物废料级分,以及废物沉降阶段,其中含水金属/矿物废料级分在一个或多个沉降池中沉降从而提供增稠的沉降层和上层清液;而该废物沉降阶段包括将含水金属/矿物废料喂入到固体接触容器或其它絮凝室中,其中含水金属/矿物废料以含一种以上浓度的一种或多种絮凝剂的水稀释,絮凝剂浓度之一是另一浓度的至少10倍高,在SCV内,使稀释的含水废物絮凝,并在沉降槽中使稀释并絮凝的含水废物沉降,从而在沉降槽中提供液态上层清液层和可用泵输送的增稠沉降层。

Description

金属/矿物回收和废物处理方法
本发明涉及一种金属和/或矿物回收及废物处理方法,包括主要的分离阶段和废物沉降阶段。目的是以一种新颖和高效的方式处理来自金属和/或矿物加工设施的废沉降物。
絮凝是单个颗粒或小团颗粒聚集成多颗粒聚集体或“絮凝物”的过程。该技术被用于许多工业过程中以促进固-液分离。
就定义而言,必须明确区别聚沉与絮凝,因为虽然这两者都涉及颗粒的聚集但是各自的机理不同。聚沉的过程涉及颗粒通过表面电荷的中和,从而克服颗粒之间的排斥位垒达到聚集。颗粒表面电荷常常是负的,于是就利用多价无机促凝剂像石灰、硫酸亚铁、硫酸铁和明矾来达到聚集和形成“凝结物”。絮凝就其严格意义上是颗粒借助长链聚合物的聚集,其中颗粒表面电荷可能改变也可能不变。
术语“絮凝”从拉丁语flocculus派生而来,该词描述一簇羊毛,因为将它比喻为由颗粒絮凝形成的“蓬松”聚集体。术语絮凝剂有时被用作形容词来描述絮凝物质的外观。
一般而言,金属和/或矿物生产的矿物加工阶段涉及一系列加工阶段(参见图1)。一旦矿石被从地下采出,它需要精选(亦称作选矿)以便通过将它与脉石分离使金属和有价值的矿物富集。分离过程可以是非常简单或非常复杂的,涉及多种单元加工。一般地,涉及以下单元加工当中的一种或多种:
粉碎:(亦称作碎解)——由两种活动组成,该方法涉及破碎,随后在球磨或棒磨机中研磨,以便将矿石粒度减少到矿物得以彼此释放并用于制备适合接受物理和/或化学分离的原料的程度。
分离:一旦矿石达到一定粒度,随后,该矿物将借助一种或多种下列单元加工进行分离:粒析,利用不同矿物在粒度上的差异(例如,在筛子上将粘土从砂子中洗脱);重力分离,利用矿物之间在密度或比重上的差异——采用的设备包括致密或重介质、振动台、螺旋、洗鼓、簸析机;利用矿物各自的物理性质的电或电磁分离;以及泡沫浮选,利用矿物的表面化学差异。
固/液分离:——在有价值成分与脉石矿借助一种或多种以上单元加工分离之后,所形成的淤浆(分别指富集物和尾矿)需要脱水以便使它们能够运输(富集物的情况),和以环境可接受方式处置掉(尾矿的情况)。固/液分离设备的类型包括增稠器、澄清器、真空过滤机、压滤机、多辊过滤机和离心机。
在完成矿物加工阶段的固/液分离单元加工之后,出现3股“产物”流:(1)回收水流,可以要求或可以不要求附加澄清操作,随后再返回到加工的采矿操作部分中;(2)增稠的富集物流,可以要求或可以不要求附加的加工(即,冶金加工)以生产出成品金属或矿物;以及(3)增稠的尾矿流,可能要求或可能不要求附加加工(例如,pH调节),然后再放入到尾矿池中等待沉降(以除掉和回收残留水)和处置。
本发明涉及矿物加工的固/液分离阶段的“产物”——即,尾矿(亦称作沉降物)的改进增稠和回收水(亦称作上层清液)的改进澄清度以便循环。
铁矿石,作为铁类金属的例子,通过以下两种矿石的开采和加工制备:赤铁矿(Fe2O3)和/或磁铁矿(Fe3O4)。该矿石经过五步骤加工过程完成加工:(1)采矿——钻孔和爆破以将矿石破碎成合适的大小;(2)破碎——将矿石的尺寸用物理方法减少到大约9英寸直径;(3)研磨——进一步物理减少矿石的尺寸以便将精矿从岩石中释放出来;(4)富集——通过除矿泥增稠器将有价值的铁从脉石中分离(如果所加工的矿石是赤铁矿)或者通过磁增稠器(如果所加工的矿石是磁铁矿)并随后使富集的矿石脱水;以及(5)造粒——形成小、均一尺寸铁矿石的球“生料球”,其中利用化学粘结剂,和对球加热硬化以形成硬铁矿石颗粒以便炼钢厂使用。
通过开掘或疏浚,砂石,由岩石或石头自然解体形成的未捣实粒状材料以及工业矿物的例子,通常以潮湿状态被采出。运输到加工场以后,湿砂石进料被堆成堆或者被直接倒入到料斗中,在其中鹅卵石和大圆石被从进料中物理分离出去。从料斗,材料被运输到固定或振动筛,在此,过大尺寸的材料与较小、可销售尺寸的被分开。过大尺寸的材料可用于侵蚀控制、填拓或其它用途,或者可把它送往破碎机以便破碎,生产出破碎的聚集体或者生产制造的砂子。漏过筛网的材料被喂入到一组筛分网,一般由水平或倾斜——单或多层——振动筛组成。也采用带喷水的旋转trammel筛加工和洗涤湿砂和石子。过筛将砂子和石子分成不同的尺寸范围。筛分之后,一定尺寸的石子被运至各个堆、储仓等,以便随后出售。通过分级槽或旋转喷淋器将砂子与粘土和有机杂质分开。喷淋以后,一般通过水分级将砂子筛分。分级之后,采用螺旋、旋流器或水力分离器使砂子脱水。加工后,砂子被运到储仓,以便随后出售。
为改善工业加工尾矿池的沉降特性,令废物流(即,尾矿)进行絮凝的处理在现有技术上已经提出并实践。在絮凝中,单个颗粒结合成较为疏松结合的聚集体或絮凝物。絮凝的程度由颗粒之间的碰撞及其在碰撞后趋于粘附的几率控制。搅拌增加碰撞的几率,而粘附倾向则借助絮凝剂的加入而增加。
文献中曾有过许多试图通过废物的絮凝加速沉降的尝试,并且还曾建议通过在废物中加入砂子或其它材料改善基本上实心的废沉降物的结构。公开此种采用絮凝剂回收矿物的方法的例子是美国专利号3,418,237、3,622,087、3,707,523、4,194,969、4,224,149、4,251,363、4,265,770、4,342,653、4,555,346、4,690,752、5,688,404、6,077,441和6,039,189,在此将它们一一收作参考。
尽管有众多采用絮凝剂的例子,但实际上发现,它们的使用常常成本效益很差。即便当使用絮凝剂促进沉降并提供可回收的上层清液时,上层清液的质量往往也不太好,因为上层清液往往夹杂未絮凝的废物颗粒。
金属和矿物加工工业公知,采用地面以上的沉降塔(例如,圆筒形金属罐)允许形成有用深度的上层清液,只要该塔具有足够高度。遗憾的是,在金属和/或矿物回收加工中产生的含水废物的体积如此之大,以致哪怕是设想提供此种类型塔式分离罐也是不切实际的。
发明目的
本发明的目的是提供一种金属和/或矿物回收及废物处理方法,采用该方法能够:(1)获得和循环质量改善的上层清液,以便用于浮选或其它分离步骤;(2)更高效地利用沉降池以及(3)利用一种或多种不同浓度絮凝剂溶液的加入达到絮凝效率的改善,其中絮凝剂溶液之一采用比一般大得多的水稀释比稀释。
发明概述
本发明金属/矿物回收和废物处理方法包括主要分离阶段,其中载有金属/矿物的矿石加水配成淤浆并被分离为富集级分和含水金属/矿物废料级分,以及废物沉降阶段,其中含水金属/矿物废料级分在一个或多个沉降池中沉降从而提供增稠的沉降层和上层清液;而该废物沉降阶段包括将含水金属/矿物废料喂入到固体接触容器(以下称SCV)或其它絮凝室中,其中含水金属/矿物废料以含一种以上浓度的絮凝剂的水稀释,絮凝剂浓度之一是另一浓度的至少10倍高,在SCV内,使稀释的含水废物絮凝,并在沉降槽中使稀释并絮凝的含水废物沉降,从而提供液态上层清液层和可用泵输送的增稠沉降层。随后,将增稠的沉降层喂入到一个或多个最终贮留槽中,从而允许增稠的沉降物在一个或多个最终贮留槽中发生进一步沉降进而提供基本固态沉降物(参见图1)。
浓絮凝剂和絮凝剂混合物的储备液的稀释发生在进料管线和分配管线中(参见图2)。絮凝剂用大量水进行稀释以便可向SCV中施加各种不同稀释浓度的絮凝剂和絮凝剂混合物。
附图简述
图1是工业材料加工系统的示意图。
图2是本发明工业材料加工系统的一部分的示意图。
发明详述
通过在SCV中引入高度稀释作用减少所需要的絮凝剂剂量乃是公知的。在传统方法中,絮凝剂溶液直接加入到废水淤浆中并且依靠在流槽中较为剧烈的混合作用提供保证絮凝的适宜固体/絮凝剂界面。这可能导致絮凝剂效力的降低。
在本发明中,大量稀释水加入到一部分絮凝剂溶液中。这导致大量非常稀的絮凝剂的形成,再与不断来到SCV中的废水淤浆进行混合(参见图2)。由于高度稀释,对混合的要求降低了并且固体与絮凝剂之间的接触增加了,从而使絮凝更加有效并减少絮凝剂总用量。在传统系统中,絮凝剂被稀释到约0.05%的浓度。在本发明中,稀释系数,对于这部分非常稀的絮凝剂溶液来说,等于或小于0.005%。
按照本发明,聚合物絮凝剂进一步高效地利用是通过同时引入附加、较浓絮凝剂溶液到SCV中达到的。各种不同絮凝剂浓度掺混,(以适应到来的淤浆的变化)与策略的施加方法的结合是本发明的关键部分。
通常约75%稀释的絮凝剂,例如,70~80%,以约0.005wt%或更低(=浓度1)施加,而其余则以约0.05wt%或更低(=浓度2)施加到SCV内的区域,条件是浓度2是浓度1的至少10倍高,例如,至少30倍高,尤其是至少是浓度1的50倍高。该75%/25%的比值可以改变,以适应进入到SCV中的各种不同流。对浓度1来说,该比值可从75%到25%;而对浓度2,从25%到75%。
由于按照本发明同时使用两种不同浓度的絮凝剂溶液,絮凝剂的总需要量大大减少。
采用该SCV的另一个优点是,它给出延长的湍流时间以达到最佳絮凝,同时维持形成的絮凝物和任何存在的粗材料处于悬浮状态,从而避免在SCV内过早沉淀。
一般而言,本发明适用于任何过程,只要其中金属和/或矿物与粗采出岩石或其它材料的分离包括以水配成淤浆并因此产生大量含水金属/矿物废料,后者随后又需要在贮留池中进行沉降。下面是有关金属和矿物工业每一种部门产生的典型废物流的描述和表征:
在铁类金属工业行业内采用的典型废物沉降系统是尾矿塘和池。离开铁矿石(铁类金属)生产的矿物加工阶段的废物流一般表现出以下特征:
总固体含量:3.0~35.0%W/V(重量/体积)
比重:1.0~1.3
粒度分布
粒度范围 (μm) 固体含量 范围 (%) 名义粒度 (μm)    累计 %以下      累计 %以上
  >1180   0.00     1180   100.00     0.00
  1180-600   0.00     600   100.00     0.00
  600-300   0.09     300   99.91     0.09
  300-212   1.70     212   98.21     1.79
  212-106   25.34     106   72.87     27.13
  106-53   5.28     53   67.59     32.41
  <53   67.59
pH(按照25℃供应):7.0~8.0SU
颜色:绿~褐
贱金属工业行业内采用的典型废物沉降系统是尾矿塘和池。离开铜(贱金属)生产的矿物加工阶段的废物流通常表现出以下特征:
总固体含量:15.0~35.0%W/V
比重:1.1~1.3
粒度分布
粒度范围 (μm) 固体含量 范围 (%)    名义粒度 (μm)      累计 %以下      累计 %以上
>1180   0.00     1180     100.00     0.00
1180-600   0.03     600     99.97     0.03
600-300   15.40     300     84.57     15.43
300-212   16.98     212     67.59     32.41
212-106   23.25     106     44.34     55.66
106-53   7.90     53     36.44     63.56
<53   36.44
pH(按照25℃供应):7.0~8.0SU
颜色:灰~绿
贵金属工业行业内采用的典型废物沉降系统是尾矿塘和池。离开金(贵金属)生产的矿物加工阶段的废物流通常表现出以下特征:
总固体含量:12.0~60.0%W/V
比重:1.0~1.4
粒度分布
粒度范围 (μm)    固体含量 范围 (%)    名义粒度 (μm)    累计 %以下    累计 %以上
  >1180     0.00     1180   100.00   0.00
  1180-600     0.00     600   100.00   0.00
  600-300     0.05     300   99.95   0.05
  300-212     0.66     212   99.29   0.71
  212-106     10.08     106   89.21   10.79
  106-53     18.59     53   70.62   29.38
  <53     70.62
pH(按照25℃供应):8.0~8.5SU
颜色:红~褐
工业矿物工业行业内采用的典型废物沉降系统一般是传统型或高速率增稠器。贮留池系统也应用于某些领域,例如,磷酸盐采矿业。离开砂石(工业矿物)的矿物加工阶段的废物流一般表现出以下特征:
总固体含量:5.0~20.0%W/V
比重:1.0~1.3
粒度分布
粒度范围 (μm)    固体含量 范围 (%)    名义粒度 (μm)    累计 %以下     累计 %以上
 >1180     0.93     1180     99.07     0.93
 1180-600     3.43     600     95.64     4.36
 600-300     21.79     300     73.85     26.15
 300-212     18.51     212     55.34     44.66
 212-106     24.55     106     30.79     69.21
 106-53     12.63     53     18.16     81.84
 <53     18.16
pH(按照25℃供应):7.0~8.0SU
颜色:红~橙
在煤炭工业行业内采用的典型废物沉降系统一般是这样类型的增稠器:传统、高速率,或深旋流器。离开煤炭工业的矿物加工阶段的废物流一般表现出以下特征:
总固体含量:1.0~8.0%W/V
比重:1.0~1.3ml/g
粒度分布
粒度范围 (μm) 固体含量 范围 (%)    名义粒度 (μm)     累计 %以下    累计 %以上
 >1180  0.00     1180     100.00     0.00
 1180-600  0.15     600     99.85     0.15
 600-300  4.12     300     95.73     4.27
 300-212  4.61     212     91.12     8.88
 212-106  7.29     106     83.83     16.17
 106-53  12.90     53     70.93     29.07
 <53  70.93
pH(按照25℃供应):7.5~8.5SU
颜色:黑
本发明方法当用于金属和矿物工业的这5个不同部门时都具有优势。一般而言,该方法适用于每个部门内的矿物加工操作的固/液分离阶段。特别是,离开矿物加工操作的分离阶段的废物流(即,尾矿)接受以絮凝剂溶液在固体接触容器(SCV)中的絮凝处理,和在调节固体沉降槽(CSSB)中的沉降和致密化处理,和随后致密化的尾矿与上层清液分离并,任选地,从CSSB中抽出和放入到贮留池中。
当该方法是金属和/或矿物回收方法时,主分离阶段可涉及此类加工中的传统分离工序当中任何一种。例如,它可涉及旋流分离淤浆或者它可涉及淤浆的浮选。
本发明的优点是形成悬浮固体含量较少的循环流。比较脏的循环流会对矿物加工操作产生负面影响并造成过多金属/矿物的流失,导致回收加工中需要的矿物加工试剂用量的增加并导致回收的金属/矿物中过多无价值固体的夹杂。
出自金属/矿物加工的含水废物是主要由废矿物颗粒在水中构成的淤浆。一般地,含水废矿物含有不超过20wt%,通常不超过10wt%总矿物固体,但一般含有至少0.1wt%,通常至少0.5wt%总矿物固体。该固体一般完全或主要由矿物细屑组成但可包括某些较粗的废物或某些较粗的有价值矿物,因此,较粗的材料能从废物中沉降,同时细屑保持在悬浮体中。矿物细屑一般占到废物干物质的至少20wt%,一般占到至少10wt%。
如果含水废矿物包含有价值粗矿物或其它粗、可沉降矿物,这些材料可在它流过流槽前往SCV的过程中从废物中沉降出来(例如,像在美国专利号5,688,404中描述的),或者这些有价值矿物可在进入本发明SCV处理之前在贮留池中沉降。于是,含有有价值矿物的废物可被导向沉降池的进口区域,而随着废物进入贮留池出现流速的下降,导致有价值矿物主要沉积在进口区域。有价值矿物随后可从进口区域的底部或者,恰当的话,从整个贮留池的底部通过挖掘来回收。
任选地,在粗材料初步沉降之后,含水废矿物随后流入到一个SCV中,该SCV既可以是在地上挖出的也可作为一台设备存在。该SCV可位于主贮留池、现有矿坑、坑道、紧急溢洪道、辅助储藏区域或者未开采区域的内部或其附近。在优选的实施方案中,SCV位于任何方便的地方,例如,位于主贮留池,更尤其是在主贮留池的底部或废物进口。SCV可以是挖出的,例如,在土地中挖至足够深度的方形,矩形、圆形或椭圆区域。任选地,SCV可以是一台制作的现有设备,或者在地面以上,在地平线处或者在地下。要求的话,SCV可加衬里,以便防止壁受到侵蚀,但这通常是不必要的。
本发明方法中的SCV的尺寸可在宽范围内变化,取决于流率。一般地,它们包含约6~约20英尺的深度或方便时更深,优选约10~约15英尺,其上表面面积(通常约为方形或圆形区域)应能提供每分钟每平方英尺表面面积0.01~1,优选0.1~0.5美加仑。所要求的表面面积依赖于废物的流率。该SCV提供絮凝剂与固体接触的最佳环境。一旦固体絮凝,SCV将通过堰和/或渠道向调节固体沉降槽(CSSB)出料。
由于采用SCV和与之相联系的CSSB以替代沉降塔,于是就有可能产生非常大的容积和成本效益非常好的深沉降区。
在CSSB内的上层清液层和增稠的沉降层由喂入到SCV的含水废物层形成。该上层清液层可除掉、用泵抽出或者采用其它方式从CSSB顶部抽出,只要此种移出不搅扰位于CSSB底部的增稠沉降层。一般地,上层清液层通过在CSSB基本上连续进料期间的溢流而被从CSSB移出,通常在相反的一端。上层清液层的移出可采用任何方便的方式,例如,它可通过渠道和管道流回到分离阶段,在此种情况下,CSSB可设置在任何合适的位置。
在一种实施方案中,CSSB可成形在已经基本上被基本为固体的矿物沉降物填满的贮留池中。因此,通过实施本发明,已经基本上被沉降物填满的贮留池可被赋予新的和非常重要的用途,只需要挖出或安装一个处理SCV,然后依靠该贮留池中的现有沉降物(在此种情况中起CSSB的作用)以提供对上层清液的最终澄清。由于此种纯化过程所导致的在池中沉降物的增加速率极其缓慢,以致可赋予该贮留池几乎无限延长的使用寿命。
术语“基本上填满”是指,贮留池已太浅以致不能再用于从沉降物中分离澄清上层清液,例如,由于流速的水平分量超过沉积速率的垂直分量。
在SCV中,含水废矿物流以介于0.05%到0.0005%范围的两种不同浓度的絮凝剂稀释,一种浓度是另一种的至少10倍,这是一种以最低絮凝剂用量优化絮凝操作的方式。絮凝剂可以固体形式加入到稀释水中,但更经常地,将它以预先配制的溶液形式,典型絮凝剂浓度介于约0.1~0.5wt%,按传统方式加入。含有两种不同浓度絮凝剂的稀释水可在废水进入SCV以后加入其中但也可以在它进入SCV之前加入到废水中。加入点可以在进入SCV的紧前面,或者它可位于大大提前的位置,例如,像在美国专利5,688,404中描述的那样。
在一种实施方案中,含有两种不同浓度絮凝剂的稀释水在废水流过向SCV中进料的混合装置时加入到其中。混合装置可以是一段管道或者其它合适的装置,例如,罐,或者在地下成形的小井,通过它,废水以足以促使絮凝剂很好地混入废物的湍流形式流过。湍流可仅靠流过管道时的流速或者靠挡板或者其它湍流诱导器,或者通过向管道内喷射水,来产生。要求的话,可设置机械转子、静态混合器或其它机械混合设备以达到絮凝剂向废物中恰当的混合,以致足以产生基本均一的絮凝。
沉降用絮凝剂的最有效剂量可根据传统试验方法选择。它一般介于0.01~1,优选约0.0125~约0.75,磅絮凝剂每吨正在絮凝的废物中的固体。
可按照这里所描述的选择工序来决定絮凝剂及其用量的选择,以便获得,一方面,上层清液的澄清度、深度和沉降速度与,另一方面,沉降物的可用泵抽送、增稠程度之间的最佳组合。
絮凝剂可以是任何能促进絮凝并因此使含水废物分离为上层清液和增稠沉降物的水溶性絮凝剂。该絮凝剂通常是由一种或多种烯属不饱和单体生成的可溶于水的絮凝剂。该单体可以是非离子、阴离子、阳离子的。类似地,絮凝剂可以是非离子、阴离子或阳离子的,或者它可以是两性的。
合适的阴离子单体包括烯属不饱和羧酸或磺酸单体,例如,丙烯酸、甲基丙烯酸和2-丙烯酰氨基-2-甲基丙磺酸(AMPS)(Lubrizol公司的美国商标)。丙烯酰胺是合适的非离子单体。合适的阳离子单体包括二烷基氨基烷基的(甲基)-丙烯酸酯和-丙烯酰胺,通常作为其季铵或酸加成盐,或者二烯丙基二甲基氯化铵的形式。
阴离子絮凝剂是优选的。
优选的阴离子絮凝剂是由下列组成的共聚物:5~70wt%,一般10~50wt%,阴离子单体,例如,丙烯酸(通常作为丙烯酸钠)和/或AMPS与其它单体,通常是丙烯酰胺。特别优选的阴离子共聚物包括MAGNAFLOC336、MAGNAFLOC358、MAGNAFLOC919、MAGNAFLOC1011、MAGNAFLOC3230、MAGNAFLOC4240、MAGNAFLOC5250、MAGNAFLOC6360,全部由汽巴特殊化学品公司,Suffolk,弗吉尼亚,出品。
合适的阳离子絮凝剂由下列构成:1~50wt%,通常2~15wt%阳离子单体,例如,二甲基.氨乙基-丙烯酸酯或-甲基丙烯酸酯的酸加成物或者季铵盐连同其它单体,通常是丙烯酰胺。特别优选的阳离子絮凝剂是MAGNAFLOC455或ZETAG7623,皆由汽巴特殊化学品公司,Suffolk,弗吉尼亚,出品。
絮凝剂的分子量一般应使絮凝剂的特性粘度(“IV”)(采用悬浮的水平粘度计,在缓冲至pH7的1N氯化钠中在20℃进行测定)至少是4dl/g,通常至少是8dl/g。当絮凝剂是阴离子的时,IV的典型值介于10~30dl/g,而当它是阳离子的时,IV的典型值介于8~15dl/g。
絮凝剂可按照公知的方式合成,例如,通过凝胶聚合、相逆转珠粒聚合或相逆转乳液聚合,或者通过任何其它合适的技术。
图2展示被指定为絮凝剂的聚合物1和聚合物2的稀释。这些絮凝剂可相同或不同。
在本发明的一种实施方案中,絮凝剂不同。优选的是,这两种絮凝剂为同一类型,例如,都是阴离子的,但分子量和/或电荷密度不同。优选的是,这两种絮凝剂都是阴离子的。
稀释的含水废矿物在调节固体沉降槽(CSSB)中的理论停留时间一般介于5min~5h,优选10min~3h。
增稠的矿物沉降物在明显低于上层清液的位置,和/或在其移出不会不期望地妨碍上层清液质量的时刻被从CSSB中移出。移出可以是连续或者不连续的。沉降物的固体含量越靠近CSSB的底部一般将越高并且,为了尽可能减少CSSB逐渐被沉降物填满的危险,因此期望的是从尽可能接近CSSB底部移出增稠的矿物沉降物。
从CSSB移出的沉降物一般具有至少是正在絮凝的原来稀的含水废矿物流固体含量的至少2倍,通常最高10倍。通常,增稠沉降物的固体含量介于约10wt%~约30wt%干固体。这是通过采集已知重量增稠沉降物样品并在标准实验室干燥烘箱中在已知温度(典型温度110℃)蒸发出液态组分或所含水来测定的。固体含量优选地在实际允许条件下应尽可能高,但不得高到使沉降物无法方便地用泵输送。
沉降物的移出优选用泵完成,例如,采用位于靠近CSSB这侧的地面上并通过连接管道伸到CSSB底部附近的固定泵,以便将增稠的沉降物从CSSB中抽出,或者采用飘浮在上层清液液面上并具有向下伸到CSSB底部附近的管子的泵。
增稠的沉降物被从CSSB转移到一个或多个最终贮留池中,在此,它沿着贮留池摊开并停留一段时间以沉降和蒸发从而形成所要求的最终、基本上固态沉降物。由于从CSSB移出的增稠沉降物的固体含量比传统废物高得多,故提供最终固体沉降物所要求的沉降和蒸发量比传统方法少得多,并且此时再试图回收任何残余上层清液,可能将变得没有什么意义(因为已经从CSSB回收和循环至工艺中的上层清液数量增加了)。因此,该一个或多个最终贮留池不具有一般认为需要的那么深的沉降容积。结果,该增稠的沉降物可用泵输送回到部分,或者几乎完全填满沉降物的贮留池中。
因此,本发明的进一步优点在于,它可同时提供(1)改善的上层清液回收(通常具有非常高的澄清度),同时(2)利用通常对许多目的来说认为太满和太浅的贮留池。
试验工序:絮凝剂溶液制备
范围和目的:将固体级絮凝剂溶解在水中以制备适合进一步分析的溶液。该工序采用原封供货的固体-级絮凝剂来制备名义浓度(参见下面注1)——可能考虑絮凝剂的干重以便制备出准确浓度的溶液(参见下面注2)。絮凝剂水溶液采用特殊润湿技术制备以避免聚集体的形成,因为这将妨碍溶解。
工序:[步骤1]在8盎司瓶子上标出适当产品细节。[步骤2]混合固体絮凝剂样品以保证它均一。[步骤3]向清洁、干燥的8-盎司瓶子中精确称取要求重量的固体絮凝剂。[步骤4]从分散器加入要求体积丙酮并轻轻晃动以打湿固体絮凝剂。[步骤5]从分散器加入要求体积去离子水。[步骤6]旋紧瓶子上的盖子并剧烈摇动直至絮凝剂完全分散在溶液整个体积中并充分溶胀,以致足以防止絮凝剂粘连在一起或粘在瓶壁上。如果絮凝剂聚集或粘在瓶壁上,则样品应作废。于是,整个制备工序必须重复。[步骤7]将装有絮凝剂溶液的样品瓶放在转鼓上并转动2h以提供促使絮凝剂完全溶解的充分搅拌。
注1:制备标称浓度所要求的絮凝剂和试剂数量:
     要求的絮凝剂 浓度(%) 絮凝剂数量(g)    丙酮数量(mL)    水量(mL)
    0.5%1.01.332.55.0   0.5±0.002g.1.0±0.002g.2.0±0.002g.2.5±0.002g.5.0±0.002g.   5±0.1ml.5±0.1ml.5±0.1ml.5±0.1ml.5±0.1ml.   95±0.5ml.95±0.5ml.144±0.5ml.93.5±0.5ml.90±0.5ml.
注2:精确浓度絮凝剂溶液的制备:
为制备100mL絮凝剂溶液:
絮凝剂重量(g)=要求的浓度(%)×100/絮凝剂的干重量(Dry Wt.ofFocculant)
试验程序:淤浆表征
范围和目的:以下方法被用来测定在金属和矿物工业中遇到的淤浆的固体含量。重要的是要知道,不同的工序的存在取决于样品是来自低固体工业排出物抑或来自湿法冶金或煤炭水洗间。来自工业排出物的样品往往具有合理程度高的溶解固体含量。来自湿法冶金工厂的样品往往是悬浮和溶解的固体双高。来自煤炭水洗的样品往往是高悬浮固体含量,但低溶解固体含量。
表征1:总固体含量
工序:(注:试验采取一式两份实施以保证测定结果的精确)。[步骤1]搅拌待测试淤浆以保证它均一。[步骤2]称重清洁、干燥100mL量筒,精确到0.01g。[步骤3]在搅拌淤浆的同时,利用250mL塑料烧杯将样品100+0.5mL淤浆倒入到预先称重的100mL量筒中。[步骤4]称重该量筒及其内容物,精确到0.01g。[步骤5]将整个样品转移到250mL玻璃烧杯(预先称重,精确到0.01g)中。用去离子水洗量筒并将全部洗水从量筒转移到烧杯中。[步骤6]将烧杯及其内容物放在110℃实验室烘箱中过夜至干——注意:如果短时间内需要该结果,则可将样品放在微波炉中但首先应遵循以下注意事项:(a)将一片开孔的粘贴薄膜覆盖在烧杯上面以防止材料因遗洒而损失;(b)如果完全干燥,应确保,水的样品也被放入到微波炉中,因为当完全干燥时微波炉绝对不能使用;以及(c)如果所干燥的样品基本上是煤炭或其它可燃性材料,则应确保样品不得灰化或燃烧。[步骤7]将烧杯及其经干燥内容物从烘箱转移到干燥皿中并等待10min让其冷却。[步骤8]再次称重烧杯及其干燥的内容物,精确到0.01g。
计算:
a.总固体含量,%(W/V)=(W4-W3)/V×100=S1(精确到0.1%)
其中:W4=烧杯及其干燥内容物的重量(g);W3=空烧杯重量(g);V=所取淤浆的体积(mL)。
b.总固体含量,%(W/W)=(W4-W3)/(W2-W1)×100=S2(精确到0.1%)
其中W2=量筒和淤浆的重量(g);W1=空量筒重量(g)
c.淤浆的比重(SG)=S1/S2(测定至2位小数)
表征2:悬浮固体含量
工序:(注:试验采取一式两份实施以保证测定结果的精确)。[步骤1]让标号为1的Whatman滤纸通过放在110℃实验室烘箱内至少10min以进行调节。[步骤2]转移滤纸到干燥皿中并让其冷却。称重精确到0.0001g。[步骤3]搅拌待测样品以保证它均一。[步骤4]称重清洁、干燥100mL量筒精确到0.01g。[步骤5]在搅拌淤浆的同时,利用250mL塑料烧杯将已知体积的淤浆样品(取决于预计的悬浮固体含量)倒入到预先称重的量筒中。[步骤6]称重量筒及其内容物精确到0.01g。[步骤7]过滤量筒的内容物并采用真空漏斗透过预先称重的滤纸洗涤。[步骤8]将滤纸及其内容物放入到110℃实验室烘箱中直至完全干燥。[步骤9]转移滤纸及其经干燥内容物到干燥皿中,并等待10min让其冷却。[步骤10]再次称重滤纸及其内容物精确到0.0001g。
计算:
a.悬浮固体含量,%(W/V)=(W8-W7)/V×100=S3(精确到0.1%)
其中:W8=滤纸及其干燥内容物的重量(g);W7=空滤纸重量(g);V=所取淤浆的体积(mL)。
b.悬浮固体含量,%(W/W)=(W8-W7)/(W6-W5)×100=S4(精确到0.1%)
其中W8=滤纸及其干燥内容物的重量(g);W7=空滤纸重量(g);W6=量筒和淤浆的重量(g);W5=空量筒重量(g)
表征3:溶解的固体含量
工序:[步骤1]搅拌要取样的淤浆以保证它均一。[步骤2]在搅拌淤浆的同时,利用250 mL塑料烧杯取已知体积样品(取决于预计的溶解固体含量和可用样品的体积)。[步骤3]在真空下过滤整个样品并透过一号Whatman滤纸在真空下洗涤流入到透明布氏漏斗中以除掉悬浮固体物质[步骤4]转移滤过的溶液连同洗水至适当大小、预先称重的玻璃烧杯中(如果烧杯尺寸<250mm,测定至最接近的0.0001g;如果>250mm,测定精确到0.01g)。[步骤5]将烧杯及其内容物放在110℃实验室烘箱中过夜至干——注意:如果短时间内需要该结果,则可将样品放在微波炉中但首先应遵循以下注意事项:(a)将一片开孔的粘贴薄膜覆盖在烧杯上面以防止材料因遗洒而损失;(b)如果完全干燥,应确保,一个水的样品也被放入到微波炉中,因为当完全干燥时微波炉绝对不能使用;以及(c)如果所干燥的样品基本上是煤炭或其它可燃性材料,则应确保样品不得灰化或燃烧。[步骤6]将烧杯及其干燥的内容物从烘箱转移到干燥皿中并等待10min让其冷却。[步骤7]再次称重烧杯及其干燥的内容物至与原烧杯最初称重一样的精确度(即,精确到0.0001g,或精确到0.01g)。
计算:
a.溶解固体含量,%(W/V)=(W12-W11)/V×100=S5(精确到0.1%)
其中:W12=烧杯和干燥内容物的重量(g);W11=空烧杯重量(g);V=所取淤浆的体积(mL)。
表征4:粒度分析
[注意:淤浆固体组分的粒度分布可能对絮凝剂表现和需要量具有显著影响,可采用湿筛分技术,正如在下面的程序中详细描述的,测定至62μm级分]
程序:[步骤1]将已知重量淤浆样品采样到适当大小的烧杯中。[步骤2]将筛网(一般1000μm、500μm、250μm、125μm和62μm筛目)按照(孔眼)递减顺序安放在级联的筛分设备中。[步骤3]将整个样品连同洗水倒入到顶部筛子中并透过每个筛网洗涤。[步骤4]小心,底部的筛网不要被堵死或溢流。[步骤5]一旦每个筛网都被彻底洗过,叠摞起筛网并进行干燥。[步骤6]称重每个筛网上的干燥固体。
计算:
a.淤浆的固体含量应首先按照下式测定:
存在的干固体的重量=(W-Sw)/100=Wt
其中:W=所采样品的重量(g);Sw=淤浆的总固体含量(%W/W-,即,S2)
b.每种粒度级分的截留量,%:
i.
Figure A20048003423100201
ii.
Figure A20048003423100202
iii.
Figure A20048003423100203
iv.etc.for%>筛网3;<筛网4和%>筛网4;<筛网5
v.
Figure A20048003423100204
其中:W1=筛网1上截留的固体重量(g);W2=筛网2上截留的重量;等等;W5=筛网5上截留的重量。
结果应按如下所述报告:
1)在每种粒度级分截留的百分数(%)(例如,在1000μm截留的,%)应精确至一位小数。
2)筛下的百分率,%(至一位小数)。
试验工序1:高稀释试验工作——单浓度
范围和目的:可通过引入稀释效应来减少絮凝剂的需要剂量。为确定能达到的絮凝剂减少程度,评估一系列剂量水平。此种方法与标准方法之间的主要区别是絮凝剂施加到淤浆中的方式。在传统方法中,絮凝剂溶液直接施加到淤浆中,并依靠在流槽中较剧烈的搅拌来提供适合发生絮凝的固体/絮凝剂界面,结果导致絮凝剂效力的可能降低。在本发明中,采用数量大得多的稀释水中,将絮凝剂溶液加入到其中。这导致大量极其稀的絮凝剂的形成,从而再加入到到来的淤浆中。由于此种大的稀释,对混合的要求降低了,并且固体与絮凝剂之间的接触增加了,从而使絮凝更有效并且絮凝剂剂量减少。
工序:[步骤1]制备0.5%絮凝剂溶液。[步骤2]稀释该絮凝剂溶液至所要求的浓度(一般0.05%)。[步骤3]取500mL淤浆到2000mL烧杯中。在刻度量筒中,取500mL水。[步骤4]向稀释水的量筒中,通过针筒,加入适当剂量水平絮凝剂溶液并将量筒颠倒以保证均一性。[步骤5]利用Heidolph顶部实验室搅拌器,其带有海船搅拌叶,以400rpm搅拌该淤浆。将含有絮凝剂的稀释水缓慢加入到淤浆中并继续搅拌30秒。[步骤6]转移该稀、絮凝的材料到1000mL量筒中并测定污泥线通过以下2个固定点之间所需要的时间:距液面(1000mL刻度)3cm和8cm。还应评估上层清液的浊度,采用分光光度计,配合用肉眼读取10min后底层流的体积。[步骤7]将所评估的每种产品画成沉降速率对剂量的曲线图。
计算:
a.最终固体含量(FC)=初始固体含量/2
b.达到要求剂量所需要的絮凝剂体积:
要求的絮凝剂 ( ing / t ) = FC × V × ( DG / 1000 ) 1000 × C
要求的絮凝剂 ( inlbs / ton ) = SD × V × DD 2420 × C
其中:DG=要求的剂量(克每公吨);DD=要求的剂量(磅每美吨);和
C=絮凝剂浓度。
c.沉积速率(cm/min)=300/ST
沉积速率(英寸/分)=118.11/ST
其中ST=沉降时间,s。
试验工序2:高稀释试验工作——双浓度
范围和目的:可通过配合双浓度(絮凝剂溶液)引入稀释效应来减少絮凝剂的需要剂量。为确定能达到的絮凝剂减少程度,评估一系列剂量水平。此种方法与标准高稀释——单浓度方法,之间的主要区别是絮凝剂施加到淤浆中的方式。在传统高稀释——单浓度方法中,仅絮凝剂溶液被施加到稀释水中,这导致大量极其稀的絮凝剂的形成,然后再加入到到来的淤浆中。由于此种大的稀释,对混合的要求降低了并且固体与絮凝剂之间的接触增加了。在本发明方法中,絮凝剂分2个阶段以2种不同浓度加入。第一阶段加入到稀溶液中从而产生一种极其稀的浓度;第二阶段以初始浓度加入到稀的、絮凝的材料中。这有效地令絮凝物结合,从而形成较大的絮凝物,后者随即较快地沉降。该第二次加入也有助于捕集任何尚未被第一阶段稀释加入所收集的细屑。
程序:[步骤1]制备0.5%絮凝剂溶液。[步骤2]稀释该絮凝剂溶液至所要求的浓度(一般0.05%)。[步骤3]取500mL淤浆到2000mL烧杯中。在量筒中,取500mL水。[步骤4]向稀释水的量筒中,通过针筒,加入适当剂量水平絮凝剂溶液的一半并将量筒颠倒以保证均一性。[步骤5]利用Heidolph顶部实验室搅拌器,其带有海船搅拌叶,以400rpm搅拌该淤浆。将含有絮凝剂的稀释水{浓度1}缓慢加入到淤浆中并继续搅拌10秒。[步骤6]加入絮凝剂溶液的第二个一半{浓度2}到稀、絮凝的淤浆中。再继续搅拌20s。[步骤7]转移该稀、絮凝的材料到1000mL量筒中并测定污泥线通过以下2个固定点之间所需要的时间:距液面(1000mL刻度)3cm和8cm。还应评估上层清液的浊度,采用分光光度计,配合用肉眼读取10min后底层流的体积。[步骤7]将所评估的每种产品画成沉降速率对剂量的曲线图。
计算:
a.最终固体含量(FC)=初始固体含量/2
b.达到要求剂量所需要的絮凝剂体积:
要求的絮凝剂 ( ing / t ) = FC × V × ( DG / 1000 ) 1000 × C
要求的絮凝剂 ( inlbs / ton ) = SD × V × DD 2420 × C
其中:DG=要求的剂量(克每公吨);DD=要求的剂量(磅每美吨);和C=絮凝剂浓度。
c.沉积速率(cm/min)=300/ST
沉积速率(英寸/分)=118.11/ST
其中ST=沉降时间,s。
下面的实施例描述应用于来自金属和矿物工业内各种不同部门的被作用物的某些本发明实施方案,但是本发明不限于这些实例。要知道,对所公开的实施方案可按照这里的公开内容做出许多改变,仍不偏离本发明精神和范围。因此,这些实施例不意味着对本发明范围的限制。相反,本发明的范围仅由所附权利要求及其等价物决定。在这些实施例中,给出的所有份数均指重量而言,除非另行指出。使用的所有絮凝剂都可从汽巴特殊化学品公司,Suffolk,弗吉尼亚,获得。
实施例1
在本实施例中详细给出的结果详细说明了3种不同絮凝剂加入方法如何作用于磷灰石粘土样品。每个表格代表一种不同絮凝剂产品的应用,以进一步展示,通过采用双浓度加入方法获得的性能改进不局限于某一孤立的情况并且,用每一种评估方法都取得了性能的好处。
絮凝剂:MAGNAFLOC336
  絮凝剂加入方法     剂量 沉积速率,in/min 底流体积,ml   上层清液浊度,NTU*
ppm lbs/T
  传统     2     0.48     0.20     380     790
    4     0.96     0.78     200     335
    6     1.44     5.97     120     179
  高稀释-单浓度     1     0.48     1.96     220     141
    1.5     0.72     3.48     165     102
    2     0.96     6.69     120     93
  高稀释-双浓度     1     0.48     8.68     100     82
    1.5     0.72     19.08     90     59
    2     0.96     47.24     80     71
*NTU=浊度测定的浊度单位
絮凝剂:MAGNAFLOC4240
  絮凝剂加入方法     剂量   沉积速率,in/min 底流体积,ml 上层清液浊度,NTU
ppm lbs/T
  传统     3     0.72     1.58     270     354
    4     0.96     4.12     120     234
    5     1.20     7.91     110     149
  高稀释-单浓度     1     0.48     3.42     160     119
    1.5     0.72     8.97     120     117
    2     0.96     12.73     100     96
  高稀释-双浓度     1     0.48     13.75     100     82
    1.5     0.72     17.73     90     70
    2     0.96     27.21     90     65
DP203-9832*
  絮凝剂加入方法     剂量 沉积速率,in/min 底流体积,ml   上层清液浊度,NTU
ppm lbs/T
  传统     3     0.72     0.55     275     366
    4     0.96     2.03     150     324
    5     1.20     7.83     120     173
  高稀释-单浓度     1     0.48     2.45     190     96
    1.5     0.72     5.34     130     74
    2     0.96     11.92     100     61
  高稀释-双浓度     1     0.48     5.99     120     63
    1.5     0.72     19.17     100     37
    2     0.96     39.37     90     38
*DP203-9832是阴离子研发的产品,基于与CibaMAGNAFLOC系列相同的化学成分。
下面给出的结果被外推以便详细预测为达到6in/min的目标沉积速率所要求的条件。在未达到目标沉积速率的情况下,采用了最接近目标的数值。
提供6in/min沉积速率的条件,采用MAGNAFLOC336
絮凝剂加入方法 剂量,lb/T    沉积速率in/min   底流体积,mL   上层清液浊度,NTU*
  传统     1.44     6.00     120     179
  高稀释-单浓度     0.91     6.00     128     94.5
  高稀释-双浓度     0.48     8.68     100     82
提供6in/min沉积速率的条件,采用MAGNAFLOC4240
絮凝剂加入方法 剂量,lb/T   沉积速率in/min   底流体积,mL   上层清液浊度,NTU*
传统     0.84     6.00     184     380
高稀释-单浓度     0.59     6.00     141     119
高稀释-双浓度     0.48     13.75     100     82
提供6in/min沉积速率的条件,采用DP203-9832
絮凝剂加入方法 剂量,lb/T   沉积速率in/min  底流体积,mL 上层清液浊度,NTU*
  传统   0.89     6.00     180     340
  高稀释-单浓度   0.75     6.00     125     73
  高稀释-双浓度   0.48     6.00     120     63
从上面3张表格可以清楚地看出,就每种评估的絮凝剂而言,双浓度加入方法都以最低剂量水平达到所要求的沉积速率(或更好,在MAGNAFLOC336和MAGNAFLOC4240的情况下)。该方法还提供底流体积和上层清液浊度两个方面的改进。
实施例2
采用上面描述的两次加入技术,下面的结果详细展示了2种不同絮凝剂以各种不同比例掺混施加的效果:
    产品 产品组合比例(A∶B)   剂量   沉积速率,in/min 底流体积,ml   上层清液浊度,NTU
    A     B  ppm  lbs/T
MAGNAFLOC336 DP203-9832    100∶0   1.5   0.63     4.15     160     184
  2   0.84     5.99     150     164
  2.5   1.05     12.99     130     130
    0∶100   1.5   0.63     4.20     170     127
  2   0.84     6.62     140     114
  2.5   1.05     11.99     130     89
    75∶25   1.5   0.63     3.05     220     73
  2   0.84     7.87     140     136
  2.5   1.05     14.60     130     109
    60∶40   1.5   0.63     3.40     190     171
  2   0.84     12.35     120     99
  2.5   1.05     17.84     120     101
    50∶50   1.5   0.63     3.28     190     164
  2   0.84     9.69     130     113
  2.5   1.05     17.58     130     102
    40∶60   1.5   0.63     2.95     200     163
  2   0.84     7.15     150     131
  2.5   1.05     12.98     130     95
    25∶75   1.5   0.63     4.12     170     141
  2   0.84     6.30     150     123
  2.5   1.05     11.59     130     92
下面的结果详细给出为达到6in/min沉积速率所要求的条件。
    产品   产品组合比例(A∶B) 剂量,lbs/T 底流体积,ml 上层清液浊度,NTU
    A     B
Magnafloc336 DP203-9832     100∶0   0.84     150     164
    0∶100   0.80     144     117
    75∶25   0.762     164     121
    60∶40   0.686     164     149
    50∶50   0.72     160     139
    40∶60   0.785     161     139
    25∶75   0.82     152     125
这些结果表明,双产品处理不仅提供性能的改善,而且这两个产品施加的比例也影响效果。
实施例3和4提供双浓度加入方法不限于磷灰石粘土的证据;它对于其它工业也有效。实施例3和4详细展示了分别对来自铁矿石工业和砂石工业的被作用物的效果。
实施例3
铁矿石——采用MAGNAFLOC370
  絮凝剂加入方法     剂量   沉积速率,in/min 底流体积,ml   上层清液浊度,NTU
ppm lbs/T
  传统     1.00     0.05     3.38     65     247
    1.50     0.07     4.76     60     121
    2.00     0.10     5.26     70     111
  高稀释-单浓度     0.50     0.05     5.99     70     135
    0.75     0.07     6.36     70     110
    1.00     0.10     6.80     70     76
  高稀释-双浓度     0.50     0.05     6.01     70     124
    0.75     0.07     7.62     70     102
    1.00     0.10     9.00     65     56
上表中的结果表明,双浓度加入方法既达到沉积速率的改善也达到上层清液浊度的改善。
实施例4
砂石——采用MAGNAFLOC5250
  絮凝剂加入方法     剂量   沉积速率,in/min 底流体积,ml 上层清液浊度,NTU
ppm lbs/T
  传统     4.00     0.048     4.86     160     29
    6.00     0.072     7.56     150     24
    8.00     0.096     9.92     140     27
  高稀释-单浓度     0.50     0.012     4.58     180     57
    0.75     0.018     5.35     170     51
    1.00     0.024     7.46     160     48
  高稀释-双浓度     0.50     0.012     6.07     160     60
    0.75     0.018     8.02     160     60
    1.00     0.024     8.73     160     53
下面的结果详细展示为达到6in/min的对比沉积速率,采用MAGNAFLOC5250所要求的体积。
  絮凝剂加入方法 剂量lbs/T   沉积速率,in/min 底流体积,ml 上层清液浊度,NTU
  传统 0.0575     6     156.0   26.5
  高稀释-单浓度 0.0200 6 166.5 49.5
  高稀释-双浓度 0.0120 6 160.0 60.0
从这些结果可以看出,为得到所要求的沉积速率,在双浓度加入方法中,需要传统方法所要求的剂量水平的1/5。获得的水质虽略微逊色但仍在回水的要求范围内,这将不会抹煞剂量明显降低带来的经济效益。

Claims (22)

1.一种金属/矿物回收和废物处理方法,包括主要分离阶段,其中载有金属/矿物的矿石加水配成淤浆并被分离为富集级分和含水金属/矿物废料级分,以及废物沉降阶段,其中含水金属/矿物废料级分在一个或多个沉降池中沉降从而提供增稠的沉降层和上层清液;而该废物沉降阶段包括将含水金属/矿物废料喂入到固体接触容器或其它絮凝室中,其中含水金属/矿物废料以含一种以上浓度的絮凝剂的水稀释,絮凝剂浓度之一是另一浓度的至少10倍高,在所述固体接触容器或其它絮凝室内,使稀释的含水废物絮凝,并在沉降槽中使稀释并絮凝的含水废物沉降,从而提供液态上层清液层和可用泵输送的增稠沉降层。
2.权利要求1的方法,其中一种浓度是另一种的至少30倍。
3.权利要求1或权利要求2的方法,其中25~75%絮凝剂被稀释到约0.005wt%或更低的浓度,而其余75~25%被稀释到约0.05wt%或更低的浓度。
4.权利要求3的方法,其中约75%稀释的絮凝剂被稀释到约0.005wt%或更低的浓度,而约25%被稀释到约0.05wt%或更低的浓度。
5.权利要求1~4中任何一项的金属/矿物回收和废物处理方法,其中絮凝剂是非离子、阴离子、阳离子或两性的。
6.权利要求1~5中任何一项的金属/矿物回收和废物处理方法,它是铁类金属、贱金属、贵金属、磷酸盐矿业、砂石或煤炭生产方法。
7.权利要求1~6中任何一项的方法,其中在固体接触容器内的流动速率是每分钟每平方英尺表面面积0.01~1美加仑。
8.权利要求1~7中任何一项的方法,其中固体接触容器被挖在或设在主要包含来自金属/矿物回收方法的固体沉降物的主贮留池中。
9.权利要求1~8中任何一项的方法,其中上层清液从主贮留池中的基本上为固体的沉降物上面流过,然后再循环到主分离阶段。
10.权利要求1~9中任何一项的方法,其中增稠的沉降物层的固体含量是稀、含水金属/矿物废料的固体含量的2~10倍。
11.权利要求8~10中任何一项的方法,其中一个或多个沉降池和一个或多个最终贮留池基本上填满了来自金属/矿物回收方法的基本上为固体的沉降物。
12.权利要求1~11中任何一项的方法,其中采用2种不同絮凝剂。
13.权利要求12的方法,其中这2种不同絮凝剂为同一类型但分子量和/或电荷密度不同。
14.权利要求1~13中任何一项的方法,其中这2种不同絮凝剂都是阴离子的。
15.权利要求1~14中任何一项的方法,其中回收方法是铁类金属回收方法。
16.权利要求1~15中任何一项的方法,其中回收方法是贱金属回收方法。
17.权利要求1~16中任何一项的方法,其中回收方法是贵金属回收方法。
18.权利要求1~17中任何一项的方法,其中回收方法是工业矿物回收方法。
19.权利要求18的方法,其中矿物选自工业矿物,包括化学和肥料矿物;建筑材料;粘土、陶瓷和耐火矿物;以及其它非金属矿物,选自:石棉、沥青岩、硅藻土、长石、石墨、石膏、宝石和石英。
20.权利要求1~19中任何一项的方法,其中回收方法是煤炭回收方法。
21.权利要求1~20中任何一项的方法,其中回收方法是磷灰石粘土回收方法。
22.权利要求1~21中任何一项的金属/矿物回收和废物处理方法,其中絮凝剂是特性粘度至少是4dl/g的水溶性聚合物。
CN200480034231.9A 2003-11-20 2004-11-10 金属/矿物回收和废物处理方法 Pending CN1882393A (zh)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
US52381403P 2003-11-20 2003-11-20
US60/523,814 2003-11-20
US10/914,699 2004-08-09

Publications (1)

Publication Number Publication Date
CN1882393A true CN1882393A (zh) 2006-12-20

Family

ID=37520159

Family Applications (1)

Application Number Title Priority Date Filing Date
CN200480034231.9A Pending CN1882393A (zh) 2003-11-20 2004-11-10 金属/矿物回收和废物处理方法

Country Status (3)

Country Link
CN (1) CN1882393A (zh)
UA (1) UA85067C2 (zh)
ZA (1) ZA200603336B (zh)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103167899A (zh) * 2010-09-29 2013-06-19 海玛沼气公司 营养物回收方法及其用途
CN107993018A (zh) * 2017-12-12 2018-05-04 上海第二工业大学 一种通沟污泥移动处置智慧运行方法
CN111135958A (zh) * 2020-02-28 2020-05-12 湖南有色金属研究院 一种疏水絮凝团聚浮选微细粒孔雀石的方法
CN113277606A (zh) * 2012-06-21 2021-08-20 桑科能源股份有限公司 提高的用于使稠细粒尾矿脱水的技术

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103167899A (zh) * 2010-09-29 2013-06-19 海玛沼气公司 营养物回收方法及其用途
CN113277606A (zh) * 2012-06-21 2021-08-20 桑科能源股份有限公司 提高的用于使稠细粒尾矿脱水的技术
CN107993018A (zh) * 2017-12-12 2018-05-04 上海第二工业大学 一种通沟污泥移动处置智慧运行方法
CN111135958A (zh) * 2020-02-28 2020-05-12 湖南有色金属研究院 一种疏水絮凝团聚浮选微细粒孔雀石的方法

Also Published As

Publication number Publication date
ZA200603336B (en) 2007-06-27
UA85067C2 (ru) 2008-12-25

Similar Documents

Publication Publication Date Title
CA2546112A1 (en) Metals/minerals recovery and waste treatment process
CN102180575B (zh) 含油污泥集中处理和资源化利用的处理方法
US7153436B2 (en) Method for enhancing cyclonic vessel efficiency with polymeric additives
CN1768009A (zh) 含水悬浮液的处理
US9656189B2 (en) Centrifuge process for dewatering oil sands tailings
CN104843955A (zh) 一种油气田钻井泥浆废弃物随钻处理系统及处理方法
CN108380397A (zh) 一种低浓度含云母方解石型萤石尾矿的回收方法
KR20100092773A (ko) 석탄회 정제 및 산물 회수방법
CN104668099A (zh) 一种微细粒钛铁矿的选择性絮凝浮选方法
CN1257774C (zh) 提取和提纯天然沸石的方法
CN104829070A (zh) 一种油气田钻井泥浆废弃物随钻处理系统
CA2787607C (en) A centrifuge process for dewatering oil sands tailings
US9371491B2 (en) Bitumen recovery from oil sands tailings
CN1882393A (zh) 金属/矿物回收和废物处理方法
CN108083510A (zh) 一种石材加工切割废水的处理方法
CN1883811A (zh) 炼铁高炉瓦斯泥分选综合利用方法
CN103909009B (zh) 造纸废弃物回收系统
CN103043811A (zh) 煤泥水高效浮沉分离处理工艺系统
EA005875B1 (ru) Способ разделения битуминозных песков
CN105645734A (zh) 一种用于萤石尾浆处理的污泥脱水循环设备及其应用
TW202020169A (zh) 脫硫渣去除石墨亮片等物質之資源化處理系統
US9579660B2 (en) Process for wet high intensity magnetic separation with flux amplifying matrix
CN106493149B (zh) 一种造纸厂垃圾预处理工艺
KR100724730B1 (ko) 청수를 이용한 슬러지 통합 처리방법
Amarjargal et al. Improving flocculation performance of copper flotation tailings by conventional and new technology polymers

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C02 Deemed withdrawal of patent application after publication (patent law 2001)
WD01 Invention patent application deemed withdrawn after publication