CN1823210A - 根据井下露点压力测定数据确定最优泵送速率的方法和装置 - Google Patents

根据井下露点压力测定数据确定最优泵送速率的方法和装置 Download PDF

Info

Publication number
CN1823210A
CN1823210A CN200480020059.1A CN200480020059A CN1823210A CN 1823210 A CN1823210 A CN 1823210A CN 200480020059 A CN200480020059 A CN 200480020059A CN 1823210 A CN1823210 A CN 1823210A
Authority
CN
China
Prior art keywords
pressure
sample
fluid
pump
pumping rate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN200480020059.1A
Other languages
English (en)
Other versions
CN100408806C (zh
Inventor
H·M·沙美
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Baker Hughes Holdings LLC
Original Assignee
Baker Hughes Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Baker Hughes Inc filed Critical Baker Hughes Inc
Publication of CN1823210A publication Critical patent/CN1823210A/zh
Application granted granted Critical
Publication of CN100408806C publication Critical patent/CN100408806C/zh
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • EFIXED CONSTRUCTIONS
    • E21EARTH OR ROCK DRILLING; MINING
    • E21BEARTH OR ROCK DRILLING; OBTAINING OIL, GAS, WATER, SOLUBLE OR MELTABLE MATERIALS OR A SLURRY OF MINERALS FROM WELLS
    • E21B49/00Testing the nature of borehole walls; Formation testing; Methods or apparatus for obtaining samples of soil or well fluids, specially adapted to earth drilling or wells
    • E21B49/08Obtaining fluid samples or testing fluids, in boreholes or wells
    • E21B49/10Obtaining fluid samples or testing fluids, in boreholes or wells using side-wall fluid samplers or testers

Landscapes

  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Geology (AREA)
  • Mining & Mineral Resources (AREA)
  • Physics & Mathematics (AREA)
  • Environmental & Geological Engineering (AREA)
  • Fluid Mechanics (AREA)
  • General Life Sciences & Earth Sciences (AREA)
  • Geochemistry & Mineralogy (AREA)
  • Sampling And Sample Adjustment (AREA)
  • Investigating Or Analysing Materials By Optical Means (AREA)
  • Control Of Non-Positive-Displacement Pumps (AREA)

Abstract

本发明提供一种确定露点压力从而确定取样期间的最优泵送速率以避免地层样品内的沥青质析出的分光计。将样品在地层压力下采集在受控体积内。降低受控体积内的压力。开始,地层流体样品变暗并允许少许光能穿过测试样品。然而,随着压力的降低,测试样品开始变清并允许较多的光能穿过,在压力降低的作用下,地层流体样品变稀或不稠。然而在露点压力时,随着沥青质开始析出样品,样品开始变暗并允许很少的光能穿过。因此,所述露点压力为最大光能穿过样品时的压力。将所述露点压力代入方程以确定取样期间已知迁移率的最优泵送速率,从而避免压力降低到露点压力以下以避免沥青质析出或样品中出现露珠。可将泡点压力代入方程以确定取样期间已知迁移率的最优泵送速率,从而避免压力降低到泡点压力以下以避免样品中出现气泡。

Description

根据井下露点压力测定数据 确定最优泵送速率的方法和装置
技术领域
本发明涉及井下井筒环境中的光谱测定法,尤其是,本发明涉及一种根据就地井下露点压力或泡点压力来确定最优泵送速率的耐用装置和方法,所述露点压力或泡点压力或者是已知的或者是通过测量在测试样品的压力降低时用于地层流体样品的电磁吸收光谱而获得的。
背景技术
产烃井内的地层流体通常包括油、气和水的混合物。地层流体的压力、温度和容积决定着这些组分的相态关系。在地下地层中,高的井内流体压力常常会在高于泡点压力时将气体夹带在油中。当压力降低时,所夹带或溶解的气态成分就会从液相样品中分离出来。对特定井中的压力、温度和地层流体组分的精确测量会影响从该井中生产流体的经济效益。该数据同样可提供与各个碳氢化合物储层的最大化完井和生产的程序相关的信息。
某些技术分析了井筒内的井内流体。Brown等人的美国专利号为6,467,544的专利描述了一个具有一个滑动设置的活塞以在活塞一侧限定一个样品腔而在活塞另一侧限定一个缓冲腔的样品室。Griffith等人(1993)的美国专利号为5,361,839的专利公开了一种产生流体样品特性的代表性输出的转换器。Schultz等人(1994)的美国专利号为5,329,811的专利公开了一种估测井下井内流体样品压力和体积数据的方法和装置。
其他的技术采集井内流体样品以将其取回到地面。Czenichow等人(1986)的美国专利号为4,583,595专利公开了一种用于采集井内流体样品的由活塞致动的机械装置。Berzin(1988)的美国专利号为4,721,157专利公开了一种将井内流体样品采集到一个室内的移动阀套。Petermann(1988)的美国专利号为4,766,955的专利公开了一种采集井内流体样品并与控制阀连接的活塞,Zunkel(1990)的美国专利号为4,903,765的专利公开了一种时间延迟的井内流体取样器。Gruber等人(1991)的美国专利号为5,009,100的专利公开了一种用于从选择的井筒深度采集井内流体样品的绳索取样器,Schultz等人(1993)的美国专利号为5,240,072的专利公开了一种在不同的时间和深度间隔允许井内流体样品采集的多样品环空压力响应取样器,和Be等人(1994)的美国专利号为5,322,120的专利公开了一种在井筒深处采集井内流体样品的电动液压系统。
井筒深处的井下温度常常超过300°F。当将300°F热的地层流体样品取回到70°F的地面时,温度的下降导致地层流体样品收缩。如果样品的体积不变,那么这种收缩实质上减少了样品的压力。压力的降低改变了就地地层流体的参数,并可允许液体与夹带在地层流体样品内的气相分离。相分离将严重改变地层流体的特性,从而降低评价地层流体实际特性的能力。
为了克服该限制,发展了各种保持地层流体样品压力的技术。Massie等人(1994)的美国专利号为5,337,822的专利利用一个由高压气体提供动力的液压驱动活塞对地层流体样品增压。相似的,Shammai(1997)的美国专利号为5,662,166的专利公开了一种加载地层流体样品的增压气体。Michaels等人(1994)的美国专利号为5,303,775和(1995)的美国专利号为5,377,755的专利公开了一种双向容积泵,该泵用于将地层流体样品的压力增加到泡点之上,以便随后的冷却不致将流体的压力降低到泡点压力之下。
保持样品地层压力的现有技术受到多种因素的限制。预张力弹簧或压缩弹簧是不适用的,这是因为所需的压力要非常大。剪切装置是刚性的并不容易使多种样品聚集在井筒内的不同位置。充气会导致密封件的爆炸性地减压和样品污染。气体增压系统需要包括罐、阀和调节器的复杂系统,该增压系统价格昂贵并占用井筒狭窄边界内的空间,而且还需要保养和维修。电动或液压泵需要地面控制装置并具有相似的限制。
如果在将样品泵送到样品罐期间压力下降到泡点压力或露点压力之下,气泡的集结、固体的沉淀和烃类的损失分别会将单相液态原始样品改变成含有液体和气体或者液体和固体的两相或三相状态。单相样品表示地层流体的自然状态,其用于对井下状态的地层进行分析。由于一旦原油样品分离成两相,就很难或不可能将样品返回到其原始的单相液体状态,即使通过再加热和/或摇动样品以使其返回到单向状态,即便可以也需要花费很长的时间(几周),所以得到两相样品是不理想的。
由于恢复过程的不确定性,任何基于已恢复到单相原油的压力-体积-温度(PVT)的实验室分析的质量和稳定性都是值得怀疑的。因而需要有确定地层样品露点的方法,以便在取样时选择最优的泵送速率从而确保在取样期间所述的压力不会降至露点或泡点压力之下和样品损坏的风险。
发明内容
本发明解决了以上描述的相关技术的缺点。本发明避免了在取样期间固体的沉淀和气泡的集结从而保持单相样品。本发明提供了用于确定最优泵送速率的方法和装置,以使样品不会在样品压力可能会降至露点压力之下的取样期间发生压力下降。提供一种井下分光计以确定露点压力从而确定取样期间的最优泵送速率,以避免地层样品中的相变。烃样品(气体)以地层压力捕获在受控体积内。受控体积内的压力降低。开始,地层流体样品为黑色,在实验条件下,其能够允许较少的光能通过。然而,当压力降低时实验中的样品变轻并允许较多的光能通过,并且随着压力降低,地层流体开始变稀或者变得不怎么稠。然而,当处于露点压力时,因为沥青质开始从样品中析出,样品会变暗并允许很少地光能通过。因此,露点压力是使最多的光能穿过样品时的压力。将露点压力插入到一个等式以确定已知的地层流体迁移率的最优泵送速率。取样期间的最优泵送速率尽可能快地泵送流体,从而防止泵送的或地层流体样品的压力下降到露点压力或露点压力之下。选择最优泵送速率以将样品保持在露点压力之上从而避免样品内出现露珠。对黑油进行相似的方法,从而选择出确定泡点压力的最优泵送速率,所述的最优泵送速率是使黑油维持在泡点压力之上同时也避免了储层温度下的沥青质析出的压力。露点压力和泡点压力可在井下确定或是已知的。
附图说明
为了能够详细地理解本发明,应当结合附图并参考下面典型实施例的详细描述,其中,相似的部件用相同的附图标记标识,其中
图1为示出本发明操作环境的土壤的示意性剖面图;
图2为与支承工具一起使用的本发明组件的示意图;
图3为本发明一个典型实施例示意图;
图4-13示出了一系列露点确定曲线,其中示出了穿过样品的光的量(如y轴所示,watts)与样品上的压力(x轴,PSI)之间的关系。随着压力的降低,探测到的穿过样品的瓦数和量增加到露点,在露点,样品中的沥青质或其它固体物质析出,并开始阻止光穿过样品,从而能量降低。
图14使用现有的方法进行地层压力测试的典型曲线;
图15为根据本发明的海上钻井系统的正视图;
图16示出了用于本发明的部分钻柱;
图17为本发明的系统示意图;
图18为根据本发明缆绳测试实施例的正视图;
图19为压力对时间及泵体积的曲线图,其中示出使用计算的特定参数而得出的预测的井下环境。
图20为压力对时间的曲线,其中示出了适度低渗地层的压力恢复曲线地层部分。
图21为确定地层压力迭代预测方法的曲线;
图22为使用不完全压力恢复数据确定地层压力方法的曲线;
图23为压力对抽汲速率的曲线图,其中示出了根据本发明的方法的计算技术来确定地层压力;
图24为示出根据本发明方法的典型曲线;
图25为布置在井筒中缆绳地层取样工具的示意图;
图26为泵送期间将地层流体泵入井筒以释放滤液并在样品清洁之后将地层流体泵入样品罐的双向地层流体泵的示意图;和
图27为取样工具示意图,其中在测试迁移率/渗透率对时间的关系时将优质样品从地层泵出从而确保单向样品具有低滤液污染,其时与地层中的样品具有相同的物理特征。
具体实施方式
Baker Atlas提出了估测烃类油藏的样品特性的油藏特性仪器TM(RCITM)。所述RCITM用于测量油藏压力并从油藏中采集样品。在压力/体积/温度(PVT)实验室中对所述样品进行分析以确定用于推导取出样品的地层性质的热力学性质和关系(PVT数据)。该数据的质量直接取决于RCITM所采集样品的质量。最难采集的样品为临界烃类、反凝析气体和湿气。气体样品的露点对样品的质量来说是非常重要的参数。如果样品降低到露点之下,那么样品就会丧失油藏或工具内大量的液态烃类,从而会严重地改变其组分。一个与RCTTM一起运行的工具为Sample viewTM,该工具被装配在红外光源和探测器附近。Sample viewTM工具用于测试来自井下就地条件下的油藏流体的地层流体的样品。Sample viewTM以1500nm的波长或具有同时的工具的一个隔离部分内的样品体积膨胀的其它有利害关系的波长进行光谱扫描提供了相态变化的详细细节,如第一滴液体出现时的压力(露点压力)。吸收率对压力的曲线显示了在露点压力时吸收率的急剧下降。
本发明所提供的这种技术增强了在气藏中取样的能力。目前还没有在油田服务市场使用的提供就地条件下的露点数据的已知技术。在任意油藏和气藏取样程序中,油藏和气藏流体样品被从其自然环境(即油藏和气藏环境)中移走并被放置在井下取样工具(如RCITM)内的高压室中。这是通过在井筒对地层的界面处产生压力降从而使样品流入RCITM工具的样品室而从地层泵送样品而实现的。如果泵送速率过快,该取样泵送压力降就会使样品压力降至露点压力以下。一旦取样泵送压力下降以致到达露点,就会从储藏样品中丧失大量的液态凝析物,从而基本上永久地改变样品组分。本发明的该示例确定了用于设定RCTTM内的最优泵送速率的就地露点。该最优泵送速率可使RCTTM在尽可能最短的时间内采集最好质量的样品而不会达到露点压力。
将单相取样引入石油工业是为了为PVT实验室提供最好质量的样品。PVT数据通常被用于进行油藏和气藏经济评价,也可被用于设计生产设备。该技术对通常在油藏中处于未饱和状态的黑油和挥发性油非常的适用。然而对反凝析气体和湿气的取样来说则是一项非常困难的任务。为了采集单相状态的反凝析气体和湿气样品,知道露点是有益的。即使在没有可用的关于烃类组分的信息的油藏中知道露点也是有益的。本发明第一次提供工业上在气藏中取样时所急需的就地条件下的露点数据。通过提供就地的井下露点压力,可调整泵送速率以避免相包络中出现两相区域,也就是露点压力以下的区域。因此表示井下条件的真实原始样品可在该条件下进行采集。
图1示意地示出了沿井筒11穿透长度的土壤10的横截面。通常,井筒将至少部分地充满包括水,钻井流体和井筒穿过的土壤地层固有的地层流体的流体混合物。在下文中,这样的流体混合物称为“井筒流体”。术语“地层流体”在下文中指一种除任何实质的混合物或被非自然存在于特定地层中的流体污染之外的特定地层流体。
在绳索12底端悬挂在井筒11内的是地层流体取样工具20。该绳索12通常由井架14支撑的滑轮13传送。绳索的部署和取回是由例如交通车15这样的地面处理装置携带的动力绞车实施的。
根据本发明,使用本发明的取样工具20的示例性实施例由图2示意性地示出。优选地是,这种取样工具是若干工具段的串联组件,所述工具段由相互压缩的接头23的螺套首尾相连。适用于本发明的工具段的组件可包括液压动力单元21和地层流体采集器23。在采集器23的下面,为清洗管线提供了大的容积式马达/泵单元24。在大的容积泵的下面是一个具有由图3更广泛描述的相关装置300定量和定性地监测的较小的工作容量的相似的马达/泵单元25。通常,在小容积泵的下面组装一个或多个样品罐仓部分26。每一个样品罐仓部分26可拥有三个或更多个流体样品罐30。
地层流体采集器22包括与孔壁支脚28相对的可延伸的吸入探针27。吸入探针27和相对的孔壁支脚28都是液压可延伸的以与井筒壁牢固接触。流体采集器22的结构和操作细节在美国专利号为5,303,775的专利中得到了更详细地描述,其说明书的全部内容将被结合在此处作为参考。
如图3所示,本发明的示例包括相关装置300,该装置300具有两个蓝宝石窗口(sapphire window)、优选波长在1500nm的红外光源301、柱体(columnizer)303、探测器306和具有压力监测器的计算机化的泵302。就地条件下测试的步骤的示例如下:
1.启动RCITM泵以通过泵送来自地层的地层流体而清洗储藏流体以基本上将滤液污染物从井筒附近的地层流体中移走。借助光源301、探测器306和计算机307对所述地层流体进行近红外分析。这一过程一直持续,直到根据稳态或渐进NIR性质近红外(NIR)或其它波长分析(即Sample ViewTM)输出显示出最少的泥浆滤液污染物为止。
2.在步骤1中从地层中泵送的部分地层样品304被工具内的阀分隔成窗口305与泵302之间的受控体积。
3.所述的样品在不被泵送的情况下静止5分钟。
4.为了确保稳定,监测压力以保证压力改变不会超过0.2磅每平方英寸(PSI)/min。
5.由探测器306对穿过烃样品的吸收率和能量水平进行检查以确保系统基线是稳定的。
6.吸收率NIR或其它波长的能量或电能大小在探测器306和/或计算机307内归零。
7.启动计算机化的泵以在3到14cc/min的速率下膨胀所述样品体积,从而在受控体积内降低样品上的压力。
8.通过计算机或处理器307绘制吸收率或能量通过量(传输/吸收率)对压力的曲线以确定露点或泡点压力。
本发明提供一种确定露点压力的方法和装置,在该露点压力时液态烃类从地层样品中析出。所述的露点压力被用作确定取样期间最优泵送速率以避免样品中的烃类损失的参考值。根据所需的最小压力(露点压力或泡点压力之上)和已知的迁移率确定最优泵送速率的方程在下面的名称为“根据所需的最小压力确定最优泵送速率”部分进行描述。
图4为用于图5-13所示曲线的露点实验数据览表。现在转到图5至图13,其中示出了一系列的露点确定曲线400,该曲线显示了y轴(功率[瓦])410和x轴420上的压力(PSI)的穿过样品的光的量。应该注意,在图5-13中,当压力降低时,检测到的穿过样品的光的瓦特数或数量则增加到露点,在此处,样品中液体烃类的析出将会开始阻止光穿过样品并且功率会降低。功率开始再次降低时的压力为露点压力440。
本发明提供一种用于确定露点压力的井下分光计,从而确定取样期间的最优泵送速率以避免地层样品中的沥青质析出。将样品在地层压力下采集到受控体积内。受控体积内的压力降低。开始,地层流体样品显示为暗黑色并在实验中允许少量的光能穿过样品。然而随着压力的降低,实验中的样品开始变淡并允许更多量的光能穿过样品,在经过压力降低之后,地层流体样品开始变稀或不怎么稠。然而,在露点压力下,随着液态烃类从样品中析出,样品可使变黑并允许更少的光能穿过。因而,露点为峰值光能穿过样品时的压力。将露点压力插入到方程中以确定适于已知迁移率的取样期间的最优泵送速率,以便避免压力降落到露点压力从而避免样品中的烃类损失。
根据所需的最小压力确定最优泵送速率
图15示出了根据本发明的一个实施例的钻井装置。图中示出了一种典型的钻机202,井筒204从钻机202处开始延伸,这是本领域的普通技术人员很容易理解的。钻机202具有工作管柱206,在图示的实施例中为钻柱。钻柱206上连接有钻出井筒204的钻头208。本发明也可使用于其它类型的工作管柱,并使用绳索(如图12所示)、联结的管、蛇形管,或其它小直径的工作管柱,如强行下入管。钻机202安装在钻井船222上,立管224从钻井船222延伸至海底220。然而,任意钻机结构(如陆基钻机)也可用于完成本发明。
如果适用的话,钻柱206可具有井下钻井马达210。结合在钻头208上方的钻柱206内的是典型的测试装置,该测试装置可以具有至少一个传感器214以测试井筒、钻头和油藏或气藏的井下特征,这种传感器是本领域所公知的。传感器214的一种有益的应用是利用加速率计或类似的传感器来确定钻柱206的取向、方位角和方位。BHA还包括图3所示的本发明的示例中的相关的地层测试装置300。遥测系统212被安装在工作管柱206上合适的位置,例如位于测试装置216上方的位置。遥测系统212用于在地面与测试装置216之间进行指令和数据通信。
图16是钻柱206的一部分。所述的工具部分优选位于靠近钻头(未示出)的BHA内。所述的工具具有用于向地面进行双向通信和向井下部件供给电力的通信单元和电力供给装置320。在所示的实施例中,所述的工具需要仅仅启动测试的来自地面的信号。井下控制器和处理器(未示出)完成所有随后的控制。电力供给装置可以是由泥浆马达(未示出)驱动的发电机,或者可以为其它合适的电源。所述的工具还包括多个用于稳定钻柱206的工具部分的稳定器308和310和用于密封环空一部分的封隔器304和306。优选设置在上部封隔器304上方的环流阀用于使钻井泥浆在钻头停止旋转时在封隔器304和306上方持续循环。单独的排出口或者平衡阀(未示出)用于将流体从封隔器304与306之间的测试容积排到上部环空中。所述的排出降低了测试容积内的压力,这是降低液面的试井法所需要的。还可以考虑的是,封隔器304与封隔器306之间的压力可通过将流体引入所述的系统或者将流体排出到下部的环空中得到降低,但是在任何情况下将需要增加中间环空部分的体积以降低压力的一些方法。
在本发明的一个实施例中,用于接合井壁17(图14)的可延伸的衬垫密封元件302设置在封隔器304与306之间的测试装置216上。由于仅仅使用衬垫元件302就能保持井壁的良好密封,所以在不使用封隔器304和306时也可使用衬垫密封元件302。如果不使用封隔器304和306,就要有反作用力以使衬垫302与井壁204保持密封接合。所述的密封在衬垫密封处形成测试体积并仅在所述工具内延伸至所述的泵而且还不需使用封隔器元件之间的体积。装置300同样也包含在图6所示的工具内。
一种确保维持密封的方式就是确保钻柱206更好的稳定。可同时将选择性地延伸的夹持件312和314装配在钻柱206内以便在测试期间锚定钻柱206。在该实施例中,夹持件312和314被示为结合在稳定器308和310内。夹持件312和314可具有用于接合井壁的粗糙端面,所述的夹持件可防止诸如衬垫密封元件302和封隔器304和306之类的柔软部件免于由于工具移动而被损坏。由于因地层运动而产生的移动可使密封件过早的损坏,所以夹持件312在图15所示的海上系统中是特别希望的。
图17示意性地示出了图16中的工具,其具有内部井下部件和地面部件。选择性地延伸的夹持件312与井壁204接合以锚定所述的钻柱206。本领域所公知的封隔器304和306延伸到与井壁204接合。延伸的封隔器将井环空分隔成三部分:上部环空402,中间环空404和下部环空406。密封的环空部分(或仅仅密封部分)404相邻于地层218。安装在钻柱206并可伸入密封部分404的为可选择性地延伸的衬垫密封元件302。在原始地层流体408与工具传感器(如压力传感器)424之间提供流体连通的流体管线被示为延伸穿过衬垫密封元件302以在密封的环空404内提供一个端口420。为了确保原始流体得到测试或取样,优选的结构具有与井壁204密封紧靠的封隔器304和306并具有井壁与可延伸的元件302之间的密封关系。在接合衬垫302之前降低密封部分404内的压力将会使流体从地层流入密封部分404。当可延伸的元件302接合井壁时随着地层流体的流动,延伸穿过衬垫320的端口402将暴露于原始流体408。在钻斜井或水平井时非常需要对可延伸元件302的取向进行控制。示例性的取向为朝向井壁的上部。传感器214(如加速率计)可用于探测可延伸元件302的方向。之后可使用本领域所公知的方法和未示出的部件(如具有弯接头的定向钻孔)将可延伸元件定向到所需的方向。例如,钻孔装置可包括由地面旋转驱动装置(未示出)旋转的钻柱206。井下泥浆马达(参见图15中标记210)可用于独立地旋转钻头。因而,在可延伸的元件被定向到传感器214所指示的所需方向之前旋转所述钻柱。测试期间停止地面旋转驱动装置以停止钻柱206的旋转,而利用泥浆马达可使钻头继续旋转。
井下控制器418优选控制测试。控制器418连接到至少一个系统体积控制装置(泵)426和相关装置300上。泵426优选为一小活塞,所述活塞由滚珠丝杠和步进电机或者其他可用的控制马达进行驱动,这是由于它们具有反复改变系统体积的能力。泵426还可为螺杆泵(progressive cavity pump)。当使用其它类型的泵时还可包括流量表。控制流体流入泵426的阀430设置在压力传感器和泵426之间的流体管线422上。测试体积405是位于泵426的收缩活塞下方的体积,并且包括流体管线422。压力传感器用于探测测试体积404内的压力。这里应当指出的是,如果利用处于收回位置的衬垫元件302,所述的测试同样可用。在这种情况下,测试体积包括中间环空404的体积。这样允许“快速”测试,其意思是指不需要衬垫延伸和收回的时间。传感器424连接到控制器418上以为闭环控制系统提供所需的反馈数据。所述的反馈用于调整参数设置,如用于随后体积变化的压力极限。所述井下控制器结合有一个用于进一步降低测试时间的处理器(未单独示出),任选的数据库和存储系统也可被结合入用于存储数据以进行进一步的分析和提供默认设置。
当引入密封部分404时,流体通过平衡阀419排入上部环空402。将泵426连接到平衡阀419的导管427包括可选择的内阀432。如果需要流体取样,通过使用内阀432,433a和433b而不是穿过平衡阀419排出而将流体引入可任选的储样器428。对于典型的流体取样,将储样器428内的流体从井中取出以进行分析。
测试低迁移率(致密)地层的典型的实施例除了所示的泵426之外还包括至少一个泵(没有单独示出)。该第二个泵具有大大小于主泵426的内容积的内容积。建议第二个泵的容积为1/100的主泵的容积。具有由井下控制器418控制的选择阀的典型“T”形连接可用于将两个泵连接到流体管线422。
在致密地层中,主泵用于启动抽汲。控制器在地层压力以下转换到第二个泵进行操作。小内容积的第二个泵的好处在于积累时间快于大容积的泵。
可将井下处理的数据结果送至地面以便为司钻提供井下情况或者验证测试结果。控制器将处理过的数据送至设置在井下的双向数据通信系统416。井下系统416将数据信号传送到地面通信系统412。在本领域中传送数据的方法和装置有多种。任何合适的系统为了本发明的目的都是足够的。一旦地面接收到信号,地面控制器和处理器410将数据转换并输送至合适的输出和存储设备414。如上所述,地面控制器410和地面通信系统412也用于传送测试启动指令。
图18是包含装置300的根据本发明的绳索测试实施例。图示井502横穿过地层504,该地层包含具有气506、油508和水510层的储层。由铠装缆绳514支承的绳索工具512设置在地层504附近的井502内。从工具512伸出的是用于稳定工具512的可选择的夹持器312。设置在工具512上的两个可膨胀封隔器304和306可将井筒502的环空分隔成上部环空402、密封的中间环空404和下部环空406、选择性地可延伸的衬垫元件302设置在工具512上。夹持器312,封隔器304和306以及可延伸的衬垫元件302基本上与图16和图17中所描述的相同,因此,详细的描述在此不再重述。
用于绳索实施例的遥测装置为通过铠装缆绳514内的一根或多根导线520连接到地面双向通信单元518的井下双向通信单元516。地面通信单元518被封装在地面控制器内,所述地面控制器包括如图17所示的处理器412和输出设备414。一种典型的缆绳滑轮522用于将铠装缆绳514引向井筒502。工具512包括根据后面要详细描述的方法控制地层测试的井下处理器418。
图18所示的实施例适用于确定气体506与油508之间和油508与水510之间的接触点538和540。为了展示这一应用,将压力对深度的曲线542叠合在地层504上。井下工具512包括图17所示实施例中所述的泵426,多个传感器424,相关装置300和相关阀430,432和任选的样品罐428。这些部件用于井筒502不同深度处的地层压力。所示的压力曲线表示出了流体或气体的密度,其从一种流体到另一中流体具有明显的变化。因此,具有的多个压力测试值M1-Mn提供了确定接触点538和540所必需的数据。
根据本发明确定储层内有效迁移率(k/μ)的测试策略和计算步骤在下面进行描述。测试时间很短,对于大范围的迁移率值来说计算是牢靠的。初始压力降使用了比目前常用的抽汲速率低很多的泵抽汲速率(0.1至0.2cm3/s)。使用较低速率降低了由于小颗粒迁移而伤害地层的可能性,降低了与流体膨胀相关的温度变化,降低了惯性流阻,后者在用探头或探测器进行的渗透率的测试中很大,并且除了对于很低迁移率的地层之外可很快地获得进入探测器的稳态流。
对于低迁移率值(约小于2md/cp)来说是不需要稳态流的。对于这些测试来说,流体压缩率由探测器内的压力大于地层压力时的流体液位降低的初始部分确定。有效的迁移率和远处地层压力p*利用这里所述的方法由压力b积累的早期部分确定,从而消除对过长的压力积累最后部分的需要,在该部分中,压力逐渐达到某一稳定值。
对于较高迁移率来说,在流体液位降落期间可以很快达到稳态流,停泵以促使快速压力积累。对于10md/cp的迁移率和用于此后所描述的样品计算(包括0.2cm3/s的泵送速率)条件来说,稳态流出现在低于地层压力54psi的液位降落时。随后的压力积累(恢复到0.01psi的地层压力)仅仅需要约6秒。对于较高的迁移率来说,所述的液位降落较小并且所述的压力积累时间更短(两者成反比)。迁移率可由稳态流速和地层压力和流体液位下降压力之间的差值计算出。不同的泵送速率可用于克服惯性流动阻力。需要对仪器做出改进以适应较低的泵送速率和较小的压差。
参看图17,在封隔器304和306设定和泵活塞处在留有完全的收回冲程(full withdrawal stroke remaining)的初始位置之后,泵426优选以稳定的泵送速率(qpump)启动。探测器和连接到压力表和泵的连接管线包括“系统体积”Vsys,假设其充满匀质流体,如钻井泥浆。如果探测器内的压力大于地层压力和井筒周边处的地层面被泥饼封死,那么就不会有流体流入探测器。假设没有裂缝经过封隔器并且没有和作功相关的膨胀温度降低,压力表数据显示的“系统”内的压力就会由流体膨胀控制,等于泵的抽出体积。其中,Ap为泵活塞的横截面积,x为活塞的移动距离,C为流体压缩系数,p为系统压力,压力降落的速率取决于方程1所示的体积膨胀速率:
q pump = A p ( dx dt ) = dV p dt = - CV sys ( dp dt ) - - - ( 1 )
方程2示出了泵活塞回缩时的系统体积增加:
Vsys[t]=V0+(x[t]-x0)Ap=V0+Vp[t]     (2)
对方程2求导为:
dV sys dt = d V p dt - - - ( 3 )
因此,将方程3的结果带入方程1并整理,得:
- d V sys C V sys ≡ - d ln V sys C = dp - - - ( 4 )
对于恒定的压缩系数,方程4可作为系统体积的函数进行积分以得到探测器内的产量压力(yield pressure):
P n = P n - 1 + 1 C ln [ V sys n - 1 V s ys n ] - - - ( 5 )
由方程(2)以时间的函数计算系统体积,可使探测器内的压力与时间相关。相反,如果压缩系数不是常数,其在任意两个系统体积之间的平均值为:
C avg . = ln [ V sy s n - 1 V sy s n ] P 2 - P 1 - - - ( 6 )
其中,下标1和2不被限制为连续的两个读数。应该注意,如果温度在流体液位下降期间发生降低,那么视压缩系数将会很低。压缩系数的突然增加表示泵送出了问题,如气体排出、掺砂或探测器表面和井壁之间的密封处的封隔器出现泄漏。在任何情况下,当流体流入探测器而引起压缩系数的显著增加时,如果探测器内的压力小于地层压力,压缩系数的计算是无效的。然而,应当注意,实际流体的压缩系数几乎总是随着压力的降低稍微地增加。
图19示出了由初始的5000psia的静力学井筒压力降低到(和低于)4626.168psia的储层压力(p*)608的示例,使用作为示例的如下条件进行计算:
有效探测半径ri,1.27cm;
无量纲几何因子G0,4.30;
初始系统体积V0,267.0cm3
恒定的泵送体积抽汲速率qpump,0.2cm3/s;以及
恒定的压缩系数C,1×10-5psi-1
所述的计算假定了没有温度变化和没有进入探测器的泄漏。所述压力降落被示为时间的函数或泵送抽汲速率的函数,这分别在图19的底部和上部示出。使用由方程2计算出的Vsys,压力降落的初始部分610(高于p*)由方程5计算出。为了不会流入探测器,在储层压力下继续的压力降落被示为“0”迁移率曲线612。应该注意的是,由于持续增加系统体积,整个“无流动”压力降落是略微弯曲的。
通常,当压力降低到p*之下和渗透率大于0时,来自地层的流体开始流入探测器。当p=p*时流速为0,但是随着p的降低会逐渐升高。在实践中,可能在泥饼开始从探测器的封隔器密封处的内半径之下的井筒表面部分脱落之前需要有限差。在这种情况下,在时间-压力曲线上会出现不连续部分,而非如图19所示的从“无流动”曲线平滑偏离。只要系统-体积-增加的速率(从泵的抽汲速率)超过了流体流入探测器的速率,探测器内的压力将会持续下降。包含在Vsys内的流体的膨胀弥补了流速的亏空。如果来自地层的流动遵从达西定律,其会继续增加,与(p*-p)成正比。最终,来自地层的流动等于泵送速率,从而探测器内的压力保持不变。这就是所熟知的“稳态”流动。控制稳态流的方程为:
k μ = 14,696 q pump G 0 r 1 ( p * - p ss ) - - - ( 7 )
对于图19所给出的条件,稳态降落的压差p*-pss为0.5384psi,此时k/μ=1000md/cp,5.384psi对100md/cp,53.84psi对10md/cp等。对于0.1cm3/s的泵送速率,这些压差将会减半,对于0.4cm3/s的泵送速率这些压差将会翻倍等。
如后面所示的一样,这些高迁移率压力降落在泵活塞回缩停止之后会很快进行压力积累的恢复。p*的值可在几秒之后从稳定的积累压力中获得。在高迁移率(k/μ>50md/cp)的情况下,泵送速率必需在随后的压力降落中增加以获得足够的降落压力差(p*-p)。对于较低的迁移率来说,可确知惯性流动阻力(非达西流)是不显著的。在这些情况下,需要三个不同的泵送速率的总值。
因为压缩系数不在计算当中所以对于更高的迁移率非常需要稳态计算,并且迁移率计算被直接给出。然而,对仪器的要求很高:1)泵送速率应当恒定并易于改变,和2)压差(p*-pss)要小。需要具有由滚珠丝杠和步进电机驱动的小活塞以对于低迁移率来说在接近稳态流期间控制压力下降。
图19示出,在所示的时间周期内,对于1.0md/cp曲线614和更低迁移率的曲线来说压力降落不会达到稳态。此外,从0.1md/cp 616和更低迁移率的0迁移率曲线的偏离几乎是看不到的。例如,在总时间为10秒时,迁移率为0.01md/cp的降落压差仅仅低于无流动的情况1.286psi。由于流体压缩系数内的非等温情况或小的变化,可能会有比上述更高的压力干扰。在p*之下高于200-400的压力降落是不建议的:显著的惯性流动阻力(非达西流)几乎被保证了,由于微粒迁移而产生的地层损坏是相似的,热干扰更显著地不可避免,脱气是相似地,并且泵功率需求增加。
在p<p*时的周期内以及在达到稳态流之前,三个速率是可操作的:1)泵送速率,其随时间增加系统体积,2)从地层流入探测器的流体流速,以及3)系统体积内流体的膨胀速率,其等于最初两个速率之间差值。假设等温条件,地层内为达西流,在探测器表面附近没有渗透损坏,恒定的粘度,图19所示的对于10、1和0.1md/cp的迁移率的压力降落曲线618、614、616由方程计算出,所述方程基于上述的三个速率的关系:
p n = p n - 1 + q f n ( t n - t n - 1 ) - ( V pump n - V pump n - 1 ) C [ V 0 + 1 2 ( V pump n + V pum p n - 1 ) ] - - - ( 8 )
其中,在时间步骤n时从地层进入探测器的流速由下面的方程计算出:
q fa = kG 0 r 1 [ p * - 1 2 ( p n - 1 + p n ) ] 14,696 μ - - - ( 9 )
因为计算方程9中的qfn需要求解方程8所需的pn,需要使用迭代步骤。对于较低的迁移率来说,当使用pn-1作为初始假定p值时会很快的收敛。然而,对于10md/cp的曲线,对于每一时间步长都会需要很多次迭代,并且对于100md/cp和更高迁移率的情况这种迭代会变得不稳定。需要较小的时间步长和/或更大的衰减(或求解技术而不是迭代程序)。
停止(或放缓)泵活塞来启动压力积累或恢复。当活塞停止时,系统体积保持不变,并且从地层流入探测器的流动会压缩系统体积内的流体,从而压力增加。对于高迁移率的测试,仅仅需要稳态计算,流体压缩系数的确定是不需要的。所述压力积累仅用于确定p*,因此所述泵被完全停止以进行压力恢复。对于图19所示情况,对于迁移率为10、100和1000md/cp的曲线618、620和622来说,达到0.01psi内的p*的恢复时间分别约为6、0.6和0.06秒。
对于低迁移率的测试,其不会在压力降落期间获得稳态,所述压力积累恢复用于确定p*和k/μ。然而,测量整个压力恢复是不必要的。这需要花费不合理长的时间,这是因为在恢复曲线的末端,达到p*的驱动力接近0。
假设温度、渗透率、粘度和压缩系数为常数,控制压力积累/恢复的方程为:
kG 0 r 1 ( p * - p ) 14,696 μ = - C V sys ( dp dt ) - - - ( 10 )
重新整理并积分,得:
t - t 0 = 14,696 μ CV sys kG 0 r 1 ln ( p * - p 0 p * - p ) - - - ( 11 )
其中,t0和p0分别为恢复的初始阶段或在恢复曲线的任意点的探测内的时间和压力。
图20为对于迁移率为1md/cp的恢复曲线630的早期部分的曲线,其起始于4200psi,并且如果进行到终止,其会在p*为4600处结束。这可由方程11计算出。除了图20所示的其它参数,p0=4200psi。
由不完全的恢复曲线确定p*可根据示例进行描述。表2表示了假设实验数据。问题是精确地确定p*值,否则其将是无效的。为了获得p*,实验需要进行至少60秒,而不是所示的15秒。在假设中所知的唯一信息是图19所示的系统值和269.0cm3的Vsys。压缩系数C利用方程6由从假定井筒压力开始的初始降落数据确定。
表2
合适的低渗透率储层的假设压力恢复数据
  t-t0,s   p,psia   t-t0,s   p,psia
  0.0000   4200   7.1002   4450
  0.9666   4250   8.4201   4475
  2.0825   4300   10.0354   4500
  3.4024   4350   12.1179   4525
  5.0177   4400   15.0531   4550
  5.9843   4425
对于压力积累恢复,方程11右侧的第一组数据和前面的对数组数据可认为是时间常数τ。因而,利用这种限定,并重新整理方程11,得:
ln ( p * - p 0 p * - p ) = ( 1 τ ) ( t - t 0 ) - - - ( 12 )
方程12的左侧对(t-t0)的曲线为具有斜率为(1/τ)、截距为0的直线。图21为数据源于表2中数据并使用具有各种p*的假设值的方程12的曲线。我们可以看出,只有正确的数值4600psia才会产生所需的直线640。此外,对于小于正确的p*的假设值,曲线646的早期部分的斜率小于后期的斜率。相反,对于过高的假设值,曲线642和644早期的斜率大于晚期的斜率。
这些观测可用于构造一种发现正确的p*的快速方法。首先,由表2所示数据的任意早期部分计算平均斜率。所述斜率计算起于t1和p1,并终于t2和p2。接下来,由表中的后期部分计算平均后期斜率。所述计算中的开端和终端的下标将分别为3和4。接着,早期斜率除以后期斜率以得到比值R:
R = ln ( p * - p 1 p * - p 2 ) ( t 4 - t 3 ) ln ( p * - p 3 p * - p 4 ) ( t 2 - t 1 ) - - - ( 13 )
假定我们从表2中选择第二组数据:2.0825秒和4300psia以开始计算早期斜率。还假设我们从中选择5、9、11分别作为早期斜率的终端、后期斜率的始端和终端,分别相应于下标2、3、4。如果我们现在假设p*等于4700psia,然后将这些数据插入方程13,R的计算值为1.5270。因为该值大于1,所以假设值过高。当使用上述相同的数据,这种结果和其它对p*的假设值在图22中以曲线650示出。正确的p*值,4600psia,出现在R=1处。这些计算可被容易地并入求解程序,其不用曲线而快速地收敛于正确的p*值。已经发现正确p*值的迁移率由重新整理方程11并利用由初始静力学压力降落获得的压缩系数计算出。
一般情况下,对于实际数据,压力恢复数据的非常早期的部分应当避免用于计算p*值和之后的k/μ。具有高压差的所述压力恢复的最快部分由于压缩受热而具有最大的热变形,并具有最大的非达西流的可能性。在按照上述方法确定了p*值之后,整个数据组应当被绘入每一图20中。只要曲线的初始部分显示了随着时间的增加而增加的斜率,紧接着是渐进的更加线性的曲线,这可在更高的压差时明显地显示为非达西流。
根据本发明的另一种方法可结合图23进行描述。图23示出了工具压力602与地层流速qfn之间随着低于和高于特定极限的速率效果的关系。达西定律显示出压力与地层内的流体流速直接成正比。因而,当工具内的压力保持恒定而活塞以给定的速率移动时,绘图压力相对降落活塞回收速率将会形成一条直线。同样,流速对稳定压力的曲线会形成一条直线,该直线在下限速率与上限速率之间典型地具有负斜率(m)606。所述斜率用于确定地层内流体的迁移率(k/μ)。对方程8重新整理,得到地层流速为:
q fn = ( V pump n - V pump n - 1 ) - C [ V 0 + 1 2 ( V pump n + V pump n - 1 ) ] ( p n - 1 - p n ) ( t n - t n - 1 ) - - - ( 14 )
方程14对非稳态情况和稳态情况都是有效的。对于非稳态情况,当知道C合理的精确以确定沿着图23的曲线上的点时,可利用方程14计算出地层流速qfn
由于(pn-1-pn)=0,所以稳态情况将会简化方程14。在稳态情况下,已知的工具参数和已测值可用于确定沿着图23的直线区域的点。在该区域中,泵送速率qpump可被替换。之后利用方程9中的qpump得到:
k μ = - 14696 mG 0 r i - - - ( 15 )
在方程15中,m=(p*-pss)/qpump。k/μ的单位为md/cp,pn和p*的单位为psia,ri的单位为cm,qfn的单位为cm3/s,Vpump和V0的单位为cm3,C的单位为psi-1,以及t的单位为s。直线上的每一压力在给定的流速(或抽汲速率)下为稳态压力。
在实际操作中,在零地层流速(过滤)附近偏离直线可以是对钻井泥浆泄漏到工具中(流速接近0)的指示。高流速下的偏离通常为非达西效应。然而,地层压力可通过将直线延伸至零抽汲速率的截距而确定。在可忽略的误差范围内,计算出的地层压力p*因该等于所测地层压力。
压力测试的目的在于确定储层压力和确定储层内流体的迁移率。在压力读数为常数(零斜率)之前,调整活塞抽汲速率的程序提供了与确定使用恒定体积积累的“稳定的”压力相独立的压力和迁移率的信息。
这一程序的一些优点在于在观测到稳定的积累压力时整个测试的自确认期间具有质量保证,和在压力降落迁移率与压力恢复迁移率比较时的质量保证。此外,当测试的恢复部分无效时(也即出现探测器密封失效和压力恢复或积累时间过长的情况),p*提供了地层压力。
图24为使用本发明的另一种方法时的工具压力对时间的典型图样。所述图表示出了一种方法,该方法包括根据压力-时间曲线的斜率改变降落时活塞抽汲速率。在任意点所获得的传感器数据可用在方程14中以绘制象图23一样的图表或者用在计算机控制的自动求解程序中。限定各种流速下的稳态压力的数据点可用于使测试有效。
通过使用图17所描述的MWD工具和图22所示的绳索起下工具来开始所述程序。首先要将工具探测器420靠在井筒上密封并且测试体积405在环空的静力学压力下基本上仅仅含有钻井液。测试阶段1702在地面发送的指令下启动。井下控制器418优选控制随后的动作。使用控制器来控制含有压差活塞的压差泵426,通过将压差活塞的抽汲速率设定为一预定的速率,使测试体积内的压力以一恒定的速率降低。传感器424用于以预定的时间间隔测量至少在工具内流体的压力。调整所述预定时间间隔以确保可在所述程序的每一阶段进行至少两次测试。通过合适的传感器来测量系统体积、温度和/或系统体积变化的速率可获得其它益处。利用上述的计算在阶段1确定工具内流体的压缩系数。
测试阶段II 704在工具压力降落到地层压力p*之下时开始。由于地层流体开始进入测试体积的原因,压力曲线的斜率有所变化。通过使用井下处理器由在阶段II内的两个时间间隔处所进行的测量来确定斜率,从而确定斜率的变化。如果抽汲速率保持恒定,工具压力将趋于稳定在p*之下的一个压力。
在预定的时间706增加抽汲速率以开始测试阶段3。已增加的抽汲速率降低了工具内的压力。由于压力降低,地层流体流入工具内的速率增加。所述工具压力将趋于稳定在低于阶段II期间所经历的压力的工具压力处,这是因为阶段Ⅲ内的抽汲速率高于阶段II内的抽汲速率。当间隔测量显示出工具内的压力接近稳定时,在开始测试阶段IV的时间708处再次降低抽汲速率。
之后,放缓或停止所述抽汲速率以便工具内的压力开始回升。当压力开始增加时曲线斜率变化,并且所述变化启动阶段V710,在所述阶段V中,抽汲速率之后会增加以稳定所述压力。当压力测量产生零斜率时,显示出稳定的压力。之后,在阶段VI712中抽汲活塞速率降低以在压力再次稳定之前进行恢复。当压力稳定时,压差活塞在阶段VII714处停止,并且在工具压力稳定在地层压力pf之前允许工具内的压力进行积累。之后测试完成,并且控制器使测试体积平衡到环空的静力学压力。然后,将所述工具缩回并移动到一个新的位置或从井筒中移走。
在阶段V710和阶段VI712期间确定的稳定压力以及相应的活塞速率可被井下处理器使用以确定图10所示的曲线。处理器根据所测数据点计算地层压力p*。然后,将计算值p*同所述工具在测试阶段VII714期间所获得的地层压力pf相比较。所述的比较用于验证所测地层压力pf从而消除进行单独验证测试的必要。
使用一种或多种上述方法的其它实施例也在本发明的范围内。仍参考图11,另一实施例包括阶段I,经过阶段IV后到阶段VII。当需要测试地层压力时,该方法适于适度的渗透性地层。通常,在该实施例的阶段IV中,曲线形状略有变化。当测试显示出压力曲线709具有基本为零的斜率时开始进行阶段VII。均衡步骤716在移动工具之前也是必要的。
本发明的另一实施例包括阶段I702,阶段II704,阶段VI712,阶段VII714和均衡步骤716。该方法用于很低渗透率的地层中和用在探测器密封丧失时。阶段II将不会象所示地一样显著地偏离,所以阶段I的直线部分703将会很好地延伸到地层压力pf下方。
图25示出了布置在井筒中而不使用封隔器的绳索地层取样工具。现在转到图25,其示出了封装在地层测试仪器内的本发明的另一实施例。图25示出了一种地层测试仪器,该仪器来源于Michaels等的专利号为US5,303,775的专利,此文引用该专利的全部作为参考。Michaels的专利’775公开了一种方法和装置,所述方法和装置与井下地层测试仪器一起使用,以获得原生流体的相态完整的样品,从而通过高压样品罐输送到实验室设备中。仪器内的一个或多个流体样品罐与井筒内的地层压力保持压力平衡并充满原生流体样品,以这种方式,在样品罐充满期间,原生流体的压力维持在高于流体样品的泡点压力之上的预定范围内。样品罐含有一个内自由浮动活塞,该活塞将样品罐分成样品室和压力平衡室,压力平衡室与井筒压力相连通。样品罐具有一个截止阀,在地层测试仪器从井筒中收回以便输送到实验室之后,所述截止阀使得流体样品压力得以维持。为了弥补由于样品罐及其成分的冷却而产生的压力降低,仪器的活塞泵机构能够充分将样品压力升高到样品的泡点压力之上,从而冷却时出现的任何压力降低都不会使流体样品的压力降低到其泡点压力以下。
图25示意性的示出了具有流程框图的视图,其中示出了根据本发明的地层测试仪器,该地层测试仪器安装在井筒内的地层位置处,其样品探测器与地层连通以进行测试和获得一种或多种原生样品。如图25所示,以垂直剖面示出的井筒10的剖面穿过部分地层11。利用缆绳或绳索如绳索25而设置在井筒10内的是取样和测试仪器。所述取样和测试仪器包括液压动力系统14、流体样品存储部分15和取样机构部分16。取样机构部分16包括选择性延伸的井接合衬垫元件17,选择性延伸的流体导入取样探测器元件18和双向泵送元件19。如果需要,泵送元件19还可设置在取样探测器元件18的上方。
在作业中,取样和测试仪器13通过缠绕或展开在绞车19上的缆绳12而被设置在井筒10内,缆绳12缠绕在绞车上。当将仪器13设置在目标地层附近时,来自深度指示器20的深度信息被传输到信号处理器21和记录器22。来自包括处理器(未图示)的控制电路23的电控制信号通过缆绳12内的电导线传输到仪器13。
这些电控制信号启动所示液压动力系统14内的运转的液压泵和双向泵送元件19,所述液压泵为仪器运转提供液压动力,并提供使井接合衬垫元件17和流体导入元件18从仪器13横向移动从而与地层11接合的液压动力。之后可通过来自控制电路23的电控制信号使流体导入元件和取样探测器18与地层11流体连通,所述电控制信号选择性地激励仪器13内的电磁阀以对目标地层内的任意可采用原生流体进行取样。装置300包含在工具内。
图26示出了在泵送期间将地层流体泵入井筒以释放滤液样品及在样品清理之后将地层流体泵入样品罐的双向地层流体泵。图26示出了一部分根据本发明的井下多次地层测试器并示意性地示出了仪器内的活塞泵和一对样品罐。图25和26来源于Michaels等的’775专利并在该专利中进行了详细描述。
如图26所示的部分剖面示意图,图12中的地层测试仪器13被示为包括双向活塞泵机构,这在图26中总体以标记24标识。在仪器13的主体内还设置有至少一个、优选为一对样品罐,这在图中用标记26和28标识,如果需要,这两个样品罐可以具有相同的结构。活塞泵机构24限定了一对相对的泵室62和64,所述泵室借助输送管34和36分别与各个样品罐流体连通。从各个泵室排出到选择的样品罐26或28的输送管由电动三向阀27和29或由其它能够选择性的充填样品罐的合适的控制阀装置来控制。所示的各个泵室借助泵室输送通道38和40同样具有与目标地层表面流体连通的能力,所述输送通道由图25中的取样探测器18限定并由合适的阀门进行控制。输送通道38和40可具有单向阀39和41,以便在需要的时候允许从室62和64泵出的流体压力上升。LMP47追踪活塞58和60的位置和速率,根据这些信息,可以确定对于已知活塞缸尺寸的泵送体积、经过的时间。
当地层进行压力恢复以确定迁移率、压缩系数和关联系数时,本发明的该示例在泵的吸入侧泵每一泵送活塞冲程的末端运行FRA。本发明提供了迁移率对时间的图表,以作为样品完整信用的显示送给取样客户。FRA绘制了压力对地层流量的图表。图表越接近直线,关联系数越高、高于0.8的关联系数说明泵送速率能够与地层生产地层流体的能力很好的匹配。
作为时间函数的压力曲线产生地层压力p*作为求解方程P(t)=P*-(迁移率的倒数)×[地层流量]的结果。该曲线的斜率为负值,具有P值的竖轴y截距为P*。曲线的倒数为迁移率。曲线接近直线的程度为关联系数。当关联系数低于0.8时,说明出现了问题。当地层能够以较快的泵送速率输送单相地层流体时,本发明将会给出向上的箭头指示以使操作员增加泵送速率,当目前的泵送速率超过了地层供给单向地层流体的能力时,本发明就会给出向下的箭头指示以降低泵送速率。
室62和64的泵送体积是已知的,活塞58和60的移动位置和速率可从LMP47获知,以便在每一泵冲程的末端在双向泵上执行FRA。当由活塞的位置和位置的变化速率以及室62和64的尺寸得知抽汲速率和泵送体积时,也可确定或计算出液面下降体积或抽汲体积。
Psaturation-P*=-(1/迁移率)(地层流量)。Psaturation-P*表示在进入两相之前样品的误差的范围。利用FRA可确定地层流体的迁移率,以便计算出地层流速以及计算出方程16中的合适的泵送速率qdd以按照下述的方式拟合地层流速。工具内的控制器通过向泵的液压控制阀发送反馈信号来自动调整泵送速率或向操作员发送信号来调整泵送速率,从而获得与地层迁移率匹配的最优泵送速率。
在泵送期间,当双向泵活塞58,60到达泵送冲程的端部时,FRA用于泵的抽汲侧。在泵活塞58,60移动之前,FRA利用在每一泵冲程端部的地层压力恢复确定压缩系数、迁移率和关联系数以用于泵送的地层流体。因而,本发明的FRA在泵送期间利用LMP数据和泵尺寸能够获得单向取样期间的正确的抽汲体积和抽汲速率。迁移率和压缩系数的FRA数据和FRA曲线压力梯度验证了取样数据和压力测试数据。因此,取样时的FRA确保了使用合适的抽汲速率以进行精确的压力测试并获得地层的单向样品特征。
根据目前的典型实施例,本发明提供一种监测从含烃地层泵送地层流体并为在每一泵冲程之后使用如上所述FRA技术的泵送提供质量控制的装置和方法。根据本发明,在利用FRA监测地层压力恢复以计算迁移率、压缩系数、关联系数和P*对时间关系时,FRA被用于泵的抽汲侧。本发明的实施例为一种在图26所示的双向泵的每一泵冲程的末端利用上述的FRA技术分析地层压力和地层流体流变的绳索工具地层测试仪器测试数据的方法。地层测试仪器通常将地层流体泵出和从地层泵入井筒以便在地层取样之前净化泥浆滤液。所述的泵送可持续数小时以获得没有滤液的(净化的)地层流体。此外,以最有效的方式维持泵送速率而不会遇到如工具堵塞、封隔器泄漏,砂堵和地层伤害的情况是关键的问题。利用已知的双向泵室62或64的泵体积,本发明将FRA应用于泵送数据。在一个典型的实施例中,井下工具内的处理器通过向在地面上的操作员显示向上或向下的箭头告知操作员是否要增加或降低泵送速率以获得所需的泵送速率以及停机或自动调整泵送速率。
当泵送动作没有出现问题时,一系列连续的泵冲程的FRA关联系数将会相对较高,即高于0.8-0.9,但是当在泵送过程中遇到问题时,所述FRA关联系数将会变坏和再次变低。FRA压缩系数用作泵送期间流体类型变化的指示器。随着对地层流体压缩系数的连续监测,从地层泵送流体的类型变化能够被很快地探测到。因此,当泥浆滤液压缩系数与地层流体压缩系数之间存在显著的差别时,由于从显示泥浆滤液的数值到显示地层流体的数值的压缩系数的变化而能够很容易地监测地层净化。近红外光谱光学密度测试的监测与FRA压缩系数一同使用以确定地层样品净化。
本发明在双向泵室62和64或单向泵室的已知泵体积上利用FRA。FRA技术可用于一个泵冲程或多个泵冲程,并且可计算出对于一个或多个冲程的迁移率、压缩系数和关联系数。利用FRA确定的地层迁移率,本发明计算出最优泵送速率以将流压维持在饱和压力之上,并且如果需要改变泵送参数以获得最优压力,本发明会告知工具工程师,或者本发明自动调整泵送速率以获得泵送速率压力与地层的产能匹配的最优压力。本发明连续地监测泵送过程中的FRA迁移率、压缩系数和关联系数以观测FRA迁移率、压缩系数和关联系数的显著变化,从而确定地层的产能或探测泵送期间出现的问题。
FRA技术可计算地层速率以进行分析。下述的方程(16)就是用于分析的基础:
p(t)=p*-(μ/(kG0ri))(CsysVSYS(dp(t)/dt)+qdd)      (16)
方程右侧第二个括号内的全部项CsysVsys(dp(t)/dt)+qdd为通过校正用于工具存储效应的活塞速率(qdd)而计算出的地层速率。Csys为工具流动管线内流体的压缩系数,Vsys为流动管线的体积,G0为几何因子,ri为探测半径。
LMP泵活塞位置指示电位计47在图26中示出。LMP在跟踪活塞位置和活塞移动速率及泵活塞或取样室活塞的线性体积位移的曲线以确定泵送体积方面是有用的。根据所述曲线利用泵活塞的横截面积(cm)计算出抽汲体积(DDV)和泵送体积(PTV);泵送体积(PTV-BB)曲线的单位为cm3。当泵送体积(PTV)曲线中记录了泵体积时,FRA适用于小体积56cc泵的泵送。
但是,每一泵送冲程的迁移率和压缩系数都会变化,但是很接近。迁移率仅会略微增加。三个泵送冲程结合的FRA产生了用于压缩系数和迁移率的在三个泵送冲程的实际种类平均值。当使用保留特征仪器(Reservation Characterization Instru ment)(RCI)56cc(BB)泵和绘制出泵送体积(PTV)曲线时,上述示例显示了FRA可成功地用于泵送数据。将FRA用于每一冲程或一起用于多个冲程以便节省计算时间。
地层流体或地层流体和滤液的混合物的饱和压力可通过井下膨胀测试估算出来,或者根据已知的相关值的数据库数据估算出。一旦由FRA获得地层迁移率,就可使用FRA计算出可以仍然维持流动压力高于饱和压力的最大泵送速率。此外,任何显著的变化,如FRA压缩系数的一半或一个数量级,都预示着流入工具的流体类型的变化,其将会成为地层净化的指示器。
本发明选择全部抽汲泵送冲程的一部分并根据计算出的抽汲速率构成FRA数据。利用所述泵送数据,根据泵送冲程的次数而不是抽汲速率选择分析间隔。本发明在整个泵送期间利用多种次数的冲程,在开始阶段选择较少的泵冲程,如两个或三个泵冲程,渐渐地增加泵冲程的次数,直至达到可选择的固定的最大冲程次数,如10个冲程,或者在本发明中,接近500cc的泵送流体。
现在转到图27,其中示出了取样工具的一个示例。本发明在从地层取样的泵送期间使用FRA。FRA可计算随时间变化的压缩系数、渗透率和迁移率。随时间变化的渗透率的监测可估算或确定样品中的滤液污染的程度。由于地层流体的压缩系数大于滤液的压缩系数,所以压缩系数会稳定地降低,并在从地层泵送地层流体样品期间当地层样品得到净化和去掉滤液时渐渐地稳定在某一稳态数值上。
如图27所示,泵2018泵送来自地层2010的地层流体。来自地层2010的地层流体在样品净化期间直接送往井筒出口2012,或者直接送往单相样品罐2020并在确认地层样品清洁时作为样品2021被收集起来。本发明能够实时地监测随时间变化的压缩系数、渗透率和迁移率以进行样品的质量控制,从而保证样品排出地层时保持在同样的状态。
泵2018的吸入侧2014降低到地层压力以下以使地层流体从地层流入泵2018。泵吸入侧降低到地层压力以下的压力量由本发明进行设定。对压力降落的量进行设定是为了使样品压力不会在泡点压力和露点压力之下。对吸入侧压力降落的量进行设定还为了使压力不会降到沥青质从样品中析出的压力,从而保证样品保持在从地层种流出时的液态。因此,设定第一压力降落以便泵送期间的压力降落不会降到泡点压力以下并且不会形成气泡。设定第二压力降落以便泵送期间的压力降落不会降到固体(如沥青质)从地层流体析出时的压力。所以,设定第一和第二压力降落确保了地层流体样品在其中的附加气体或固体不会发生状态变化的情况下进行输送。第一和第二压力降落的值由泡点压力和通过对地层进行建模和在先数据分析而得到的固体析出压力决定。对样品滤液清洁程度的监测确保了地层流体样品不会含有滤液,或含有最小数量滤液,以便地层流体样品的组分为从地层中排出的地层流体的组分。
在另一实施例中,本发明的方法由一套计算机可执行指令在计算机可读介质上完成,所述计算机可读介质包括ROM,RAM,CD ROM,闪存或任何其它的计算机可读介质,无论是已知的还是未知的,它们都会使计算机完成本发明的方法。
虽然前面描述了本发明的典型实施例,但是对本领域的技术人员来说显然可以作出各种变化。所附权利要求范围内的各种变化都包含在前述的公开部分中。具有本发明更重要特征的示例被很宽泛地做了总结以便能够很好地理解其后的详细描述,以及可以理解其对现有技术的贡献。当然,本发明地附加特征在其后进行了描述并形成了从属权利要求的主题。

Claims (26)

1.一种确定地层流体样品的最优泵速的装置,其包括:
含有流体样品的样品室;
将流体泵入样品室的泵;
测试样品室内样品压力的压力测试设备;
与样品室相关联以降低样品室内样品压力的可膨胀体积;以及
对样品进行分析以确定与穿过流体样品的电磁能相关的最大功率出现时的压力的光学分析器。
2.如权利要求1所述的装置,还包括:根据最大功率时的压力确定最优泵送速率的函数。
3.如权利要求1所述的装置,还包括:确定样品露点压力的函数。
4.如权利要求3所述的装置,还包括:根据所述露点压力确定最优泵送速率的函数。
5.如权利要求1所述的装置,还包括:确定样品泡点压力的函数。
6.如权利要求3所述的装置,还包括:根据所述泡点压力确定最优泵送速率的函数。
7.如权利要求1所述的装置,还包括:确定样品沥青质析出压力的函数。
8.如权利要求3所述的装置,还包括:根据所述沥青质析出压力确定最优泵送速率的函数。
9.一种确定地层流体样品最优泵送速率的系统,其包括:
布置井下取样工具的地面控制器,所述取样工具具有含有流体样品的样品室;
将流体泵入样品室的泵;
测试样品室内样品压力的压力测试设备;
与样品室相关联以降低样品室内样品压力的可膨胀体积;以及
对样品进行分析以确定与穿过流体样品的电磁能相关的最大功率出现时的压力的光学分析器。
10.如权利要求9所述的系统,还包括:根据最大功率时的压力确定最优泵送速率的函数。
11.一种确定地层流体样品的最优泵送速率的方法,其包括:
将流体泵入样品室;
测量样品室内样品的压力;
使与样品室相关联的体积膨胀以降低取样室内样品的压力;以及
对样品进行分析以确定与穿过流体样品的电磁能相关联的最大功率出现时的压力。
12.如权利要求11所述的方法,还包括:根据最大功率时的压力确定最优泵送速率。
13.如权利要求11所述的方法,还包括确定样品的露点压力。
14.如权利要求13所述的方法,还包括:根据所述露点压力确定最优泵送速率。
15.如权利要求11所述的方法,还包括:确定样品的泡点压力。
16.如权利要求15所述的方法,还包括:根据所述泡点压力确定最优泵送速率。
17.如权利要求11所述的方法,还包括:确定样品的沥青质析出压力。
18.如权利要求17所述的方法,还包括:根据所述沥青质析出压力确定最优泵送速率。
19.一种含有指令的计算机可读介质,所述指令在由计算机执行时完成确定地层流体样品的最优泵送速率的方法,包括:
将流体泵入样品室;
测量样品室内样品的压力;
使与样品室相关联的体积膨胀以降低样品室内样品的压力;以及
对样品进行分析以确定与穿过流体样品的电磁能相关联的最大功率出现时的压力。
20.如权利要求19所述的介质,还包括:根据最大功率时的压力确定最优泵送速率。
21.如权利要求19所述的介质,还包括确定样品的露点压力。
22.如权利要求21所述的介质,还包括:根据所述露点压力确定最优泵送速率。
23.如权利要求19所述的方法,还包括:确定样品的泡点压力。
24.如权利要求23所述的方法,还包括:根据所述泡点压力确定最优泵送速率。
25.如权利要求19所述的装置,还包括:确定样品的沥青质析出压力。
26.如权利要求25所述的装置,还包括:根据所述沥青质析出压力确定最优泵送速率。
CNB2004800200591A 2003-05-21 2004-05-21 根据井下露点压力测定数据确定最优泵送速率的方法和装置 Expired - Fee Related CN100408806C (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US47235803P 2003-05-21 2003-05-21
US60/472,358 2003-05-21

Publications (2)

Publication Number Publication Date
CN1823210A true CN1823210A (zh) 2006-08-23
CN100408806C CN100408806C (zh) 2008-08-06

Family

ID=33476945

Family Applications (1)

Application Number Title Priority Date Filing Date
CNB2004800200591A Expired - Fee Related CN100408806C (zh) 2003-05-21 2004-05-21 根据井下露点压力测定数据确定最优泵送速率的方法和装置

Country Status (7)

Country Link
US (2) US7222524B2 (zh)
EP (1) EP1629177B1 (zh)
CN (1) CN100408806C (zh)
BR (1) BRPI0410776B1 (zh)
NO (1) NO335558B1 (zh)
RU (1) RU2352776C2 (zh)
WO (1) WO2004104374A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113049522A (zh) * 2019-12-26 2021-06-29 中国石油天然气股份有限公司 能够消除气泡的近红外分析装置

Families Citing this family (47)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7011155B2 (en) * 2001-07-20 2006-03-14 Baker Hughes Incorporated Formation testing apparatus and method for optimizing draw down
US6662644B1 (en) * 2002-06-28 2003-12-16 Edm Systems Usa Formation fluid sampling and hydraulic testing tool
RU2349751C2 (ru) * 2003-03-10 2009-03-20 Бейкер Хьюз Инкорпорейтед Способ и устройство для контроля качества откачки флюида с помощью анализа скорости притока флюида из породы
US7316176B2 (en) * 2005-08-26 2008-01-08 Tdw Delaware, Inc. Remote monitor system for a longitudinally positionable control bar
US7445043B2 (en) * 2006-02-16 2008-11-04 Schlumberger Technology Corporation System and method for detecting pressure disturbances in a formation while performing an operation
US7996153B2 (en) * 2006-07-12 2011-08-09 Baker Hughes Incorporated Method and apparatus for formation testing
US7594541B2 (en) * 2006-12-27 2009-09-29 Schlumberger Technology Corporation Pump control for formation testing
US20090097857A1 (en) * 2007-10-12 2009-04-16 Baker Hughes Incorporated Downhole optical communication system and method
US7937223B2 (en) * 2007-12-28 2011-05-03 Schlumberger Technology Corporation Downhole fluid analysis
BRPI0910948B1 (pt) * 2008-04-09 2019-06-04 Halliburton Energy Services Inc. Aparelho para analisar um fluido
US8082780B2 (en) * 2008-08-28 2011-12-27 Schlumberger Technology Corporation Methods and apparatus for decreasing a density of a downhole fluid
WO2010059601A2 (en) * 2008-11-18 2010-05-27 Schlumberger Canada Limited Fluid expansion in mud gas logging
US8156800B2 (en) * 2008-12-24 2012-04-17 Schlumberger Technology Corporation Methods and apparatus to evaluate subterranean formations
US8528396B2 (en) * 2009-02-02 2013-09-10 Schlumberger Technology Corporation Phase separation detection in downhole fluid sampling
US8371161B2 (en) * 2009-03-06 2013-02-12 Baker Hughes Incorporated Apparatus and method for formation testing
US8955376B2 (en) 2009-10-22 2015-02-17 Halliburton Energy Services, Inc. Formation fluid sampling control
CN105240007B (zh) * 2010-06-17 2018-10-12 哈里伯顿能源服务公司 用于测试流体试样的方法和系统
FR2968348B1 (fr) * 2010-12-03 2015-01-16 Total Sa Procede de mesure de pression dans une formation souterraine
GB2501844B (en) * 2011-03-07 2018-11-28 Baker Hughes Inc Methods and devices for filling tanks with no backflow from the borehole exit
US8997861B2 (en) 2011-03-09 2015-04-07 Baker Hughes Incorporated Methods and devices for filling tanks with no backflow from the borehole exit
US8757986B2 (en) 2011-07-18 2014-06-24 Schlumberger Technology Corporation Adaptive pump control for positive displacement pump failure modes
US8910514B2 (en) * 2012-02-24 2014-12-16 Schlumberger Technology Corporation Systems and methods of determining fluid properties
US9328609B2 (en) * 2012-11-01 2016-05-03 Baker Hughes Incorporated Apparatus and method for determination of formation bubble point in downhole tool
US9169727B2 (en) * 2012-12-04 2015-10-27 Schlumberger Technology Corporation Scattering detection from downhole optical spectra
US20140268156A1 (en) * 2013-03-13 2014-09-18 Schlumberger Technology Corporation Method and system for determining bubble point pressure
WO2014158376A1 (en) * 2013-03-14 2014-10-02 Schlumberger Canada Limited A pressure volume temperature system
US9341169B2 (en) * 2013-07-03 2016-05-17 Schlumberger Technology Corporation Acoustic determination of piston position in a modular dynamics tester displacement pump and methods to provide estimates of fluid flow rate
US9399913B2 (en) 2013-07-09 2016-07-26 Schlumberger Technology Corporation Pump control for auxiliary fluid movement
US9334724B2 (en) 2013-07-09 2016-05-10 Schlumberger Technology Corporation System and method for operating a pump in a downhole tool
US9557312B2 (en) 2014-02-11 2017-01-31 Schlumberger Technology Corporation Determining properties of OBM filtrates
US10731460B2 (en) * 2014-04-28 2020-08-04 Schlumberger Technology Corporation Determining formation fluid variation with pressure
US10126214B1 (en) * 2014-07-21 2018-11-13 Mayeaux Holding, Llc Wet gas sampling system and method therefore
US9310234B2 (en) * 2014-07-22 2016-04-12 Dmar Engineering, Inc. Flow rate testing to locate tube obstruction
US9664665B2 (en) * 2014-12-17 2017-05-30 Schlumberger Technology Corporation Fluid composition and reservoir analysis using gas chromatography
US11125082B2 (en) 2015-07-20 2021-09-21 Pietro Fiorentini Spa Systems and methods for monitoring changes in a formation while dynamically flowing fluids
US10746019B2 (en) * 2015-11-05 2020-08-18 Schlumberger Technology Corporation Method to estimate saturation pressure of flow-line fluid with its associated uncertainty during sampling operations downhole and application thereof
US10704388B2 (en) * 2016-03-31 2020-07-07 Schlumberger Technology Corporation Systems and methods for pump control based on non-linear model predictive controls
US10227970B2 (en) 2016-06-15 2019-03-12 Schlumberger Technology Corporation Determining pump-out flow rate
US10689979B2 (en) 2016-06-16 2020-06-23 Schlumberger Technology Corporation Flowline saturation pressure measurement
US11193373B2 (en) * 2016-06-27 2021-12-07 Schlumberger Technology Corporation Prediction of saturation pressure of fluid
US10704379B2 (en) 2016-08-18 2020-07-07 Schlumberger Technology Corporation Flowline saturation pressure measurements
WO2020097060A2 (en) * 2018-11-05 2020-05-14 Schlumberger Technology Corporation Fracturing operations pump fleet balance controller
WO2020256731A1 (en) 2019-06-20 2020-12-24 Halliburton Energy Services, Inc. Contamination prediction of downhole pumpout and sampling
US11555402B2 (en) * 2020-02-10 2023-01-17 Halliburton Energy Services, Inc. Split flow probe for reactive reservoir sampling
CN113210282B (zh) * 2021-01-29 2022-10-11 广西人防设计研究院有限公司 一种人防门密闭性能检测系统
US11905830B2 (en) 2021-04-01 2024-02-20 Halliburton Energy Services, Inc. Identifying asphaltene precipitation and aggregation with a formation testing and sampling tool
WO2023250176A1 (en) * 2022-06-24 2023-12-28 Schlumberger Technology Corporation Systems and methods for differentiating bubble points from dew points

Family Cites Families (23)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3756720A (en) * 1972-01-27 1973-09-04 Environment One Corp Portable photographic atmospheric particle detector
US3890046A (en) * 1974-05-09 1975-06-17 Us Energy Condensation nucleus discriminator
FR2558522B1 (fr) 1983-12-22 1986-05-02 Schlumberger Prospection Dispositif pour prelever un echantillon representatif du fluide present dans un puits, et procede correspondant
US4721157A (en) 1986-05-12 1988-01-26 Baker Oil Tools, Inc. Fluid sampling apparatus
US4766955A (en) 1987-04-10 1988-08-30 Atlantic Richfield Company Wellbore fluid sampling apparatus
US4994671A (en) * 1987-12-23 1991-02-19 Schlumberger Technology Corporation Apparatus and method for analyzing the composition of formation fluids
CA1325379C (en) 1988-11-17 1993-12-21 Owen T. Krauss Down hole reservoir fluid sampler
US4903765A (en) 1989-01-06 1990-02-27 Halliburton Company Delayed opening fluid sampler
GB9003467D0 (en) 1990-02-15 1990-04-11 Oilphase Sampling Services Ltd Sampling tool
NO172863C (no) 1991-05-03 1993-09-15 Norsk Hydro As Elektro-hydraulisk bunnhullsproevetakerutstyr
US5240072A (en) 1991-09-24 1993-08-31 Halliburton Company Multiple sample annulus pressure responsive sampler
US5635631A (en) * 1992-06-19 1997-06-03 Western Atlas International, Inc. Determining fluid properties from pressure, volume and temperature measurements made by electric wireline formation testing tools
US5303775A (en) 1992-11-16 1994-04-19 Western Atlas International, Inc. Method and apparatus for acquiring and processing subsurface samples of connate fluid
US5377755A (en) 1992-11-16 1995-01-03 Western Atlas International, Inc. Method and apparatus for acquiring and processing subsurface samples of connate fluid
US5329811A (en) * 1993-02-04 1994-07-19 Halliburton Company Downhole fluid property measurement tool
US5361839A (en) 1993-03-24 1994-11-08 Schlumberger Technology Corporation Full bore sampler including inlet and outlet ports flanking an annular sample chamber and parameter sensor and memory apparatus disposed in said sample chamber
US6157893A (en) * 1995-03-31 2000-12-05 Baker Hughes Incorporated Modified formation testing apparatus and method
US5662166A (en) 1995-10-23 1997-09-02 Shammai; Houman M. Apparatus for maintaining at least bottom hole pressure of a fluid sample upon retrieval from an earth bore
EP1357402A3 (en) * 1997-05-02 2004-01-02 Sensor Highway Limited A light actuated system for use in a wellbore
US6437326B1 (en) * 2000-06-27 2002-08-20 Schlumberger Technology Corporation Permanent optical sensor downhole fluid analysis systems
US6476384B1 (en) * 2000-10-10 2002-11-05 Schlumberger Technology Corporation Methods and apparatus for downhole fluids analysis
US6467544B1 (en) 2000-11-14 2002-10-22 Schlumberger Technology Corporation Sample chamber with dead volume flushing
GB2377952B (en) * 2001-07-27 2004-01-28 Schlumberger Holdings Receptacle for sampling downhole

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113049522A (zh) * 2019-12-26 2021-06-29 中国石油天然气股份有限公司 能够消除气泡的近红外分析装置
CN113049522B (zh) * 2019-12-26 2023-07-25 中国石油天然气股份有限公司 能够消除气泡的近红外分析装置

Also Published As

Publication number Publication date
RU2005139713A (ru) 2006-08-10
NO20055733L (no) 2006-01-12
NO20055733D0 (no) 2005-12-05
US20070214877A1 (en) 2007-09-20
WO2004104374A1 (en) 2004-12-02
US7222524B2 (en) 2007-05-29
US20040231408A1 (en) 2004-11-25
CN100408806C (zh) 2008-08-06
US7665354B2 (en) 2010-02-23
EP1629177B1 (en) 2007-04-18
BRPI0410776A (pt) 2006-06-27
NO335558B1 (no) 2014-12-29
BRPI0410776B1 (pt) 2016-01-19
RU2352776C2 (ru) 2009-04-20
EP1629177A1 (en) 2006-03-01

Similar Documents

Publication Publication Date Title
CN1823210A (zh) 根据井下露点压力测定数据确定最优泵送速率的方法和装置
CN109209337B (zh) 一种考虑岩屑床的水平井钻井润滑性实验装置及实验方法
CN1759229A (zh) 通过岩层速率分析技术进行泵送质量控制的方法和装置
CN1191422C (zh) 地层流体采样设备和方法
US10209169B2 (en) Method and apparatus for automatically testing high pressure and high temperature sedimentation of slurries
US9103176B2 (en) Instrumented core barrel apparatus and associated methods
FR2861127A1 (fr) Appareil d'echantillonnage de fond et methode d'utilisation de celui-ci
CN1624295A (zh) 井下流体泵送装置和方法
NO321922B1 (no) Anordning og fremgangsmate for nedihulls analyse av en grunnformasjons-fluidprove i et borehull
US8905130B2 (en) Fluid sample cleanup
US7216720B2 (en) Multi-string production packer and method of using the same
RU2449114C1 (ru) Способ одновременно-раздельной эксплуатации нескольких продуктивных горизонтов и устройство для его реализации
WO2021236110A1 (en) Methods to characterize subterranean fluid composition and adjust operating conditions using mems technology
US7806174B2 (en) Well jet device
CN113153274B (zh) 一种深部煤层原位含气量测定方法
CN110439552B (zh) 一种基于钻井的多相流保真取样装置及方法
RU45776U1 (ru) Устройство для исследования многоствольных скважин
CA3090554A1 (en) Method of producing hydrocarbon fluids from casing
Cardoso et al. Examples of advanced technologies/methods applied in challenging wireline formation tester environment to better characterize reservoir fluid distribution

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C14 Grant of patent or utility model
GR01 Patent grant
CF01 Termination of patent right due to non-payment of annual fee

Granted publication date: 20080806

Termination date: 20150521

EXPY Termination of patent right or utility model