CN1809841B - 运动补偿的重建方法、设备与系统 - Google Patents

运动补偿的重建方法、设备与系统 Download PDF

Info

Publication number
CN1809841B
CN1809841B CN2004800169739A CN200480016973A CN1809841B CN 1809841 B CN1809841 B CN 1809841B CN 2004800169739 A CN2004800169739 A CN 2004800169739A CN 200480016973 A CN200480016973 A CN 200480016973A CN 1809841 B CN1809841 B CN 1809841B
Authority
CN
China
Prior art keywords
data
intermediate image
image
sports
bin
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
CN2004800169739A
Other languages
English (en)
Other versions
CN1809841A (zh
Inventor
T·科尔勒
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Koninklijke Philips NV
Original Assignee
Koninklijke Philips Electronics NV
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Koninklijke Philips Electronics NV filed Critical Koninklijke Philips Electronics NV
Publication of CN1809841A publication Critical patent/CN1809841A/zh
Application granted granted Critical
Publication of CN1809841B publication Critical patent/CN1809841B/zh
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T11/002D [Two Dimensional] image generation
    • G06T11/003Reconstruction from projections, e.g. tomography
    • G06T11/006Inverse problem, transformation from projection-space into object-space, e.g. transform methods, back-projection, algebraic methods
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T2211/00Image generation
    • G06T2211/40Computed tomography
    • G06T2211/412Dynamic

Landscapes

  • Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • General Physics & Mathematics (AREA)
  • Theoretical Computer Science (AREA)
  • Algebra (AREA)
  • Mathematical Analysis (AREA)
  • Mathematical Optimization (AREA)
  • Mathematical Physics (AREA)
  • Pure & Applied Mathematics (AREA)
  • Nuclear Medicine (AREA)

Abstract

在PET成像过程中长的扫描时间因患者或器官运动而可能会导致明显的分辨率损失。根据本发明,变形或运动可以通过根据描述感兴趣物体的运动和/或变形的运动场来执行中间图像的向前投影和/或向后投影而得以补偿。

Description

运动补偿的重建方法、设备与系统
技术领域
本发明涉及数字成像领域。具体来讲,本发明涉及一种根据和在正电子发射断层成像(PET)、单光子发射计算机断层成像(SPECT)和计算机断层成像(CT)中一样的投影来进行运动补偿图像的重建。更具体而言,本发明涉及一种根据物体的发射或透射数据重建图像的方法,一种用于根据发射或透射数据重建图像的图像处理装置,一种PET、SPECT或CT系统以及一种计算机程序产品。
背景技术
在以发射计算机断层成像著称的医学成像技术中,物体的图像是根据检测物体发射出的伽马射线而创建的。伽马射线可以是从物体中累积的示踪剂(tracer)发射出的。这类示踪剂例如可以基于18F-标记的脱氧葡萄糖(18F-fluorordeoxyglucose)。在正电子发射断层成像(PET)中,要成像的物体内的正电子湮灭(positron electro annihilations)使得伽马射线以两个伽马光子对发射出去,它们(几乎)以恰好相反的方向飞行。由每对伽马光子形成的路径代表一条线,该线有时称为″响应线″。正电子发射造影剂或示踪剂在物体内具体的分布能够通过计算这些重合线的位置加以确定。这类信息的集合体可以用来重建一幅图像。
典型地,伽马光子所携带的能量是利用在所研究物体周围以阵列形式排列的检测器来检测的。检测器对伽马光子所携带的能量进行转换,以便记录引起射线的核变(event)的位置。表示已检测到的伽马光子的电信号可以由系统来处理,所述系统典型地包括能够处理位置数据以形成正在检查中的组织结构、器官或患者的图像的、可编程数字计算机。PET成像的目的是重建人体或物体内的造影剂或示踪剂的分布。这种分布被称作发射图像,并且是根据按上述那样获得的发射测量或放射数据来重建的。
这种测量所需要的时间段取决于所用的示踪剂或造影剂的半衰期以及系统能够处理的最大计数速率,而且有时候是10分钟到45分钟。传统地,在测量时段期间既需要按位置固定物体又需要按方向固定物体。对于人体或动物来说,这种固定不动的姿势可能是非常痛苦的。此外,非常长的扫描时间困患者或器官运动而导致明显的分辨率损失,对于心脏和胸部成像(在数据采集期间存在心脏和呼吸运动)而言特别如此。此外,在通过图像重建而获得的图像当中也会出现因感兴趣物体的运动或变形而造成的伪像。在已知的技术中,仅仅使用属于确定的运动阶段的数据来进行重建。这达到了伪像更少且图像更清晰的目的,但是信噪比明显降低,因为一些数据不再被使用来重建。
Klein G.J.等人的“Real-time system for respiratory cardiac gatingin position tomography”,NUCLEAR SCIENCE SYMPOSIUM,1997,IEEE ALBUQUERQUE,NM,USA,1997年11月9日,1284-1287页公开了一种图像重建方法,其中关联到不同运动状态的PET图像被并和到多个分离的面元(bin)中以形成2D直方图阵列,其中一个轴是心动周期的相位,而另一个轴是呼吸周期的相位。
发明内容
本发明的目的是提供一种改进的图像重建。
根据本发明的一个方面,上述目的可以通过根据本发明的方法来解决,所述方法用于根据物体的测量的时间积分(integral)来重建图像。根据本发明的这个示例性实施例,将测量的线积分面元划分成多个时间面元(bin),为多个时间面元确定多个运动场并且从多个时间面元的选定面元中选择第一数据。然后,通过利用属于选定的时间面元的多个运动场的一个运动场,将中间图像向前投影以形成第二数据。然后,确定第一数据和第二数据之间的差值,并且根据该差值更新所述中间图像。
特别地,本发明提供一种根据物体的测量的线积分重建图像的方法,所述方法包括下列步骤:
将测量的线积分面元划分成多个时间面元;
为多个时间面元确定多个运动场;
从多个时间面元的选定面元中选择第一数据;
通过利用属于所选时间面元的多个运动场的一个运动场来向前投影中间图像以形成第二数据;
确定第一数据和第二数据之间的差值;以及
基于所述差值来更新所述中间图像。
有利地是,上述方法考虑到了感兴趣物体的运动和变形。此外,它还可以允许使似然函数最大化。总的说来,根据本发明的这个示例性实施例,即使在感兴趣物体中存在运动或变形的情况下,也可以实现正确的重建,从而产生具有高信噪比的清晰图像。
提供了本发明的进一步的有利实施例。
本发明的另一个示例性实施例提供了一种图像处理设备,用于根据测量的线积分来重建图像,例如,在重建PET图像期间,考虑到了感兴趣物体的运动和/或变形。
特别地,本发明提供了一种用于根据测量的线积分来重建图像的图像处理设备,包括:
用于将测量的线积分面元划分成多个时间面元的装置;
用于为多个时间面元确定多个运动场的装置;
用于从多个时间面元的选定面元中选择第一数据的装置;
用于通过利用属于所选时间面元的多个运动场的一个运动场来向前投影中间图像以形成第二数据的装置;
用于确定第一数据和第二数据之间的差值的装置;以及
用于基于所述差值来更新所述中间图像的装置。
本发明的另一个示例性实施例提供了一种正电子发射断层成像系统,它可以包括:扫描仪系统,例如在US 5,703,369中所描述的、兼顾了清晰PET图像的扫描仪系统,将该篇申请在此引入作为参考,所述扫描仪系统即使是在感兴趣物体移动和/或变形的情况下也能够给出清晰PET图像。
特别地,本发明提供了一种正电子发射断层成像系统,包括:
用于将测量的线积分面元划分成多个时间面元的装置;
用于为多个时间面元确定多个运动场的装置;
用于从多个时间面元的选定面元中选择第一数据的装置;
用于通过利用属于所选时间面元的多个运动场的一个运动场来向前投影中间图像以形成第二数据的装置;
用于确定第一数据和第二数据之间的差值的装置;以及
用于基于所述差值来更新所述中间图像的装置。
本发明的另一个示例性实施例提供了一种计算机程序产品,其包括与根据本发明的方法相对应的计算机程序,当在处理器上执行该计算机程序时引起处理器执行操作。可以以任何适当的编程语言来编写该计算机程序,例如,以C++来编写。可以将该计算机程序产品存储在诸如CD-ROM之类的计算机可读介质上。此外,可以从诸如万维网之类的网络上获得这些计算机程序,可以从所述万维网上将它们下载到图像处理单元或处理器或任何适当的计算机中。
显然,本发明的示例性实施例的主旨在于:提供了一种用于根据测量的线积分来重建图像的运动补偿迭代重建技术,其考虑到了感兴趣物体的运动和/或变形。具体来讲,根据本发明的一个方面,迭代重建技术的向前投影是根据运动场来执行的,所述运动场描述了物体相对于中间图像的参考栅格的运动或变形的至少其中之一。
附图说明
通过下文中所述的实施例,本发明的这些及其它方面将变得非常清楚,并且将参照这些实施例加以阐述。
在下面将参照下列附图来描述本发明的示例性实施例:
图1示出了根据本发明的示例性实施例的图像处理装置的示意表示,所述图像处理装置适合于执行根据本发明的方法的示例性实施例。
图2示出了依照本发明的图1的图像处理装置的操作的示例性实施例的流程图。
图3示出了用于进一步解释本发明的简化示意表示。
图4示出了用于进一步解释本发明的另一简化示意表示。
具体实施方式
图1示出了根据本发明的图像处理装置的示例性实施例。图1中所示的图像处理装置包括:具有存储器2的图像处理和控制处理器1,在所述存储器中可以存储测量的线积分,例如检测的正弦图(sinogram)和在操作期间所生成和/或更新的中间图像。所述图像处理和控制处理器(CPU)1可以经由总线系统3耦合于成像装置(在图1中未示出),例如PET扫描仪(例如在US5,703,369中描述的PET扫描仪),在此将该篇申请引入作为参考。可以在连接到图像处理和控制处理器1的监视器4上向操作员显示该图像处理和控制处理器1所生成的图像。操作员可以经由键盘5或其它输入装置来访问图像处理和控制处理器1,所述其它输入装置在图1没有示出,例如鼠标或轨迹球。
此外,经由总线系统3,还可以将图像处理和控制处理器1连接到例如运动监视器,所述运动监视器监视感兴趣物体的运动。在例如对患者的肺进行成像的情况下,运动传感器就可以是呼气传感器。在对心脏进行成像的情况下,运动传感器可以是心电图(ECG)。
图2示出了依照本发明的示例性实施例、用于操作图1中所述的图像处理装置的方法的流程图.
在步骤S1开始之后,在步骤S2中获取放射数据。例如,这可以利用适当的PET扫描仪或通过从存储器中读取放射数据来进行。所述放射数据包括未知示踪剂浓度的多个线积分,所述未知示踪剂浓度与正在上面发生核变的响应线(LOR)的位置和/或方向有关,并且还包括核变在测量时间上的积分。典型地,具有相同或几乎相同的LOR的核变被添加以形成所谓的线积分。此外,属于平行LOR的线积分被编组在一起。这样的一个群组称为投影。包含从0度到180度投影的数据结构通常称为正弦图。在此,在后续的步骤S3中,根据本发明的一个方面,另外将放射数据的核变面元划分成时间面元。然而,根据本发明的一个方面,还可以通过使用所谓的列表模式重建而将本发明应用于空间上未进行面元划分的单次核变。
每个时间面元都属于确定的运动状态。换言之,在对具有或多或少周期性运动的器官进行成像的情况下,重新排列放射数据以便于将在相似阶段或相似运动状态获取的投影面元划分到同一个时间面元中。可以根据利用运动传感器获取到的信息来确定一次核变属于哪个时间面元,所述运动传感器例如是呼气传感器或心电图。根据本发明的一个方面,还可以使用放射数据本身的固有信息,例如Klein,G.J.;Reutter,R.W.;Huesman,R.H.所著的″Four-dimensional affine registration models forrespiratory-gated PET″(核科学,IEEE学报第3期第48卷第756-760页,2001年6月)中进一步详细描述的平均以几十或几百毫秒发生的核变的重心,将该篇申请在此引入作为参考。
利用标准重建技术,根据每个时间面元来重建三维图像。可以以低分辨率重建这些图像以便获取合理的信噪比并且保持计算成本适度。在步骤S4中,为每个图像确定一个运动场,该运动场描述该图像相对于所选参考图像(例如它可以是具有最高信噪比的图像)的运动。运动场描述了在确定的时间点感兴趣物体的运动和/或变形。所述运动场可以依照T.Schaffter、V.Rasche、I.C.Carlsen所著的″Motion CompensatedProjection Reconstruction(运动补偿投影重建)″(医学中的磁共振41:第954-963页,1999年)中所描述的方法来确定,将该篇申请在此引入作为参考。
图3示出了这类运动场的例子。图3的左侧示出了未受干扰的参考运动场,而在图3右侧的运动场示出了另一个运动状态,其中运动场的栅格变形了。同图3的左侧相比,图3左侧的栅格中的格点ri由于运动而位移了矢量Δi
换言之,运动场的栅格的格点ri描述了感兴趣物体的局部运动或变形。
然后,所述方法继续步骤S5,其中确定第一中间图像A0(x,y)。第一中间图像A0(x,y)例如可以是均质分布、放射数据的滤波的向后投影或放射数据的简单向后投影。然后,在下一步S6中,以n=0启动计数器。在后续的步骤S7到S12中,执行运动补偿迭代图像重建。
在步骤S7中,中间图像A0+n(x,y),在第一次迭代的情况下是在步骤S5中所确定的第一中间图像,通过利用与该投影相对应的运动场而被向前投影。换言之,通过使用在这种时间点上从与感兴趣物体的运动相对应的运动场中采集到的运动或变形信息,来向前投影中间图像A0+n(x,y)。
然后,在后续的步骤S8中,将向前投影的A0+n(x,y)与放射数据的相应投影进行比较以确定所投影的中间图像A0+n(x,y)与实际测量的投影之间的差值.换言之,在步骤S8中,在运动和/或变形补偿的中间图像与在该时间实际测量的投影之间进行比较.在一种简单的情况下,所述差值可以仅仅基于减法来确定.
然后,所述方法继续进行步骤S9,其中通过使用步骤S7所用的运动场来向后投影步骤S8中所确定的差值或误差。这可以仅仅通过在步骤S7中的向前投影期间存储中间图像A0+n(x,y)的各个体素的积分加权值来进行。这些积分加权值定义了体素对线积分的影响有多么大。在步骤S9的向后投影期间,在适当正规化之后可以应用相同的加权值。在步骤S9中,这产生新的(更新的)中间图像A1+n(x,y)。然后,所述方法继续进行步骤S10,其中确定是否满足结束标准。结束标准例如可以是:对放射数据的所有投影执行了迭代或实际测量的投影与中间图像A0+n(x,y)之间的差值低于预定阈值。假如在步骤S10中确定不满足结束标准,则所述方法继续进行步骤S11,其中将计数器n增量:n=n+1。然后,所述方法继续进行步骤S7,其中在步骤S9中确定的新中间图像被向前投影。然后,迭代地执行步骤S7到S11直到满足结束标准为止。假如在步骤S10中确定满足结束标准,则所述方法继续进行步骤S12,在步骤S12该方法结束。
换言之,如上所述,在迭代重建期间,根据选定的投影(或选定的响应线LOR)的信息来更新中间图像A0+n(x,y)。每个投影都属于一定的运动状态,并且格点ri的位置由于运动而位移了矢量Δi。然后,正如参照步骤S7所示的那样,在向前投影中,计算位于每个格点上的活动对所选投影中信号的作用。根据本发明,在这个步骤中,使用当前运动状态下格点的真实位置rii,由此就考虑了运动补偿。此外,根据本发明的一个方面,考虑栅格的局部变形。局部拓扑结构是关键,这是因为格点处的图像值代表格点附近的活动。附近区域上的活动的分布通常称为基函数。基函数例如是体素或斑点(blob)。根据如上所述的本发明,基函数的形状同样也经受了由运动场所引起的局部变形。正如参照图2所描述的那样,这是通过利用与步骤S7中的向前投影和步骤S9中的向后投影当中的投影相对应的各个运动场来进行的。在第一近似中,旋转、偏转(sheer)和/或拉伸或压缩都可以描绘出这种局部变形。在变形之后,可以使斑点正规化,以便确保由图像所表示的正常活动是恒定不变的。
如上所述的,图3示出了两个运动场:在左侧,第一运动场包括属于参考时间面元的、无变形的矩形栅格;在图3的右侧,描述了第二变形栅格,在其中格点位移了矢量Δi。图3左侧的运动场是参考图像A0+n(x,y)的运动场。图3右侧的运动场描绘出了在时间点ti上感兴趣物体与图3左侧上所示的参考栅格或参考运动场相比的运动和/或变形。如上所述,可以将斑点用作描述格点ri附近的活动的基函数。在图3的左侧,示出了位于参考栅格上的格点ri处的未受干扰的斑点。图3的右侧示出了在考虑感兴趣物体的运动和变形之后同一个斑点的位移和变形。正如从图3的右侧可以看出,与图3的左侧相比,斑点已经从左侧的圆形变形成图3右侧的类似鸡蛋的形状。此外,斑点的位置已经移动到右侧并且斑点的宽度已经增大。
图4的左侧示出了2D标准斑点的3D视图。图4的右侧示出了如果在一个方向上按因数1.5压缩局部变形的情况下斑点的视图。
因此,根据本发明的一个方面,通过利用运动场来向前投影参考图像A0+n(x,y),以便对该参考图像进行运动和变形校正,并将其投影到分别被测量的放射数据的投影上.因此,通过向后投影中间图像的校正因数来考虑这种运动和变形信息,就能够利用来自于放射数据的各个投影的迅即且直接地相应的信息来仅仅更新每个基函数,即中间图像的体素或斑点,利用所述信息能够避免最终图像中的模糊效果或拖尾效果并且能够提供清晰的PET图像.
根据本发明的一个方面,在单个重建过程中使用全部数据以便使图像的共用似然函数最大化。此外,对本领域技术人员而言很清楚的是:可以将上述技术应用于PET、SPECT或CT成像中所有已知的迭代重建技术,这些已知的技术例如是RAMLA、ME-ML、OS-ME-ML或ART。

Claims (8)

1.一种根据物体的测量的线积分重建图像的方法,所述方法包括下列步骤:
将测量的线积分面元划分成多个时间面元;
为多个时间面元确定多个运动场;
从多个时间面元的选定面元中选择第一数据;
通过利用属于所选时间面元的多个运动场的一个运动场来向前投影中间图像以形成第二数据;
确定第一数据和第二数据之间的差值;以及
基于所述差值来更新所述中间图像。
2.根据权利要求1所述的方法,其中所述中间图像是根据向后投影更新的,所述向后投影是利用属于所选时间面元的运动场来执行的。
3.根据权利要求1所述的方法,其中多个运动场包含相对于关于测量的线积分的中间图像的基函数的位置移动和局部变形的信息。
4.根据权利要求1所述的方法,其中迭代地执行权利要求1的步骤,直到已经满足结束标准为止。
5.根据权利要求1所述的方法,其中所述多个运动场描述了物体相对于所述中间图像的基准栅格的运动和变形的至少其中之一。
6.根据权利要求1所述的方法,其中所述多个运动场是根据一组图像来确定的,在该组图像中每一个图像是仅仅利用来自于多个时间面元的一个时间面元的数据而重建的。
7.一种用于根据测量的线积分来重建图像的图像处理设备,包括:
用于将测量的线积分面元划分成多个时间面元的装置;
用于为多个时间面元确定多个运动场的装置;
用于从多个时间面元的选定面元中选择第一数据的装置;
用于通过利用属于所选时间面元的多个运动场的一个运动场来向前投影中间图像以形成第二数据的装置;
用于确定第一数据和第二数据之间的差值的装置;以及
用于基于所述差值来更新所述中间图像的装置。
8.一种正电子发射断层成像系统,包括:
用于将测量的线积分面元划分成多个时间面元的装置;
用于为多个时间面元确定多个运动场的装置;
用于从多个时间面元的选定面元中选择第一数据的装置;
用于通过利用属于所选时间面元的多个运动场的一个运动场来向前投影中间图像以形成第二数据的装置;
用于确定第一数据和第二数据之间的差值的装置;以及
用于基于所述差值来更新所述中间图像的装置。
CN2004800169739A 2003-06-18 2004-06-18 运动补偿的重建方法、设备与系统 Expired - Fee Related CN1809841B (zh)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
EP03101784.1 2003-06-18
EP03101784 2003-06-18
PCT/IB2004/050894 WO2004111946A1 (en) 2003-06-18 2004-06-18 Motion compensated reconstruction technique

Publications (2)

Publication Number Publication Date
CN1809841A CN1809841A (zh) 2006-07-26
CN1809841B true CN1809841B (zh) 2010-05-12

Family

ID=33547733

Family Applications (1)

Application Number Title Priority Date Filing Date
CN2004800169739A Expired - Fee Related CN1809841B (zh) 2003-06-18 2004-06-18 运动补偿的重建方法、设备与系统

Country Status (5)

Country Link
US (1) US7599540B2 (zh)
EP (1) EP1639550A1 (zh)
JP (1) JP4855931B2 (zh)
CN (1) CN1809841B (zh)
WO (1) WO2004111946A1 (zh)

Families Citing this family (35)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4820561B2 (ja) * 2005-03-14 2011-11-24 株式会社東芝 核医学診断装置
US8411915B2 (en) 2005-08-04 2013-04-02 Koninklijke Philips Electronics N.V. Motion compensation in functional imaging
US20080317313A1 (en) * 2005-09-30 2008-12-25 Ut-Battelle, Llc System and method for tracking motion for generating motion corrected tomographic images
DE102005051620A1 (de) * 2005-10-27 2007-05-03 Siemens Ag Verfahren zur Rekonstruktion einer tomographischen Darstellung eines Objektes
TWI337329B (en) * 2006-04-18 2011-02-11 Iner Aec Executive Yuan Image reconstruction method for structuring two-dimensional planar imaging into three-dimension imaging
US20100014726A1 (en) * 2006-06-01 2010-01-21 Koninklijke Philips Electronics N.V. Hierarchical motion estimation
DE602007009700D1 (de) * 2006-08-15 2010-11-18 Koninkl Philips Electronics Nv Bewegungsausgleich in einer energieempfindlichen computertomografie
US8938280B2 (en) * 2006-12-19 2015-01-20 Koninklijke Philips N.V. Motion correction in a PET/MRI hybrid imaging system
US8588367B2 (en) * 2007-02-07 2013-11-19 Koninklijke Philips N.V. Motion compensation in quantitative data analysis and therapy
US7888651B2 (en) * 2007-05-21 2011-02-15 The Board Of Trustees Of The Leland Stanford Junior University Method and system for using tissue-scattered coincidence photons for imaging
JP2010528312A (ja) * 2007-05-30 2010-08-19 コーニンクレッカ フィリップス エレクトロニクス エヌ ヴィ Pet局所断層撮影
WO2009013661A2 (en) * 2007-07-26 2009-01-29 Koninklijke Philips Electronics N.V. Motion correction in nuclear imaging
DE102007059602A1 (de) * 2007-12-11 2009-06-18 Siemens Ag Bewegungskorrektur von tomographischen medizinischen Bilddaten eines Patienten
US8515148B2 (en) * 2008-05-28 2013-08-20 Koninklijke Philips N.V. Geometrical transformations preserving list-mode format
JP2012515592A (ja) 2009-01-21 2012-07-12 コーニンクレッカ フィリップス エレクトロニクス エヌ ヴィ 大きい視野のイメージング並びに動きのアーチファクトの検出及び補償ための方法及び装置
EP2399238B1 (en) * 2009-02-17 2015-06-17 Koninklijke Philips N.V. Functional imaging
WO2011002874A1 (en) * 2009-06-30 2011-01-06 University Of Utah Research Foundation Image reconstruction incorporating organ motion
US8299438B2 (en) * 2009-07-16 2012-10-30 Siemens Medical Solutions Usa, Inc. Model based estimation of a complete or partial positron emission tomography attenuation map using maximum likelihood expectation maximization
JP5600946B2 (ja) * 2010-01-28 2014-10-08 株式会社島津製作所 断層撮影装置
EP2661735B1 (en) 2011-01-05 2017-02-22 Koninklijke Philips N.V. Method and apparatus to detect and correct motion in list-mode pet data with a gated signal
US8437522B2 (en) * 2011-02-17 2013-05-07 Kabushiki Kaisha Toshiba Motion index for medical imaging data based upon Grangeat's formula
WO2012153219A1 (en) * 2011-05-12 2012-11-15 Koninklijke Philips Electronics N.V. Motion compensated imaging
US9761020B2 (en) 2011-05-12 2017-09-12 Koninklijke Philips N.V. List mode dynamic image reconstruction
CN103608845B (zh) 2011-06-21 2016-10-19 皇家飞利浦有限公司 呼吸运动确定装置
US9824467B2 (en) * 2011-06-30 2017-11-21 Analogic Corporation Iterative image reconstruction
JP5911234B2 (ja) * 2011-08-12 2016-04-27 公立大学法人首都大学東京 ボリュームデータ処理装置及び方法
CN103126701B (zh) * 2011-11-30 2016-04-27 株式会社东芝 正电子发射计算机断层摄影装置和图像处理装置
US9400317B2 (en) * 2012-12-04 2016-07-26 Siemens Medical Solutions Usa, Inc. MR scan selection for PET attenuation correction
KR20140086627A (ko) * 2012-12-28 2014-07-08 삼성전자주식회사 영상 생성 방법 및 장치
DE102013217351B4 (de) 2013-08-30 2023-05-11 Siemens Healthcare Gmbh Bildbasierte Bewegungskompensation von Bilddaten
WO2015044837A1 (en) * 2013-09-27 2015-04-02 Koninklijke Philips N.V. Motion compensated iterative reconstruction
JP6123652B2 (ja) * 2013-11-27 2017-05-10 株式会社島津製作所 散乱成分推定方法
US10085703B2 (en) * 2015-01-27 2018-10-02 Septimiu Edmund Salcudean Dynamic computed tomography imaging of elasticity
JP6437163B1 (ja) * 2015-10-28 2018-12-12 コーニンクレッカ フィリップス エヌ ヴェKoninklijke Philips N.V. コンピュータ断層撮影画像生成装置
EP3300664B1 (en) * 2016-09-30 2019-04-17 Siemens Healthcare GmbH Reconstruction of flow data

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4937526A (en) * 1988-11-23 1990-06-26 Mayo Foundation For Medical Education And Research Adaptive method for reducing motion and flow artifacts in NMR images
US5287276A (en) * 1990-11-19 1994-02-15 General Electric Company Localized motion artifact reduction in projection imaging
US6329819B1 (en) * 1998-04-15 2001-12-11 Mayo Foundation For Medical Education And Research Autocorrection of MR images for motion artifacts
CN1416781A (zh) * 2002-12-30 2003-05-14 北京质子科技开发有限公司 正电子断层扫描中热源高分辨快速图像迭代重建方法

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4858128A (en) 1986-08-11 1989-08-15 General Electric Company View-to-view image correction for object motion
US4939526A (en) * 1988-12-22 1990-07-03 Hughes Aircraft Company Antenna system having azimuth rotating directive beam with selectable polarization
US5224037A (en) 1991-03-15 1993-06-29 Cti, Inc. Design of super-fast three-dimensional projection system for Positron Emission Tomography
US5555324A (en) * 1994-11-01 1996-09-10 Massachusetts Institute Of Technology Method and apparatus for generating a synthetic image by the fusion of signals representative of different views of the same scene
FR2736454B1 (fr) 1995-07-03 1997-08-08 Commissariat Energie Atomique Procede de reconstruction d'images tridimensionnelles sur un objet mobile ou deformable
JP3793266B2 (ja) * 1995-10-20 2006-07-05 浜松ホトニクス株式会社 ポジトロンct装置およびその画像再構成方法
US6310968B1 (en) 1998-11-24 2001-10-30 Picker International, Inc. Source-assisted attenuation correction for emission computed tomography
US6728424B1 (en) * 2000-09-15 2004-04-27 Koninklijke Philips Electronics, N.V. Imaging registration system and method using likelihood maximization
US20040081269A1 (en) * 2002-10-23 2004-04-29 Tin-Su Pan Retrospective respiratory gating for imaging and treatment

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4937526A (en) * 1988-11-23 1990-06-26 Mayo Foundation For Medical Education And Research Adaptive method for reducing motion and flow artifacts in NMR images
US5287276A (en) * 1990-11-19 1994-02-15 General Electric Company Localized motion artifact reduction in projection imaging
US6329819B1 (en) * 1998-04-15 2001-12-11 Mayo Foundation For Medical Education And Research Autocorrection of MR images for motion artifacts
CN1416781A (zh) * 2002-12-30 2003-05-14 北京质子科技开发有限公司 正电子断层扫描中热源高分辨快速图像迭代重建方法

Non-Patent Citations (6)

* Cited by examiner, † Cited by third party
Title
GJ Klein et al..Real-Time System for Respiratory-Cardiac Gating in PositronTomography.NUCLEAR SCIENCE SYMPOSIUM, IEEE.1997,1284-1285. *
GregoryJKlein.Four-DimensionalProcessingofDeformableCardiacPETData.IEEEWORKSHOPONMATHEMATICALMETHODSINBIOMEDICALIMAGEANALYSIS 2000. PROCEEDINGS.2000
T. SCHAFFTER ET AL..CORRELATIVE AVERAGING FOR RADIAL MAGNETICRESONANCE IMAGING.Philips Journal of Research51 2.1998,51(2),269-281.
T. SCHAFFTER ET AL..CORRELATIVE AVERAGING FOR RADIAL MAGNETICRESONANCE IMAGING.Philips Journal of Research51 2.1998,51(2),269-281. *
同上.同上.同上.
同上.同上.同上.;Gregory J Klein.Four-Dimensional Processing of Deformable Cardiac PETData.IEEE WORKSHOP ON MATHEMATICAL METHODS IN BIOMEDICAL IMAGE ANALYSIS, 2000. PROCEEDINGS.2000,129-130. *

Also Published As

Publication number Publication date
CN1809841A (zh) 2006-07-26
EP1639550A1 (en) 2006-03-29
US7599540B2 (en) 2009-10-06
JP2006527851A (ja) 2006-12-07
US20060140482A1 (en) 2006-06-29
WO2004111946A1 (en) 2004-12-23
JP4855931B2 (ja) 2012-01-18

Similar Documents

Publication Publication Date Title
CN1809841B (zh) 运动补偿的重建方法、设备与系统
Livieratos et al. Rigid-body transformation of list-mode projection data for respiratory motion correction in cardiac PET
EP2174294B1 (en) Motion correction in nuclear imaging
JP5734664B2 (ja) 希薄化制約補正を用いた画像復元法
JP5254810B2 (ja) リストモードデータに基づく局所動き補償
EP2210238B1 (en) Apparatus and method for generation of attenuation map
CN101681520B (zh) Pet局部断层摄影
CN103533892B (zh) 运动补偿成像
CN107111867B (zh) 多模态成像系统及方法
US8098916B2 (en) System and method for image-based attenuation correction of PET/SPECT images
US20220207791A1 (en) Method and system for generating attenuation map from spect emission data
US10489940B2 (en) System and computer-implemented method for improving image quality
CN103282941A (zh) 利用门控信号检测和校正列表模式pet数据中的运动的方法和装置
Kösters et al. EMRECON: An expectation maximization based image reconstruction framework for emission tomography data
CN101305297A (zh) 使用解剖列表模式掩模的pet成像
DE102010037037A1 (de) Bewegungskorrektur in tomographischen Bildern
CN102067176A (zh) 结合局部运动监测、校正和评估的辐射成像
US20110082368A1 (en) Reconstruction of dynamical cardiac spect for measuring tracer uptake and redistribution
CN110678906B (zh) 用于定量分子成像的准确混合数据集的生成
CN102622743A (zh) 用于比较3d和2d图像数据的方法和设备
CN106462987A (zh) 基于投影数据集的用于体积的改进图像重构
CN105580053A (zh) 运动补偿的迭代重建
Xie et al. Segmentation-free PVC for cardiac SPECT using a densely-connected multi-dimensional dynamic network
US20040167387A1 (en) Methods and apparatus for improving image quality
CN107886554A (zh) 流数据的重构

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C14 Grant of patent or utility model
GR01 Patent grant
CF01 Termination of patent right due to non-payment of annual fee

Granted publication date: 20100512

Termination date: 20160618

CF01 Termination of patent right due to non-payment of annual fee