CN1847627A - 用于发动机扭矩控制的凸轮相位器和按需排量协调 - Google Patents
用于发动机扭矩控制的凸轮相位器和按需排量协调 Download PDFInfo
- Publication number
- CN1847627A CN1847627A CNA2005101288229A CN200510128822A CN1847627A CN 1847627 A CN1847627 A CN 1847627A CN A2005101288229 A CNA2005101288229 A CN A2005101288229A CN 200510128822 A CN200510128822 A CN 200510128822A CN 1847627 A CN1847627 A CN 1847627A
- Authority
- CN
- China
- Prior art keywords
- apc
- deexcitation
- cam phaser
- torque
- control system
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
Images
Classifications
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F01—MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
- F01L—CYCLICALLY OPERATING VALVES FOR MACHINES OR ENGINES
- F01L13/00—Modifications of valve-gear to facilitate reversing, braking, starting, changing compression ratio, or other specific operations
- F01L13/0005—Deactivating valves
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F02—COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
- F02D—CONTROLLING COMBUSTION ENGINES
- F02D41/00—Electrical control of supply of combustible mixture or its constituents
- F02D41/0002—Controlling intake air
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F02—COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
- F02D—CONTROLLING COMBUSTION ENGINES
- F02D41/00—Electrical control of supply of combustible mixture or its constituents
- F02D41/008—Controlling each cylinder individually
- F02D41/0087—Selective cylinder activation, i.e. partial cylinder operation
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F01—MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
- F01L—CYCLICALLY OPERATING VALVES FOR MACHINES OR ENGINES
- F01L1/00—Valve-gear or valve arrangements, e.g. lift-valve gear
- F01L1/34—Valve-gear or valve arrangements, e.g. lift-valve gear characterised by the provision of means for changing the timing of the valves without changing the duration of opening and without affecting the magnitude of the valve lift
- F01L1/344—Valve-gear or valve arrangements, e.g. lift-valve gear characterised by the provision of means for changing the timing of the valves without changing the duration of opening and without affecting the magnitude of the valve lift changing the angular relationship between crankshaft and camshaft, e.g. using helicoidal gear
- F01L2001/34486—Location and number of the means for changing the angular relationship
- F01L2001/34496—Two phasers on different camshafts
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F01—MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
- F01L—CYCLICALLY OPERATING VALVES FOR MACHINES OR ENGINES
- F01L2800/00—Methods of operation using a variable valve timing mechanism
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F02—COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
- F02D—CONTROLLING COMBUSTION ENGINES
- F02D41/00—Electrical control of supply of combustible mixture or its constituents
- F02D41/0002—Controlling intake air
- F02D2041/001—Controlling intake air for engines with variable valve actuation
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F02—COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
- F02D—CONTROLLING COMBUSTION ENGINES
- F02D41/00—Electrical control of supply of combustible mixture or its constituents
- F02D41/0002—Controlling intake air
- F02D2041/002—Controlling intake air by simultaneous control of throttle and variable valve actuation
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F02—COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
- F02D—CONTROLLING COMBUSTION ENGINES
- F02D2250/00—Engine control related to specific problems or objectives
- F02D2250/18—Control of the engine output torque
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02T—CLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
- Y02T10/00—Road transport of goods or passengers
- Y02T10/10—Internal combustion engine [ICE] based vehicles
- Y02T10/40—Engine management systems
Landscapes
- Engineering & Computer Science (AREA)
- Mechanical Engineering (AREA)
- General Engineering & Computer Science (AREA)
- Chemical & Material Sciences (AREA)
- Combustion & Propulsion (AREA)
- Output Control And Ontrol Of Special Type Engine (AREA)
- Combined Controls Of Internal Combustion Engines (AREA)
- Valve Device For Special Equipments (AREA)
Abstract
一种用于调节可在激活模式和去激活模式下工作的按需确定排量发动机的操作的扭矩控制系统,其包括可调节进入到发动机中的空气流量的节气门,以及可调节发动机的扭矩输出的凸轮相位器。第一模块基于所需的去激活歧管绝对压力(MAP)和所需的质量空气流量(MAF)来确定节气门面积,而第二模块基于发动机速度和过渡性每气缸空气量(APC)来确定所需的凸轮相位器位置,其中过渡性每气缸空气量基于所需的去激活APC和所需的已激活APC之一来确定。第三模块基于节气门面积产生节气门控制信号,以控制该节气门,而第四模块基于所需凸轮相位器位置产生凸轮相位器控制信号,以控制该凸轮相位器。
Description
技术领域
本发明涉及发动机控制系统,更具体地涉及在按需确定排量(DOD)发动机中协调凸轮轴的控制。
背景技术
内燃机在气缸内燃烧空气燃料混合物以驱动活塞,这可以产生驱动扭矩。进入发动机中的空气流量通过节气门来调节。更具体地说,节气门可以调节气门面积,以增大或减小进入发动机中的空气流量。在节气门面积增大时,进入发动机中的空气流量增大。燃料控制系统可调节燃料注射系统,以便为气缸提供所需的空气/燃料混合物。可以理解,增加进进气缸的空气和燃料可以提高发动机的扭矩输出。
一些内燃机包括可在特定低负载工作状况下去激活气缸发动机控制系统。例如,八缸发动机可以只利用四个缸的方式来工作,以便通过降低泵送损耗来提高燃料的经济性。这一过程通常称为按需确定排量或DOD。利用了所有发动机气缸的操作称为激活模式。去激活模式指只利用了少于所有发动机气缸的操作(一个或多个气缸不工作)。在去激活模式中,点火的气缸更少一些。结果,可用于驱动车辆传动系和附件(例如交流发电机、冷却泵、交流压缩机)的驱动扭矩更少。然而,由于因去激活的气缸不吸入和压缩新鲜进气而导致空气泵送损耗下降,因此发动机效率提高。
已经开发了发动机控制系统来精确地控制发动机的扭矩输出,以便取得所需的扭矩。然而,传统的发动机控制系统无法按需精确控制发动机的扭矩输出。另外,传统的发动机控制系统无法按需快速响应控制信号,或者在会影响发动机扭矩输出的各种装置之间协调发动机的扭矩控制。
发明内容
因此,本发明提供了一种用于调节可在激活模式和去激活模式下工作的按需确定排量发动机的操作的扭矩控制系统。该扭矩控制系统包括可调节进入到发动机中的空气流量的节气门,以及可调节发动机的扭矩输出的凸轮相位器。第一模块基于所需的去激活歧管绝对压力(MAP)和所需的质量空气流量(MAF)来确定节气门面积,而第二模块基于发动机速度和过渡性每气缸空气量(APC)来确定所需的凸轮相位器位置,其中过渡性每气缸空气量基于所需的去激活APC和所需的已激活APC之一来确定。第三模块基于节气门面积产生节气门控制信号,以控制该节气门,而第四模块基于所需的凸轮相位器位置产生凸轮相位器控制信号,以控制该凸轮相位器。
在另一特征中,凸轮相位器包括可调节进气凸轮轴相对于发动机旋转位置的相位角度的进气凸轮相位器。
在另一特征中,凸轮相位器包括可调节排气凸轮轴相对于发动机旋转位置的相位角度的排气凸轮相位器。
在另一特征中,扭矩控制系统还包括可基于发动机速度、DOD模式和扭矩请求来确定所需的去激活MAP的第五模块。
在另一特征中,扭矩控制系统还包括可基于所需的去激活APC来确定所需的MAF的第五模块。
在另一特征中,扭矩控制系统还包括可基于扭矩请求和DOD模式来确定所需的去激活APC的第五模块。
在另一特征中,基于APC校正因子来校正所需的去激活APC。APC校正因子基于扭矩请求和扭矩估计来确定。
从下文所提供的详细描述中可以清楚适用本发明的其它领域。应当理解,虽然该详细描述和特定示例显示了本发明的优选实施例,但仅是用于说明的目的,并不限制本发明的范围。
附图说明
从以下详细描述和附图中可以更全面地理解本发明,其中:
图1是根据本发明用于发动机的示范性扭矩控制系统的示意性图示;
图2是显示了本发明的扭矩控制系统所执行的步骤的流程图;
图3是显示了根据本发明的可提供扭矩控制的模块的框图;和
图4是显示了根据本发明的可提供扭矩控制的图3所示模块的备选配置的框图。
具体实施方式
优选实施例的下述描述本质上仅是示范性的,并不用于限制本发明、其应用或用法。为简洁起见,在图中将使用相同的标号来标识类似的元件。如本文所用,激活模式指使用所有发动机气缸的发动机操作。去激活模式指使用数量少于所有发动机气缸(一个或多个气缸未用)的发动机操作。如本文所用,用语“模块”指专用集成电路(ASIC)、电子电路、执行一个或多个软件或固件程序的处理器(共享的、专用的或成组的)和存储器、组合逻辑电路和/或其它可提供所述功能的适合元件。
下面参照图1,系统10包括燃烧空气燃料混合物以产生驱动扭矩的发动机12。空气通过节气门16吸入到进气歧管14中。节气门16可调节进入到进气歧管14内的质量空气流量。进气歧管14内的空气分配到气缸18中。虽然这里显示了两个气缸18,但可以理解,本发明的可协调扭矩控制系统可在具有包括但不限于3、4、5、6、8、10以及12个气缸的多气缸发动机中实现。
燃料喷射器(未示出)喷射燃料,燃料在通过进气口被吸入到气缸18中时与空气相结合。燃料喷射器可以是与电子或机械燃料喷射系统20相关联的喷射器、喷嘴或者化油器或用于将燃料与吸入空气相混合的另一系统的端口部分。可以控制燃料喷射器,以便在每个气缸18内提供所需的空气燃料(A/F)比。
进气阀22选择性地打开和关闭,以使空气/燃料混合物进入到气缸18中。进气阀位置由进气凸轮轴24调节。活塞(未示出)压缩气缸18内的空气/燃料混合物。火花塞26点燃空气/燃料混合物,这可驱动气缸18中的活塞。活塞接着又驱动曲轴(未示出)以产生驱动扭矩。在排气阀28处于打开位置时,气缸18内的燃烧排气被迫流出排气口。排气阀的位置由排气凸轮轴30来调节。排气在排气系统中进行处理,并被释放到大气中。虽然显示的是单个进气阀22和排气阀28,但可以理解,发动机12的每个气缸18可包括多个进气阀22和排气阀28。
发动机系统10包括可分别调节进气凸轮轴24和排气凸轮轴30的旋转定时的进气凸轮相位器32和排气凸轮相位器34。更具体地说,相应进气凸轮轴24和排气凸轮轴30的定时或相角可相对于彼此或相对于气缸18内的活塞位置或曲轴位置延迟或提前。这样,进气阀22和排气阀28的位置可相对于彼此或相对于气缸18内的活塞位置进行调节。通过调节进气阀22和排气阀28的位置,便可调节吸入到气缸18内的空气/燃料混合物的数量,从而调节发动机扭矩。
在发动机操作期间,选择性地去激活一个或多个选定的气缸18’。当发动机12进入操作点以实现去激活模式时,控制模块便使发动机12转换到去激活模式。在一个示范性实施例中,去激活N/2个气缸18,不过也可去激活一个或多个气缸。在去激活选定的气缸18’时,控制模块便增大其余或已激活气缸18的功率输出。去激活气缸18’的进气口和排气口被关闭,以减少泵送损失。发动机负载基于进气MAP、气缸模式和发动机速度来确定。更具体地说,如果对于给定RPM而言MAP低于阈值水平,则认为发动机负载较轻,因此发动机12可在去激活模式下工作。如果对于给定RPM而言MAP高于阈值水平,则认为发动机负载较重,因此发动机12可在激活模式下工作。控制模块基于发动机负载而使发动机12在激活模式和去激活模式之间转换。
控制模块40基于根据本发明的发动机扭矩控制方法来操作发动机。更具体地说,控制模块40基于发动机扭矩请求(TREQ)和由节气门位置传感器(TPS)42生成的节气位置信号来产生节气控制信号。TREQ基于操作员输入43如加速器踏板位置来产生。控制模块40命令节气门16到稳态位置,以取得有效的节气门面积(ATHR)。节气门执行机构45基于节气门控制信号来调节节气门位置。节气门执行机构可包括电动机或步进电机,其可提供对节气门位置的有限和/或粗略的控制。
控制模块40还调节燃料注射系统20和凸轮轴相位器32、34,以便实现TREQ。更具体地说,控制模块40基于去激活模式下所需每气缸空气量(APC)、激活模式下所需APC以及模式信号来产生凸轮相位器控制信号,如以下更进一步的详细讨论。
进气温度(IAT)传感器44响应进气流的温度,产生进气温度信号。质量空气流量(MAF)传感器46响应进气流的质量产生MAF信号。歧管绝对压力(MAP)传感器48响应进气歧管14内的压力产生MAP信号。发动机冷却剂温度传感器50响应冷却剂温度产生发动机温度信号。发动机速度传感器52响应发动机12的旋转速度(即RPM)产生发动机速度信号。由传感器产生的每个信号由控制模块40接收。
本发明的发动机扭矩控制系统基于发动机12的ATHR和激活/去激活模式来调节发动机的扭矩输出。ATHR基于所需的歧管空气流量(MAFDES)和所需的去激活的歧管绝对压力(MAPDES_DEACT)来确定。MAPDES_DEACT指示在去激活模式下工作时所需的MAP。MAFDES基于所需的去激活的每气缸空气量(APCDES_DEACTx)来确定,其特征由以下关系描述:
其中:S是点火火花定时;
I是进气凸轮相位角;
E是排气凸轮相位角;
AF是空气/燃料比;
OT是油温;
N是气缸数量;以及
KCVL是转换因子(例如对于八缸发动机而言,KCVL=15)。
MAPDES_DEACT基于RPM和TREQ来确定的,其特征用以下关系描述:
MAPDES_DEACT=T-1 MAP_DEACT((TREQ+f(ΔT)),S,I,E,AF,OT,N);
其中,ΔT是第一和第二扭矩估计之间的差。MAFDES、APCDES_DEACT以及MAPDES_DEACT的计算类似于2003年9月17日提交的共同转让的美国专利申请No.10/664172中所公开的那样,该申请的公开内容通过引用全部明确结合于本文中。
发动机扭矩控制系统还基于APCDES_DEACT和所需的已激活APC(APCDES_ACT)来产生凸轮相位器控制信号。APCDES_ACT基于加速器踏板位置(PP)和发动机速度(RPM)来确定。
现在参照图2,下面将更详细地说明发动机扭矩控制系统。在步骤100中,控制确定判断发动机是否在运行。如果发动机未运行,则控制结束。如果发动机在运行,则在步骤102中控制判断发动机12是否在去激活模式下工作。如果发动机未处于去激活模式,则控制返回到步骤100。
如果发动机在去激活模式下工作,则在步骤104中控制测量当前发动机速度(RPM)。在步骤106中,控制基于踏板位置(PP)和RPM测量结果以及经过校准的查询表来计算所需的已激活的每气缸空气量APCDES_ACT。APCDES_ACT的特征由以下等式描述:
APCDES_ACT=f(PP,RPM)
在步骤108中,控制产生扭矩请求(TREQ)。TREQ基于APCDES_ACT和利用稳态扭矩估计器得到的稀释估计,这在2004年3月9日授权的共同转让的美国专利No.6704638中有详细讨论,其公开内容通过引用明确结合到本文中。TREQ的特征由以下等式描述:
TREQ=TAPC_ACT(APCDES_ACT,S,I,E,AF,OT,N)
在步骤110中,控制基于TREQ和当前DOD模式(即激活模式、去激活模式)来计算所需的去激活的每气缸空气量(APCDES_DEACT)。APCDES_DEACT基于逆扭矩模型,其特征由以下等式描述:
APCDES_DEACT=T-1 APC_DEACT(TREQ,S,I,E,AF,OT,N)
在步骤112中,控制基于当前发动机控制信号的反馈来产生扭矩估计(TEST)。在步骤114中,控制基于TREQ和TEST来计算每气缸空气量校正(APCCORR)。在步骤116中,控制基于校正因子(APCCORR)来校正APCDES_DEACT。APCCORR基于TREQ和TEST。在步骤118中,控制基于经校正的APCDES_DEACT来计算所需的质量空气流量(MAFDES)。MAFDES的特征可由以下等式描述:
在步骤120中,控制基于RPM、DOD模式以及TREQ来计算所需的去激活的歧管绝对压力(MAPDES_DEACT)。MAPDES_DEACT的特征可由以下等式描述:
MAPDES_DEACT=T-1 MAP_DEACT((TREQ+f(ΔT)),S,I,E,AF,OT,N);
其中,ΔT是去激活的MAP和基于APC的扭矩估计之间的滤波后差值。在步骤122中,控制基于MAPDES_DEACT和MAFDES来确定ATHR。
ATHR的特征可由以下等式描述:
其中B是大气压强,而RGAS是理想气体常数。
在步骤124中,控制利用低通滤波器来对APCDES_ACT和APCDES_DEACT滤波。在步骤128中,控制基于过渡APC(APCTRANS)和RPM来确定所需的进气凸轮相位器位置(IDES)和/或所需的排气凸轮相位器位置(EDES)。在步骤130中,控制基于ATHR、IDES和EDES来操作发动机。APCTRANS根据以下关系式,基于DOD模式、APCDES_ACT和APCDES_DEACT来确定:
当从激活模式过渡到去激活模式时,APCTRANS=APCDES_ACT·K;和
当从去激活模式过渡到激活模式时,APCTRANS=APCDES_DEACT+S。K是过渡变量,S是使APC从APCDES_DEACT斜升到APCDES_ACT的步长。当APCTRANS等于APCDES_ACT时,S等于零;当APCTRANS大于APCDES_ACT时,S等于增量(Δ)。
参照s图3,下面将详细讨论执行发动机扭矩控制的示范性模块。这些模块包括APCDES_ACT模块200、TREQ模块202、APCDES_DEACT计算模块204、TEST计算模块206、校正模块208、MAFDES计算模块210、MAPDES_DEACT计算模块212、APCTHR计算模块214、前馈模块216、IDES和/或EDES计算模块218、发动机控制模块220和凸轮相位器控制模块222。
APCDES_ACT模块200基于RPM和PP来确定APCDES_ACT。APCDES_ACT提供给TREQ模块202,并且通过滤波器224(如低通滤波器)提供给前馈模块216。TREQ模块202计算TREQ,并将TREQ提供给求和器226、APCDES_DEACT计算模块204以及MAPDES_DEACT计算模块212。
APCDES_DEACT计算模块204基于TREQ和DOD模式来计算APCDES_DEACT,并将APCDES_DEACT提供给求和器228。TEST计算模块206计算TEST并将其提供给求和器226。求和器226提供TREQ和TEST之间的差值,并将该差值提供到校正模块208。APCCORR由校正模块208确定,并被提供给求和器228。求和器228基于APCDES_DEACT与APCCORR之和来校正APCDES_DEACT。经校正的APCDES_DEACT提供给MAFDES计算模块210,并且通过滤波器224提供给经校正的前馈模块216。
MAFDES计算模块210基于经校正的APCDES_DEACT来计算MAFDES,并将MAFDES提供给ATHR计算模块214。MAPDES_DEACT计算模块212基于RPM、DOD模式以及TREQ来计算MAPDES_DEACT,并将MAPDES_DEACT提供给ATHR计算模块214。ATHR计算模块214基于MAFDES和MAPDES_DEACT来计算ATHR,并将ATHR提供给发动机控制模块220。发动机控制模块220基于ATHR产生控制信号。
前馈模块216基于APCDES_DEACT、APCDES_ACT和DOD模式来确定APCTRANS。APCTRANS被提供给IDES和EDES计算模块218。IDES和EDES计算模块218基于RPM和APCTRANS来计算IDES和EDES。IDES和EDES计算模块218将IDES和EDES提供给凸轮相位器控制模块222,该模块基于IDES和EDES产生控制信号。
现在参照图4,其中显示了图3所示示范性模块的备选配置。该备选配置基于TEST来校正TREQ。更具体地说,校正模块208基于TEST来确定扭矩校正因子(TCORR)。求和器229基于TREQ和TCORR来提供经过校正的TREQ。经过校正的TREQ被提供给MAPDES_DEACT计算模块212和APCDES_DEACT计算模块204。这样,来自APCDES_DEACT计算模块204的APCDES_DEACT未经校正就被直接提供给MAFDES计算模块210。其余模块如以上参照图3所述那样起作用。
现在,本领域技术人员可根据以上描述理解,可以各种形式来实施本发明的广义教导。因此,虽然已联系本发明的特定示例对本发明作了描述,但不应将本发明的真正范围局限于此,因为本领域技术人员在研读附图、本说明书以及如下权利要求之后,将会清楚其它修改形式。
Claims (31)
1.一种用于调节可在激活模式和去激活模式下工作的按需确定排量发动机的操作的扭矩控制系统,包括:
可调节进入所述发动机的空气流量的节气门;
可调节所述发动机的扭矩输出的凸轮相位器;
第一模块,其可基于所需的去激活歧管绝对压力(MAP)和所需的质量空气流量(MAF)来确定节气门面积;
第二模块,其可基于发动机速度和过渡性每气缸空气量(APC)来确定所需的凸轮相位器位置,所述每气缸过渡空气量基于所需的去激活APC和所需的已激活APC之一来确定;
第三模块,其可基于节气门面积产生节气门控制信号,以控制所述节气门;以及
第四模块,其可基于所述所需凸轮相位器位置产生凸轮相位器控制信号,以控制所述凸轮相位器。
2.如权利要求1所述的扭矩控制系统,其特征在于,所述凸轮相位器包括可调节进气凸轮轴相对于所述发动机的旋转位置的相角的进气凸轮相位器。
3.如权利要求1所述的扭矩控制系统,其特征在于,所述凸轮相位器包括可调节排气凸轮轴相对于所述发动机的旋转位置的相角的排气凸轮相位器。
4.如权利要求1所述的扭矩控制系统,其特征在于,所述扭矩控制系统还包括第五模块,其可基于所述发动机速度、DOD模式和扭矩请求来确定所述所需的去激活MAP。
5.如权利要求1所述的扭矩控制系统,其特征在于,所述扭矩控制系统还包括第五模块,其可基于所述所需的去激活APC来确定所述所需的MAF。
6.如权利要求1所述的扭矩控制系统,其特征在于,所述扭矩控制系统还包括第五模块,其可基于所述扭矩请求和所述模式来确定所述所需的去激活APC。
7.如权利要求1所述的扭矩控制系统,其特征在于,所述所需的去激活APC基于APC校正因子来校正。
8.如权利要求7所述的扭矩控制系统,其特征在于,所述APC校正因子基于扭矩请求和扭矩估计来确定。
9.一种用于调节可在激活模式和去激活模式下工作的按需确定排量发动机的扭矩输出的方法,包括:
基于去激活的所需歧管绝对压力(MAP)和所需的质量空气流量(MAF)来确定节气门面积;
基于发动机速度和过渡性每气缸空气量(APC)来确定所需的凸轮相位器位置,所述每气缸过渡空气量基于所需的去激活APC和所需的已激活APC之一来确定;
基于所述节气门面积来产生节气门控制信号;
基于所述所需凸轮相位器位置来产生凸轮相位器控制信号;
基于所述节气门控制信号来调节节气门,以便调整进入所述发动机的空气流量;和
基于所述凸轮相位器控制信号来调节凸轮相位器,以便调整所述发动机的输出扭矩。
10.如权利要求9所述的方法,其特征在于,所述凸轮相位器包括可调节进气凸轮轴相对于所述发动机的旋转位置的相角的进气凸轮相位器。
11.如权利要求9所述的方法,其特征在于,所述凸轮相位器包括可调节排气凸轮轴相对于所述发动机的旋转位置的相角的排气凸轮相位器。
12.如权利要求9所述的方法,其特征在于,所述方法还包括基于所述发动机速度、DOD模式和扭矩请求来确定所述所需的去激活MAP。
13.如权利要求9所述的方法,其特征在于,所述方法还包括基于所述所需的去激活APC来确定所述所需的MAF。
14.如权利要求9所述的方法,其特征在于,所述方法还包括基于所述扭矩请求和所述模式来确定所述所需的去激活APC。
15.如权利要求9所述的方法,其特征在于,所述所需的去激活APC基于APC校正因子来校正。
16.如权利要求15所述的方法,其特征在于,所述APC校正因子基于扭矩请求和扭矩估计来确定。
17.一种用于调节可在激活模式和去激活模式下工作的按需确定排量发动机的操作的扭矩控制系统,包括:
可调节进入所述发动机的空气流量的节气门;
可调节所述发动机的扭矩输出的凸轮相位器;和
控制模块,所述控制模块可基于所需的去激活歧管绝对压力(MAP)和所需的质量空气流量(MAF)来确定节气门面积,基于发动机速度和过渡性每气缸空气量(APC)来确定所需的凸轮相位器位置,其中所述每气缸过渡空气量基于所需的去激活APC和所需的已激活APC之一来确定,并且可基于所述节气门面积产生节气门控制信号,以控制所述节气门,以及可基于所述凸轮相位器位置产生凸轮相位器控制信号,以控制所述凸轮相位器。
18.如权利要求17所述的扭矩控制系统,其特征在于,所述凸轮相位器包括可调节进气凸轮轴相对于所述发动机的旋转位置的相角的进气凸轮相位器。
19.如权利要求17所述的扭矩控制系统,其特征在于,所述凸轮相位器包括可调节排气凸轮轴相对于所述发动机的旋转位置的相角的排气凸轮相位器。
20.如权利要求17所述的扭矩控制系统,其特征在于,所述控制模块可基于所述发动机速度、DOD模式和扭矩请求来确定所述所需的去激活MAP。
21.如权利要求17所述的扭矩控制系统,其特征在于,所述控制模块可基于所述所需的去激活APCACT来确定所述所需的MAF。
22.如权利要求17所述的扭矩控制系统,其特征在于,所述控制模块可基于所述扭矩请求和所述DOD模式来确定所述所需的去激活APC。
23.如权利要求17所述的扭矩控制系统,其特征在于,所述所需的去激活APC基于APC校正因子来校正。
24.如权利要求23所述的扭矩控制系统,其特征在于,所述APC校正因子基于扭矩请求和扭矩估计来确定。
25.一种用于调节可在激活模式和去激活模式下工作的按需确定排量发动机的扭矩输出的方法,包括:
基于去激活的所需歧管绝对压力(MAP)和所需的质量空气流量(MAF)来确定节气门面积;
基于发动机速度和过渡性每气缸空气量(APC)来确定所需的进气凸轮相位器位置(IDES)和所需的排气凸轮相位器位置(EDES),所述每气缸过渡空气量基于所需的去激活APC和所需的已激活APC之一来确定;
基于所述节气门面积来产生节气门控制信号;
基于所述IDES和EDES来产生凸轮相位器控制信号;
基于所述节气门控制信号来调节节气门,以便调整进入所述发动机的空气流量;和
基于所述凸轮相位器控制信号来调节进气凸轮相位器,以便调整所述发动机的所述输出扭矩;和
基于所述凸轮相位器控制信号来调节排气凸轮相位器,以便调整所述发动机的所述输出扭矩。
26.如权利要求25所述的方法,其特征在于,所述进气和排气凸轮相位器分别调节所述进气和排气凸轮轴相对于所述发动机的旋转位置的相角。
27.如权利要求25所述的方法,其特征在于,所述方法还包括基于所述发动机速度、DOD模式和扭矩请求来确定所述所需的去激活MAP。
28.如权利要求25所述的方法,其特征在于,所述方法还包括基于所述所需的去激活APC来确定所述所需的MAF。
29.如权利要求25所述的方法,其特征在于,所述方法还包括基于所述扭矩请求和所述模式来确定所述所需的去激活APC。
30.如权利要求25所述的方法,其特征在于,所述所需的去激活APC基于APC校正因子来校正。
31.如权利要求30所述的方法,其特征在于,所述APC校正因子基于扭矩请求和扭矩估计来确定。
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US11/001,709 US6966287B1 (en) | 2004-12-01 | 2004-12-01 | CAM phaser and DOD coordination for engine torque control |
US11/001709 | 2004-12-01 |
Publications (2)
Publication Number | Publication Date |
---|---|
CN1847627A true CN1847627A (zh) | 2006-10-18 |
CN100432399C CN100432399C (zh) | 2008-11-12 |
Family
ID=35344751
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CNB2005101288229A Active CN100432399C (zh) | 2004-12-01 | 2005-12-01 | 用于发动机扭矩控制的凸轮相位器和按需排量协调 |
Country Status (3)
Country | Link |
---|---|
US (1) | US6966287B1 (zh) |
CN (1) | CN100432399C (zh) |
DE (1) | DE102005057067A1 (zh) |
Cited By (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN101240752B (zh) * | 2006-11-17 | 2010-12-08 | 通用汽车环球科技运作公司 | 处于高压比状态下的发动机转矩控制 |
CN103422996A (zh) * | 2012-05-22 | 2013-12-04 | 通用汽车环球科技运作有限责任公司 | 用于气缸去激活和激活过渡的气门控制系统和方法 |
CN103670760A (zh) * | 2012-09-13 | 2014-03-26 | 通用汽车环球科技运作有限责任公司 | 协调的发动机扭矩控制 |
CN104040152A (zh) * | 2011-11-18 | 2014-09-10 | 大陆汽车有限公司 | 用于切断和激活内燃机气缸的方法 |
CN105526015A (zh) * | 2014-10-21 | 2016-04-27 | 现代自动车株式会社 | 非对称停缸发动机 |
US9567928B2 (en) | 2012-08-07 | 2017-02-14 | GM Global Technology Operations LLC | System and method for controlling a variable valve actuation system to reduce delay associated with reactivating a cylinder |
Families Citing this family (10)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US7292931B2 (en) * | 2005-06-01 | 2007-11-06 | Gm Global Technology Operations, Inc. | Model-based inlet air dynamics state characterization |
US7069905B1 (en) * | 2005-07-12 | 2006-07-04 | Gm Global Technology Operations, Inc. | Method of obtaining desired manifold pressure for torque based engine control |
US7198029B1 (en) * | 2006-02-27 | 2007-04-03 | Gm Global Technology Operations, Inc. | Extension of DOD operation in torque control system |
US7698049B2 (en) * | 2008-01-09 | 2010-04-13 | Gm Global Technology Operations, Inc. | Speed control in a torque-based system |
DE102008046405B4 (de) * | 2008-01-14 | 2016-04-21 | GM Global Technology Operations LLC (n. d. Ges. d. Staates Delaware) | Drehmomentschätzsystem und -verfahren |
US8744716B2 (en) * | 2009-12-16 | 2014-06-03 | GM Global Technology Operations LLC | Speed control systems and methods for internal combustion engines |
US9803573B2 (en) * | 2014-06-27 | 2017-10-31 | GM Global Technology Operations LLC | Throttle control systems and methods for cylinder activation and deactivation |
US10472999B2 (en) * | 2016-08-18 | 2019-11-12 | Ford Global Technologies, Llc | Methods and system for adjusting camshafts |
US10883431B2 (en) | 2018-09-21 | 2021-01-05 | GM Global Technology Operations LLC | Managing torque delivery during dynamic fuel management transitions |
JP2023183172A (ja) * | 2022-06-15 | 2023-12-27 | トヨタ自動車株式会社 | 車両の制御装置 |
Family Cites Families (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US6098592A (en) * | 1995-10-07 | 2000-08-08 | Robert Bosch Gmbh | Process and device for controlling an internal combustion engine |
US6250283B1 (en) * | 1999-10-18 | 2001-06-26 | Ford Global Technologies, Inc. | Vehicle control method |
JP3415601B2 (ja) * | 2000-10-23 | 2003-06-09 | 本田技研工業株式会社 | ハイブリッド車両の制御装置 |
JP3810654B2 (ja) * | 2001-06-11 | 2006-08-16 | 本田技研工業株式会社 | ハイブリッド車両の制御装置 |
US6817336B2 (en) * | 2001-12-06 | 2004-11-16 | Ford Global Technologies, Llc | Intake manifold pressure control for variable displacement engines |
US6704638B2 (en) | 2002-06-26 | 2004-03-09 | General Motors Corporation | Torque estimator for engine RPM and torque control |
-
2004
- 2004-12-01 US US11/001,709 patent/US6966287B1/en active Active
-
2005
- 2005-11-30 DE DE102005057067A patent/DE102005057067A1/de not_active Ceased
- 2005-12-01 CN CNB2005101288229A patent/CN100432399C/zh active Active
Cited By (13)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN101240752B (zh) * | 2006-11-17 | 2010-12-08 | 通用汽车环球科技运作公司 | 处于高压比状态下的发动机转矩控制 |
CN104040152B (zh) * | 2011-11-18 | 2016-12-14 | 大陆汽车有限公司 | 用于切断和激活内燃机气缸的方法 |
US9605600B2 (en) | 2011-11-18 | 2017-03-28 | Continental Automotive Gmbh | Method for shutting off and activating a cylinder of an internal combustion engine |
CN104040152A (zh) * | 2011-11-18 | 2014-09-10 | 大陆汽车有限公司 | 用于切断和激活内燃机气缸的方法 |
CN103422996B (zh) * | 2012-05-22 | 2017-03-01 | 通用汽车环球科技运作有限责任公司 | 用于气缸去激活和激活过渡的气门控制系统和方法 |
US9169787B2 (en) | 2012-05-22 | 2015-10-27 | GM Global Technology Operations LLC | Valve control systems and methods for cylinder deactivation and activation transitions |
CN103422996A (zh) * | 2012-05-22 | 2013-12-04 | 通用汽车环球科技运作有限责任公司 | 用于气缸去激活和激活过渡的气门控制系统和方法 |
US9567928B2 (en) | 2012-08-07 | 2017-02-14 | GM Global Technology Operations LLC | System and method for controlling a variable valve actuation system to reduce delay associated with reactivating a cylinder |
US10287995B2 (en) | 2012-08-07 | 2019-05-14 | GM Global Technology Operations LLC | System and method for controlling a variable valve actuation system to reduce delay associated with reactivating a cylinder |
CN103670760B (zh) * | 2012-09-13 | 2016-06-29 | 通用汽车环球科技运作有限责任公司 | 协调的发动机扭矩控制 |
CN103670760A (zh) * | 2012-09-13 | 2014-03-26 | 通用汽车环球科技运作有限责任公司 | 协调的发动机扭矩控制 |
CN105526015A (zh) * | 2014-10-21 | 2016-04-27 | 现代自动车株式会社 | 非对称停缸发动机 |
CN105526015B (zh) * | 2014-10-21 | 2020-09-22 | 现代自动车株式会社 | 非对称停缸发动机 |
Also Published As
Publication number | Publication date |
---|---|
US6966287B1 (en) | 2005-11-22 |
DE102005057067A1 (de) | 2006-07-13 |
CN100432399C (zh) | 2008-11-12 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN1847627A (zh) | 用于发动机扭矩控制的凸轮相位器和按需排量协调 | |
CN100432404C (zh) | 可调式发动机扭矩控制 | |
CN101173637B (zh) | 动态修正空气流量传感器检测的方法 | |
CN101240752B (zh) | 处于高压比状态下的发动机转矩控制 | |
US8843295B2 (en) | Ethanol content determination systems and methods | |
CN87102273A (zh) | 内燃机的控制系统 | |
CN101457702B (zh) | 基于转矩的曲柄控制 | |
US20100043751A1 (en) | Engine control using cylinder pressure differential | |
WO2007097167A1 (en) | Engine control system | |
CN101382092B (zh) | 估计带进排气凸轮相位器的发动机容积效率的系统和方法 | |
CN101392697B (zh) | 使用海拔补偿估算内燃机残余废气系数的系统和方法 | |
CN1800615A (zh) | 用于内燃机的控制装置 | |
CN101191451B (zh) | 调节内燃机怠速速度的发动机怠速速度控制系统和方法 | |
CN101029601A (zh) | 转矩控制系统中dod操作的延长 | |
CN105569845A (zh) | 控制传递到发动机汽缸的清洗流体量的系统和方法 | |
CN101061305A (zh) | 内燃机的控制装置以及空燃比计算方法 | |
JP2002303177A (ja) | 内燃機関の電子スロットル制御装置 | |
CN101037967A (zh) | 发动机燃油效率确定 | |
CN1823220A (zh) | 内燃机的控制装置和控制方法 | |
CN1820135A (zh) | 内燃机的控制装置以及控制方法 | |
CN1505733A (zh) | 用于四冲程发动机的控制装置及其控制方法 | |
CN1763360A (zh) | 用于内燃机的可变气门正时控制器 | |
CN1624310A (zh) | 喷油正时控制方法与系统 | |
EP1602811A2 (en) | Controller for internal combustion engine | |
JP4415509B2 (ja) | 内燃機関の制御装置 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
C06 | Publication | ||
PB01 | Publication | ||
C10 | Entry into substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
C14 | Grant of patent or utility model | ||
GR01 | Patent grant |