JP2010528312A - Pet局所断層撮影 - Google Patents

Pet局所断層撮影 Download PDF

Info

Publication number
JP2010528312A
JP2010528312A JP2010509922A JP2010509922A JP2010528312A JP 2010528312 A JP2010528312 A JP 2010528312A JP 2010509922 A JP2010509922 A JP 2010509922A JP 2010509922 A JP2010509922 A JP 2010509922A JP 2010528312 A JP2010528312 A JP 2010528312A
Authority
JP
Japan
Prior art keywords
projection data
region
image
data
interest
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2010509922A
Other languages
English (en)
Inventor
ウェンリ ワン
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Koninklijke Philips NV
Original Assignee
Koninklijke Philips NV
Koninklijke Philips Electronics NV
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Koninklijke Philips NV, Koninklijke Philips Electronics NV filed Critical Koninklijke Philips NV
Publication of JP2010528312A publication Critical patent/JP2010528312A/ja
Pending legal-status Critical Current

Links

Images

Classifications

    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T11/002D [Two Dimensional] image generation
    • G06T11/003Reconstruction from projections, e.g. tomography
    • G06T11/006Inverse problem, transformation from projection-space into object-space, e.g. transform methods, back-projection, algebraic methods
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B6/00Apparatus for radiation diagnosis, e.g. combined with radiation therapy equipment
    • A61B6/02Devices for diagnosis sequentially in different planes; Stereoscopic radiation diagnosis
    • A61B6/03Computerised tomographs
    • A61B6/037Emission tomography
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B6/00Apparatus for radiation diagnosis, e.g. combined with radiation therapy equipment
    • A61B6/58Testing, adjusting or calibrating apparatus or devices for radiation diagnosis
    • A61B6/582Calibration
    • A61B6/583Calibration using calibration phantoms
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T2211/00Image generation
    • G06T2211/40Computed tomography
    • G06T2211/412Dynamic
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T2211/00Image generation
    • G06T2211/40Computed tomography
    • G06T2211/424Iterative
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T2211/00Image generation
    • G06T2211/40Computed tomography
    • G06T2211/432Truncation

Abstract

陽電子撮像装置102は、検査下の対象物における陽電子消滅を示す投影データを取得する。局所再構成器146は、対象物を示す画像空間データを生成するため、トランケート投影データの反復局所再構成を実行する。運動補償器142は、対象物の運動を補償する。画像結合部148は、対象物を示す他の画像空間データと上記画像空間データとを結合する。

Description

本願は、陽電子撮像の分野に関し、より詳細には陽電子放出断層撮影(PET)において取得されるデータの再構成に関する。本願は、検査下の対象物の局所関心領域を示す画像データを生成することが望ましい医療及び他の応用分野において特定の用途を見いだす。
陽電子放出断層撮影(PET)は、18Fフッ化デオキシグルコース(FDG)といった陽電子を放出する放射性医薬品が患者の体に導入される核医学の一種である。放射性医薬品が減衰するとき、陽電子が生成される。より詳細には、複数の陽電子の各々は、陽電子消滅イベントとして知られているものにおいて電子と反応する。これにより、ラインオブレスポンス(LOR)に沿って反対方向に進む511keVのガンマ線の同時ペアが生成される。同時時間内に検出されるガンマ線ペアは通常、消滅イベントとしてPETスキャナにより記録される。
検出器技術における発展は、同時ガンマ線ペアの到着時間差分も取得される、フライト(TOF)PETスキャナの利用可能性をもたらした。TOF情報は、LORに沿って消滅の起きた可能性がもっとも高い位置を予測する。実際的な検出器システムが有限の時間分解能により特徴づけられるので、消滅位置は通常、ガウス確率分布に基づきモデル化される。
TOFPETは、対象物のより周辺部に対してノイズの分散を改善し、従ってより大きな対象物に対する病変検出感度を従来の非TOFPETより改善したと認識されている。また、TOFPETは、より少ない投影角を使用して、非TOFPETの画像分解能に相当する画像分解能を提供するという利点を持つ。TOFPETは、検出器正規化及び不完全な散乱訂正に対しても非TOFPETより敏感でない。
スキャンからのデータが、対象物における放射性核種の分布を示すボリュメトリック又は画像空間データを再構成するのに使用される。この再構成には通常、反復再構成技術が使用される。反復再構成技術の例は、最尤期待値最大化(ML−EM)、逐次部分期待値最大化(OS−EM)、リスケールブロック反復性期待値最大化(RBI−EM)、ロウ(row)アクション最尤法(RAMLA)、共役こう配(CG)及び制限メモリ擬似ニュートン(LMQN)技術を含む。Shepp and Vardi、「Maximum Likelihood Reconstruction for Emission Tomography」、IEEE Trans. Med. Imaging vol. MI-2、pp 113〜122 (1982); Hudson and Larkin、「Accelerated Image Reconstruction Using Ordered Subsets of Projection Data」、IEEE Trans. Med. Imaging vol. 13、no. 4、pp 601-609 (1994); Byrne、「Accelerating the EMML Algorithm and Related Iterative Algorithms by Rescaled Block-Iterative Methods」、IEEE Trans. Image Processing、vol. 7、no. 1 pp. 100-109 (1998); Brown and DePierro、「A Row- Action Alternative to the EM Algorithm for Maximizing Likelihoods in Emission Tomography」、IEEE Trans. Med. Imaging vol. 15、no. 5、pp 687-699 (1996); Mumcuoglu、E.U.; Leahy、R.; Cherry、S.R.; Zhenyu Zhou、「Fast gradient-based methods for Bayesian reconstruction of transmission and emission PET images」、IEEE Trans. Med. Imag.、13(4): 687-701 (1994); C. Goldstein、W. Wang and G. Gindi、「Limited-Memory Quasi-Newton Iterative Reconstruction in Emission Computed Tomography」、46th Annual Meeting of the Society of Nuclear Medicine、California (1999); J. M. Bardsley、「A limited-memory, quasi-Newton preconditioner for nonnegatively constrained image reconstruction」、J. Opt. Soc. Am. A 21、724-731 (2004)を参照されたい。
解析的アルゴリズムベースの局所断層撮影再構成技術は、対象物の局所関心領域(ROI)を再構成するため、投影データのトランケート(truncated)投影データを使用する。フィルタリングされた逆投影(FBP)ベースの解析アルゴリズムは、Radon及び指数関数的なRadon変換に対するROIにおける不連続性を見つけるために使用される。Rammらによる「The Radon Transform and Local Tomography」(CRC Press, 1996)、Katsevichらによる「Pseudolocal Tomography」というタイトルの米国特許第5,539,800号、Katsevichらによる「Enhanced Local Tomography」というタイトルの米国特許第5,550,892号、Katsevichらによる「Generalized Local Emission Tomography」というタイトルの米国特許第5,717,211号を参照されたい。ウェーブレットベースの解析手法が、X線局所断層撮影においても使用される。Walnutらによる「Method and Apparatus for Processing Data from Tomographic Imaging Systems」というタイトルの米国特許第5,953,388号、Bilgotらによる「Wavelets, Local Tomography and Interventional X-Ray Imaging」、IEEE Nuclear Science Symposium 2004 Conference Record、vol. 6、pp. 3505-3509 (Oct. 2004)、Holschneider、「Inverse Radon Transforms Through Inverse Wavelet Transforms」、Inverse Problems、vol. 7 pp. 853-861 (1999)を参照されたい。反復性共役こう配アルゴリズムは、単光子放出コンピュータ断層撮影(SPECT)分野において、回転ストリップ検出器を用いて生成される平面積分データに関する局所ROI再構成においても使用される。Zengらによる「Local Tomography Property of Residual Minimization Reconstruction with Planar Integral Data」、IEEE Transactions on Nuclear Science、vol. 50、no. 5、pp. 1590-1594 (2003)を参照されたい。SPECTにおいて、一般的に言って、反復性アルゴリズムは、局所断層撮影に関する分析法より性能が優れている。
本願の側面は、これらの事項及びその他に対処する。
第1の側面によれば、ある装置が、対象物の陽電子放出検査において取得される陽電子放出投影データを空間的にトランケート(truncate)する投影データ空間トランケータと、上記対象物を示す第1の画像空間データを生成するため、上記トランケート投影データを再構成する反復再構成器とを含む。
別の側面によれば、陽電子放出局所断層撮影方法が、対象物において発生する陽電子消滅を示し、上記対象物を示す第1の画像空間データを生成するため、陽電子放出スキャナを用いて取得される空間的にトランケートされた投影データを反復的に再構成するステップを含む。この方法は、人間の知覚可能な形式で前記第1の画像空間データを与えるステップも含む。
別の側面によれば、コンピュータ可読ストレージ媒体は、コンピュータにより実行されるときに、コンピュータにある方法を実行させる命令を含む。この方法は、対象物を示す第1の画像空間データを生成するため、上記対象物の陽電子放出検査において取得される空間的にトランケートされた投影データの反復局所再構成を実行するステップを含む。
別の側面によれば、ある装置が、位置放出スキャナと、上記スキャナと動作可能に通信する反復局所再構成器とを含む。上記再構成器は、上記対象物を示す第1の画像空間データを生成するため、上記対象物の横断サブ領域と交差するラインオブレスポンスに沿って取得される空間的にトランケートされた投影データを再構成する。この装置は、サブ領域の運動を補償する運動補償器も含む。
結合されたPET/CTシステムを表す図である。 投影データ空間トランケータの処理を示す図である。 シミュレーションされたファントムを表す図である。 二乗平均平方根誤差を表す図である。 二乗平均平方根誤差を表す図である。 局所再構成器を表す図である。 方法を表す図である。
添付された明細書を読み及び理解すれば、当業者は本発明の更に他の側面を理解するだろう。
本発明は、様々な要素及び要素の配列の形式並びに様々なステップ及びステップの配列の形式を取ることができる。図面は、好ましい実施形態を説明するためだけにあり、本発明を限定するものとして解釈されるべきものではない。
図1を参照すると、結合されたPET/CTシステム100は、PETガントリー部102及びCTガントリー部104を含む。PETガントリー部102は、検査領域108の周りにリング状に配置されるガンマ放射線感知検出器106を含む。検出器106は、PET検査領域108内で起こる陽電子消滅イベントのガンマ放射線特性を検出する。例えば検出器システムのジオメトリ及びデザインといった要素に基づき、PETシステムは、検査領域108の横断寸法より小さな有効な横断撮像野(FOV)を持つことができる。
CT部104は、例えばCT検査領域112の周りで回転するX線管といった放射線源110を含む。放射線感知検出器114は、検査領域112を横断するX線源により放出される放射線を検出する。CT部104の横断FOVは、例えばX線源110及び検出器114のジオメトリ及びデザインといった要素の機能であり、いくつかの場合、PET部102の横断FOVより小さいか、又はPET部102の横断FOVとは異なる態様とすることができる。
PETガントリー部102及びCTガントリー部104は好ましくは、共通の長軸方向又はz軸に沿って配置されるそれらの個別の検査領域108、112の近接に配置される。対象物支持部116は、人間の患者といった撮像されることになる対象物118を支持する。好ましくは対象物118がPET及びCTガントリー部102、104により複数の長軸方向位置でスキャンされることができるよう、対象物支持部116は、PET/CTシステム100の動作と協調して長軸方向に移動可能である。
CTデータ収集システム122は、検査領域112を通る複数の線又は光線に沿った放射線減衰を示すCT投影データを生成するため、CT検出器114からの信号を処理する。CT再構成器126は、対象物118の空間的に変化する放射線減衰を示す画像データを生成するため、適切な再構成アルゴリズムを用いてCT投影データを再構成する。
PETデータ取得システム120は、例えば検出器106により検出される消滅イベントのリストといったPET投影データを提供する。より詳細には、投影データは、イベントごとにLORに関する情報を提供する。例えば、この情報は、LORの横断方向及び長軸方向位置、その横断角及び方位角、タイムオブフライト機能を持つシステムの場合のTOF情報を含む。代替的に、データは1つ又は複数のサイノグラム又は投影ビンに再ビン化されることができる。
局所関心領域(ROI)特定部140は、通常、検査下のより大きな対象物のサブセットである局所ROIを特定する。1つの技術では、ROIは、対象物に関する経験的情報を用いて決定される。ヒト患者の場合、例えば、心臓といった器官を含むROIの位置が、既知の形態学的性質を用いて推定されることができる。別の実現において、コンピュータプロセッサは、例えば、病変、活動の中心又は注目する他の場所を位置決めするため、低分解能の又は他の再構成法によるCT又はPETシステムデータにおいてROIの位置を自動的に又は半自動的に特定する。ROIは、低分解能又は他の画像を用いるユーザにより手動で詳細に描写されることもできる。対象物の部分が、PET及び/又はCTシステムのいずれか又は両方の有効な横断FOVの外側にある状況に特に適用可能な更に別の実現においては、対象物のその部分が関連する撮像野内に配置されるものとしてROIが確立されることができる。上記技術は組み合わせられることができ、他の適切な技術が使用されることもできる点に留意されたい。
PET投影データ空間トランケータ138が、例えば、特定されたROIを通過するLORに沿って取得される投影データを特定し、そうでないものを拒絶することにより、投影データを空間的にトランケートする(truncate:切り取る)。例として、図2は、心臓206を含むROI204を通過する第1のLOR202と、ROIを通過しない第2のLOR208とを示す。特に対象物の部分がPET撮像システム102の横断FOVの外側に配置される場合、空間トランケータ138が省略されることができる点に留意されたい。この場合、取得された投影データは空間的にトランケートされる。
図1に戻り、動き補償を含むシステムの場合、局所運動補償器142がROIの運動を補償する。対象物の運動は、例えば人間の患者の場合における呼吸、心臓又は他の生理的監視といった適切な運動監視を用いて測定されることができる。運動は、投影空間又は画像空間データの解析を介して検出されることもできる。同様に、動き補償は、再構成前の空間的にトランケートされた投影データに対して、又は再構成の後の画像空間領域において適用されることができる。局所動き検出及び補償技術の例は、「Local Motion Compensation Based on List Mode Data」というタイトルの2007年2月5日に出願の特許出願番号PCT/US2007/61597号、及び「Motion Estimation in Treatment Planning」というタイトルの2007年2月7日に出願の米国仮出願番号第60/888560号にも記載される。これらの出願は共に、本願と共通に所有され、その全体が参照により本書に明白に組み込まれる。
再構成器144は、対象物118における放射性核種の分布を示す画像空間データを生成するため、反復再構成技術を使用する。後で詳しく述べるように、再構成器144は、トランケート投影データを再構成する局所ROI再構成器146を含む。再構成器144は、より大きな対象物を再構成するため、非トランケート投影データ(即ち、ROIを通過しないLORに沿って検出されるそれらのイベントを含む投影データ)を使用することもできる。
システムは、画像結合部148も含むことができる。斯かる場合、より大きな対象物の結合された再構成画像(例えば、CTスキャナ104又はPET部分102のいずれか又は両方により取得される画像)が、局所ROIの画像と合併又は一体化されることができる。画像が異なる座標系、空間分解能等により特徴付けられる場合、位置合わせ(registration)プロセッサが、画像を位置合わせする(register)又は他の必要な訂正を提供するために使用されることができる。画像結合部148の使用は、より大きな対象物との関連でROIを与えることが有益である局所動き補償又は他の用途において特に有益である。
ワークステーションコンピュータは、オペレータ端末128として機能する。端末128は、例えばモニタ又はディスプレイといった人間が読み取れる出力デバイス及び例えばキーボード及びマウスといった入力デバイスを含む。端末128上のソフトウェアは、ROI特定部140及び画像結合部148との対話、PET及びCT再構成器144、126により生成される画像データの表示又は他の操作、所望のスキャンプロトコルの確立、スキャンの開始及び停止等といった機能をオペレータが実行することを可能にする。
システム100に関する変形例も可能である。例えば、スキャナのCT部分が、省略される、PETガントリー部分102から離れて配置される、又は、例えば磁気共鳴(MR)スキャナといった別の撮像デバイスで置換されることができる。別の例として、減衰又は生体構造情報が、PETガントリー部102に関連付けられる送信源により提供されることができる。
局所ROI再構成器146が、以下更に説明されることになる。説明の明確さのため以下の議論は2次元(2D)再構成に焦点をあてるが、当業者であれば、上記の技術が3次元(3D)再構成に対して同様に適用でき、容易に拡張されることができる点を理解されるであろう。
2次元(2D)空間における減衰係数μ(x、y)を持つ放出対象物f(x、y)を仮定すると、反時計回りに角度
Figure 2010528312
分回転した後、検出器座標において
Figure 2010528312
及び
Figure 2010528312
が成立する。所与の角度
Figure 2010528312
に対する検出器座標(s、t)及び対象物座標(x、y)は、
Figure 2010528312
により関連付けられる。
PET撮像において、ランダム性及び散乱を除去し、検出効率変動を修正し、適切な補間を行った後、測定された投影データの平均は、TOF機能スキャナに関しては
Figure 2010528312
として、従来のスキャナに関しては
Figure 2010528312
として、それぞれ式2及び3
Figure 2010528312
に示されるように表されることができる。ここで、
Figure 2010528312
は、
Figure 2010528312
として規定される減衰係数である。

Figure 2010528312
は、TOFコンボリューションカーネルである。これはしばしば、既知の半値全幅(FWHM)±nσカーネル幅(σ=FWHM/2.355)を持つガウス分布としてモデル化される。TOF投影
Figure 2010528312
においてtに沿って全てのカウントを加算することにより、非TOF投影
Figure 2010528312
となる点に留意されたい。
PETにおいては光子計数統計が制限されるので、測定された投影データ
Figure 2010528312
又は
Figure 2010528312
は通常、それぞれ式5及び6
Figure 2010528312
に示されるようにポアソンランダム処理としてモデル化される。
式5及び6が成り立ち、減衰係数μ(x、y)が既知であると仮定すると、PET画像再構成の目標は、放出対象物f(x、y)を再構成することである。
高い計数統計での、非TOF2D投影
Figure 2010528312
は、すでに、良好な精度で対象物を再構成するのに十分な情報を提供する。TOF3D投影は、放出対象物に関する追加の情報を提供する。例えば、特定の投影角
Figure 2010528312
で、減衰の修正後、
Figure 2010528312
は単に、式2に示されるようにt次元に沿ってぼやける放出対象物である。時間分解能が十分に良好である場合、それは単に画像復元の問題である。我々は、t次元に沿って
Figure 2010528312
のぼけを取り除くことができ、放出対象物を得るため、時計回りに
Figure 2010528312
角度分画像を回転させることができる。この局所ぼけカーネルは、TOF−PETの局所断層撮影特性に関するユニークな情報を提供することもできる。
局所断層撮影において、
Figure 2010528312
と表される、座標(x、y)に中心化される対象物の小さな又は局所ROIに興味があると仮定する。この局所対象物ROIは、単一ピクセル(x、y)に縮重されることができる。式1を用いて、局所ROIを通る全てのLORが、
Figure 2010528312
と規定されることができる。ここで、
Figure 2010528312
である。
Figure 2010528312
における投影を考慮すると、局所断層撮影の作業は、局所ROI
Figure 2010528312
における対象物を再構成することである。
式5及び6に基づき、対数尤度が、トランケートTOF及び非TOF投影データに関して形成され、
Figure 2010528312
となる。
ここで、測定された投影
Figure 2010528312
及び放出対象物fの離散フォーマットが使用される。ここで、mは、TOFに関する離散
Figure 2010528312
インデックスと、非TOFに関する
Figure 2010528312
インデックスとを示し、nは、離散(x、y)インデックスを示す。Hmnはシステム行列である。これは、対象物要素nから放出され、検出器素子mで検出される光子の確率を表す。システム行列は、TOF及び非TOFに対する減衰と、TOFに対するガウシアンコンボリューションカーネルとを含む。
式7は、非トランケート投影データの対数尤度に非常に似ている。しかしながら、投影データは、完全な投影の代わりに局所ROIを通過する局所LOR上で合計される。対象物の局所ROIにだけ興味がある場合であっても、順投影(forward projection)が全ての対象物要素上で実行される点に留意されたい。投影を完了させるのと同様、トランケート投影の対数尤度のヘシアン行列もグローバルに凸である。こうして、ユニークな最大解が存在する。ここで、この解が正確に局所ROIに含まれる元の放出対象物と同じであるかどうかに関して疑問が生じる。局所ROIサイズが大きいとき、正しいROI対象物推定を得る可能性が高い。小さな局所ROIに対して、TOFは非TOFより正しい対象物ROI推定を得る可能性が高い。なぜなら、TOFガウシアンカーネルは、非TOFの一様なカーネルより良好な局所化特性を持つからである。
式7を最適化するため、期待値最大化(EM)アルゴリズムが使用される。更新式は、
Figure 2010528312
として表されることができる。ここで、kは反復数である。収束率の速度を上げるために、
Figure 2010528312
に基づく逐次部分(OS)方法が使用される。サブセットに含まれる全ての角度が訪問された後、対象物推定が更新される。全てのサブセットが訪問されたあと、1回の反復が行われる。
順投影は、TOFに関する回転及び畳み込み演算子、及び非TOFに関する回転及び合計演算子として実現される。両者は、減衰係数で増倍される。逆投影は、最初に減衰の増倍として、次にTOFに関する畳み込み及び逆回転演算子として、及び非TOFに関する一様な拡散及び逆回転演算子として実現される。対象物の初期推定は、全体画像撮像野(FOV)にわたり一様であるようセットされる。
特に放出対象物が知られているファントム又は他の検査と連動して、ROI再構成器146の性能を評価するために、誤差関数が使用されることができる。ROIにおける放出対象物fに対する対象物推定の誤差
Figure 2010528312
を評価する二乗平均平方根誤差(RMSE)関数は、
Figure 2010528312
として規定されることができる。ここでnROIは、局所ROIにおけるピクセル数である。
図3において一般に表される32mmの直径肺病変304を持つ、420mm×300mmの2D胸郭ファントム302を用いるコンピューターシミュレーションが以下説明されるだろう。対象物は、144×144ピクセルのFOVを持ち、ピクセルサイズは4mmである。
シミュレーションされた放出対象物において、病変304と背景とのコントラスト比は8:1にセットされ、皮膚306と背景との比は1.3:1にセットされ、骨308と背景との比は1.2:1にセットされた。減衰マップにおいて、骨308と水との比は、1.2:1にセットされた。肺領域310は、空気の減衰を持つものとしてシミュレーションされた。
投影が、減衰効果はあるが、任意の検出効率変動、散乱又はランダムがない状態でシミュレーションされた。
Figure 2010528312
においてはπにわたり192のサンプルが、4mmのピクセルサイズを持つsにおいて144のサンプルが、36mmのピクセルサイズを持つtにおいて16のサンプルが存在する。TOFは、700ps(105mm)FWHMを持つ。±5.5σTOFカーネル幅が、投影シミュレーションに使用され、±3σTOFカーネル幅は、画像再構成に使用される。全ての放出画像表示において、低コントラストの詳細を示すため、40%上部閾値を持つ線形グレースケールが使用される。ノイズがない投影が、胸郭ファントムから生成され、ノイズが多い投影をシミュレーションするためポアソンノイズがその後加算される。
3つのサイズのROI(1ピクセル、36mm及び144mmの直径)が、病変ピクセル57、79上で選択され、中心化された。ノイズがない投影において、12のサブセットを持つROI−OS−EMアルゴリズム及び最高20回の反復が、TOF及び非TOF再構成に関して使用される。図4は、それぞれ1ピクセル402、36mm404及び144mm406の局所ROIに関する反復数及びサブセット数に対するTOF及び非TOFのRMSEを与える。ここでそれぞれ、破線はTOFの場合を表し、実線は非TOFの場合を表す。TOF及び非TOFアルゴリズムは共に、ROIの中間及び大きなサイズに収束する。しかし、TOFは、非TOFより元のファントムの近くに収束する。ROIが1ピクセルまで縮重されるとき、TOFは、低コントラストレベルであるもののそれでもある解に収束する。しかし、非TOFは全く収束しない。
表Iは、3つのサイズのROIに対する、第10回目の反復でのTOF及び非TOFROIの最大及び平均絶対偏差(mean absolute bias)を表示する。
Figure 2010528312
TOFROI−OS−EMが、すべての場合において非TOFROI−OS−EMを上回る。
ノイズが多い投影に関して、400Kの総カウントが、任意のトランケーションなしにTOF及び非TOFの両方に対して生成される。このノイズレベルは、ランダム及び散乱が除去された後の全身の臨床的なPETに似ている。3つのサイズのROIトランケート投影(病変上に中心化される1ピクセル、36mm及び144mm)が、ノイズが多い完全な投影から生成される。これはそれぞれ、16K、62K及び160Kの総カウントを持つ。図5は、1ピクセル402、36mm404及び144mm406の局所ROIに関する反復数及びサブセット数に対するTOF及び非TOFのRMSEを与える。ここで、12のサブセット及び8回の反復が、ROI−OS−EMにおいて使用される。傾向は、ノイズがない場合に類似する。TOFは、非TOFより小さなROIRMSEに到達する。144mmのROI406に関して、多数回の反復において、ノイズ増幅が原因でTOF及び非TOFのRMSEは共に増加する。これは、完全なデータOS−EMに非常に似ている。
目視比較のため、TOF及び非TOF再構成が、144mmのROIトランケート投影データに関して作成され、8つのサブセット及び2回の反復での完全な投影データから生成されるTOF及び非TOF再構成と比較される。TOF及び非TOF再構成は、完全なデータからの対象物ROIをトランケートデータからのROIで置換することにより、完全なデータと結合された。非TOFトランケートROIに対して、TOFトランケートROIは、完全なデータ画像とより好適に混ざる。一方、非TOFトランケートROIは、完全なデータ画像と結合されるとき目立つアーチファクトを示す。
大きな局所ROIに対して、TOFROI−OS−EMは、ROIの外側の領域を合理的な精度で再構成するが、非TOFROI−OS−EM再構成は、そうではない。
TOF及び非TOF再構成は共に有益な情報を提供することができるが、TOF再構成の性能は、非TOFの性能より一般に優れている。例えば、TOF再構成は、ノイズがない及びノイズが多い場合両方において、非TOF再構成より好適なROIRMSEを持つ。このシミュレーションの条件下において、TOF再構成は単一ピクセルROIを再構成するが、非TOF再構成はそうではない。トランケートTOF再構成から再構成されるROIも、非TOFより完全なデータ画像に好適に混ざる。
局所断層撮影及び特にTOFデータを提供するシステムの場合におけるTOF局所断層撮影は、多数の分野において使用されることができる。その分野は例えば、完全なデータセットを再構成する代わりに、局所運動修正された投影データから小さなROI画像が生成されることができる患者局所動き補償を含む。別の例は、対象物の一部がスキャナの有効なFOVの外側にある場合における患者データの回復を含む。
局所再構成器146の1つ実現が、図6を参照して以下に説明されることになる。
初期対象物推定602は、現在の対象物の初期推定604を確立するために使用される。順投影器606は、ROIと交差するそれらのLORに関する対象物推定投影を生成するため、現在の対象物推定604を順投影する。順投影器606は、例えば検出器正規化、減衰、ランダム及び散乱のためのモデル及び/又は訂正といった他の所望のモデル及び/又は訂正を適用することもできる。
比較器616は、局所ROIと交差するLORに沿って取得される投影データと空間的にトランケートされた測定投影データとに関する対象物推定投影を、例えばその間で比又は差分を決定することにより比較する。
逆投影器624は、比較された投影を逆投影する。
画像更新部626は、新規な画像推定を生成するため、逆投影されたデータを使用する。ROIと交差するそれらの投影を用いて、対象物感度補正が実行される点に留意されたい。
更新された画像推定は、現在の画像推定になり、終了条件が満たされるまで、例えば式7の関数といった目的関数を最適化するため、処理が繰り返される。最適化がトランケート投影にわたり実行される点に留意されたい。
再構成器146が逐次サブセット方法に基づき再構成を実行する場合、対象物推定は、サブセットの各々につき一回更新され、各サブセットが訪問された後1回の反復が完了される。
再構成は、OS−EM技術に制限されない点、及び例えばML−EM、RBI−EM又はRAMLA、CG若しくはLMQNといった他の最尤法などの、他の適切な技術を用いて実行されることができる点に留意されたい。以前の情報を用いる最大ポステリア法が使用されることもできる。最小二乗又は他の最適化関数が使用されることもできる。
上記の様々な機能、特に、PET投影トランケータ138、局所ROI特定部140、運動補償器142、再構成器144、146、画像結合部148及び位置合わせプロセッサにより実行される機能は通常、1つ又は複数のコンピュータプロセッサを用いて実行される。プロセッサに再構成を実行させるコンピュータ可読命令は、例えばコンピュータディスク、揮発性若しくは不揮発性メモリ、又はプロセッサにアクセス可能なその他のものといった1つ又は複数のコンピュータ可読媒体上で実行される。命令は、インターネットといった適切な通信ネットワークを用いて、プロセッサにアクセス可能なストレージ媒体に送信されることもできる。
動作が、図7を参照して以下更に説明されることになる。
対象物の撮像検査が、ステップ702で実行される。結合されたPET/CT又は他のハイブリッドモダリティスキャナを使用して検査が実行される場合、検査におけるPET及びハイブリッドモダリティ部分は通常、実質的に同時に実行される。しかしながら、スキャンが時間及び/又は空間において分離されることができる点を理解されたい。第2のモダリティ検査は、省略されることもできる。取得された投影データの追加的な処理は、対象物の不存在下で実行されることができることに留意されたい。
例えば空間的に変化する対象物減衰データを生成するため、第2のモダリティからのデータがステップ704で再構成される。
局所ROIは、ステップ706で特定される。撮像検査のPET又はハイブリッド部分からの情報が局所ROIを特定するために使用される場合、関連投影データはROIの特定前に再構成されるべきである。
特定されたROIと交差するLORに沿って取得される投影データが、ステップ708で特定される。
特定された投影データは、特定されたROI及び/又はより大きな対象物を示す画像空間データを生成するため、ステップ710で再構成される。
特定されたROIの動き補償が、ステップ712で実行される。動き補償が投影空間において実行される場合、動き補償は通常再構成の前に実行されることになる。
ステップ714において、再構成画像は、人間が読み取れる形式で与えられる。必要に応じて、特定されたROIの画像は、例えばPET又は第2のモダリティスキャンのいずれか又は両方により生成される画像に対する正しい位置で、それらを重畳する又は他の態様で表示することにより、対象物の他の画像と結合されることができる。
様々なステップが実行される順が適切に変化されることができる点を理解されたい。
本発明が、好ましい実施形態を参照して説明されてきた。もちろん、上記の説明を読み、理解すれば、他者は修正及び変更を思いつくであろう。それらの修正及び変更が添付の特許請求の範囲内にある限り、本発明は、すべての斯かる修正及び変更を含むものとして構築されることが意図される。

Claims (28)

  1. 対象物の陽電子放出検査において取得される陽電子放出投影データを空間的にトランケートする投影データ空間トランケータと、
    前記対象物を示す第1の画像空間データを生成するため、前記トランケート投影データを再構成する反復再構成器とを有する、装置。
  2. 前記取得された投影データが、タイムオブフライトデータを含む、請求項1に記載の装置。
  3. 前記反復再構成器が、
    複数のラインオブレスポンスに関する画像推定投影データを生成するため画像推定を順投影する順投影器と、
    関心領域と交差するラインオブレスポンスに関する画像推定投影データと前記トランケート投影データとを比較する比較器と、
    前記比較された投影を逆投影する逆投影器と、
    前記画像推定を更新するため、前記逆投影された比較投影を使用する画像推定更新部とを含む、請求項1に記載の装置。
  4. 前記投影データ空間トランケータが、(i)前記対象物の関心領域と交差するラインオブレスポンスに沿って取得される投影データを選択し、又は、(ii)前記関心領域と交差しないラインオブレスポンスに沿って取得される投影データを拒絶する、請求項1に記載の装置。
  5. 前記対象物の関心領域を特定する関心領域特定部を含み、前記投影データ空間トランケータは、前記特定された関心領域の関数として前記空間投影データをトランケートする、請求項1に記載の装置。
  6. 前記関心領域特定部が、活動の中心を特定する、請求項5に記載の装置。
  7. 前記対象物が器官を含み、前記関心領域特定部は前記器官を特定する、請求項5に記載の装置。
  8. 前記対象物の生理的運動を補償する運動補償器を含む、請求項1に記載の装置。
  9. 前記第1の画像空間データが、前記対象物のサブ領域を示す画像空間データを含み、前記装置は、結合された画像を生成するため、前記サブ領域の外側に配置される前記対象物の領域の第2の画像空間データと前記第1の画像データとを結合する画像結合部を含む、請求項1に記載の装置。
  10. 前記取得された投影データが、前記対象物の横断寸法より小さな横断撮像野を持つタイムオブフライト陽電子放出スキャナを用いて取得される投影データを含み、前記投影トランケータは、前記横断撮像野と交差するラインオブレスポンスに沿って取得される投影データを特定する、請求項1に記載の装置。
  11. ハイブリッドPET/CTスキャナを有する、請求項1に記載の装置。
  12. 陽電子放出局所断層撮影方法において、
    対象物において発生する陽電子消滅を示し、前記対象物を示す第1の画像空間データを生成するため、陽電子放出スキャナを用いて取得される、空間的にトランケートされた投影データを反復的に再構成するステップと、
    人間の知覚可能な形式で前記第1の画像空間データを与えるステップとを有する、方法。
  13. 前記対象物の関心領域を特定するステップと、
    前記取得された投影データを空間的にトランケートするステップとを更に有し、
    空間的にトランケートするステップが、前記特定された関心領域と交差するラインオブレスポンスに沿って取得される投影データを特定するステップを含む、請求項12に記載の方法。
  14. 前記対象物が心臓を含み、前記関心領域を特定するステップは、前記心臓を特定するステップを含む、請求項13に記載の方法。
  15. 前記対象物が病変を含み、前記関心領域を特定するステップは、前記病変を特定することを含む、請求項13に記載の方法。
  16. 前記関心領域を特定するステップが、プロセッサを用いて、少なくとも部分的に前記対象物の形態学についての経験的情報に基づき、前記関心領域を特定するステップを含む、請求項13に記載の方法。
  17. 前記関心領域を特定するステップが、前記対象物を示す第2の画像空間データを生成するために使用される第2のモダリティスキャナの横断撮像野を特定するステップを含む、請求項13に記載の方法。
  18. 前記反復的に再構成するステップが、目的関数の値を計算するため、前記空間的にトランケート投影データを使用するステップを含む、請求項12に記載の方法。
  19. 前記反復的に再構成するステップが、
    Figure 2010528312
    という形式の更新式に基づき画像推定を更新するステップを含む、請求項12に記載の方法。
  20. 前記第1の画像空間データに動き補償を適用するステップを含む、請求項12に記載の方法。
  21. コンピュータにより実行されるとき、前記コンピュータに
    対象物を示す第1の画像空間データを生成するため、前記対象物の陽電子放出検査において取得される空間的にトランケートされた投影データの反復局所再構成を実行するステップを有する方法を実行させる命令を含む、コンピュータ可読記憶媒体。
  22. 前記投影データが、タイムオブフライト投影データを含み、前記トランケート投影データは、前記対象物の第1の横断サブ領域と交差するラインオブレスポンスに沿って取得される投影データからなり、及び、前記方法が、前記第1の横断サブ領域の外側に配置される前記対象物の第2の横断領域を示す画像空間データを生成するため、前記トランケートデータを使用するステップを含む、請求項21に記載のコンピュータ可読記憶媒体。
  23. 前記投影データがリストモードデータを含む、請求項21に記載のコンピュータ可読記憶媒体。
  24. 前記方法が、前記トランケート投影データに動き補償を適用するステップを含む、請求項21に記載のコンピュータ可読記憶媒体。
  25. 前記方法が、前記投影データを空間的にトランケートするステップを含む、請求項21に記載のコンピュータ可読記憶媒体。
  26. 位置放出スキャナと、
    前記スキャナと動作可能に通信する反復局所再構成器であって、前記対象物を示す第1の画像空間データを生成するため、前記対象物の横断サブ領域と交差するラインオブレスポンスに沿って取得される空間的にトランケートされた投影データを再構成する、反復局所再構成器と、
    前記サブ領域の運動を補償する運動補償器とを有する、装置。
  27. 前記対象物の運動を検出する手段を含む、請求項26に記載の装置。
  28. 前記対象物の結合された画像を生成するために前記対象物を示す第2の画像空間データと前記第1の画像空間データとを結合する画像結合部を含む、請求項26に記載の装置。
JP2010509922A 2007-05-30 2008-05-06 Pet局所断層撮影 Pending JP2010528312A (ja)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US94072207P 2007-05-30 2007-05-30
PCT/IB2008/051764 WO2008146186A2 (en) 2007-05-30 2008-05-06 Pet local tomography

Publications (1)

Publication Number Publication Date
JP2010528312A true JP2010528312A (ja) 2010-08-19

Family

ID=39846999

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2010509922A Pending JP2010528312A (ja) 2007-05-30 2008-05-06 Pet局所断層撮影

Country Status (6)

Country Link
US (1) US8457380B2 (ja)
EP (1) EP2156408B1 (ja)
JP (1) JP2010528312A (ja)
CN (1) CN101681520B (ja)
RU (1) RU2471204C2 (ja)
WO (1) WO2008146186A2 (ja)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012515342A (ja) * 2009-01-19 2012-07-05 コーニンクレッカ フィリップス エレクトロニクス エヌ ヴィ リストモードpet撮像における領域再構成及び定量的評価
JP2020091277A (ja) * 2018-12-04 2020-06-11 キヤノンメディカルシステムズ株式会社 医用画像処理装置、陽電子放射断層撮像装置、医用画像処理方法及び医用画像処理プログラム
JP2020519863A (ja) * 2017-05-01 2020-07-02 コーニンクレッカ フィリップス エヌ ヴェKoninklijke Philips N.V. 定量的分子撮像のための正確なハイブリッドデータセットの生成

Families Citing this family (23)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2009094042A1 (en) * 2008-01-25 2009-07-30 Analogic Corporation Image combining
US8218848B2 (en) * 2008-07-23 2012-07-10 Siemens Aktiengesellschaft System and method for the generation of attenuation correction maps from MR images
CN102316807B (zh) * 2009-02-17 2014-06-25 皇家飞利浦电子股份有限公司 核成像中基于模型的视场扩展
RU2527211C2 (ru) 2009-06-08 2014-08-27 Конинклейке Филипс Электроникс Н.В. Реконструкция времяпролетной позитронно-эмиссионной томографии с помощью содержания изображения, формируемого поэтапно на основе времяпролетной информации
US8299438B2 (en) * 2009-07-16 2012-10-30 Siemens Medical Solutions Usa, Inc. Model based estimation of a complete or partial positron emission tomography attenuation map using maximum likelihood expectation maximization
US8987674B2 (en) * 2009-09-04 2015-03-24 Shimadzu Corporation Data processing method for nuclear medicine, and a nuclear medicine diagnostic apparatus
US8824757B2 (en) * 2009-12-10 2014-09-02 Koninklijke Philips N.V. Method and apparatus for using time of flight information to detect and correct for motion in imaging scans
DE102010019016B4 (de) * 2010-05-03 2017-03-02 Siemens Healthcare Gmbh Verfahren zur Rekonstruktion von Bilddaten eines bewegten Untersuchungsobjektes aus Messdaten nebst zugehöriger Gegenstände
US8625869B2 (en) * 2010-05-21 2014-01-07 Siemens Medical Solutions Usa, Inc. Visualization of medical image data with localized enhancement
US20130129178A1 (en) * 2010-08-04 2013-05-23 Koninklijke Philips Electronics N.V. Method and system for iterative image reconstruction
US20120078089A1 (en) * 2010-09-23 2012-03-29 General Electric Company Method and apparatus for generating medical images
BR112015002566A2 (pt) * 2012-08-10 2017-07-04 Koninklijke Philips Nv sistema de tomografia por emissão de pósitrons (pet), método de tomografia por emissão depósitrons (pet), e meio de armazenamento não transitório legível por computador.
JP6905827B2 (ja) 2013-04-10 2021-07-21 コーニンクレッカ フィリップス エヌ ヴェKoninklijke Philips N.V. 再構成画像データの可視化
US10706506B2 (en) 2013-04-10 2020-07-07 Koninklijke Philips N.V. Image quality index and/or imaging parameter recommendation based thereon
US9684973B2 (en) * 2014-12-08 2017-06-20 General Electric Company Systems and methods for selecting imaging data for principle components analysis
US9990741B2 (en) * 2015-09-28 2018-06-05 Siemens Medical Solutions Usa, Inc. Motion correction in a projection domain in time of flight positron emission tomography
US20190133542A1 (en) * 2016-04-19 2019-05-09 The General Hospital Corporation Systems and methods for data-driven respiratory gating in positron emission tomography
WO2018111925A2 (en) 2016-12-12 2018-06-21 Commscope Technologies Llc Cluster neighbor discovery in centralized radio access network using transport network layer (tnl) address discovery
EP3566208A1 (en) * 2017-01-06 2019-11-13 Koninklijke Philips N.V. Using time-of-flight to detect and correct misalignment in pet/ct imaging
CN110536640B (zh) * 2017-03-24 2023-10-31 皇家飞利浦有限公司 从pet列表数据中的呼吸运动信号的噪声鲁棒的实时提取
US10282871B2 (en) 2017-07-10 2019-05-07 Shanghai United Imaging Healthcare Co., Ltd. Systems and methods for pet image reconstruction
CN109350099A (zh) * 2018-09-13 2019-02-19 中山市明峰医疗器械有限公司 一种应用于临床pet系统的随机事件去除处理方法
CN110544233B (zh) * 2019-07-30 2022-03-08 北京的卢深视科技有限公司 基于人脸识别应用的深度图像质量评价方法

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1997005574A1 (en) * 1995-07-27 1997-02-13 Imperial Cancer Research Technology Limited Raw data segmentation and analysis in image tomography
JP2004513735A (ja) * 2000-11-22 2004-05-13 コーニンクレッカ フィリップス エレクトロニクス エヌ ヴィ 三次元立案標的容積
JP2005148076A (ja) * 2003-11-17 2005-06-09 General Electric Co <Ge> 多モードエッジ情報を用いる反復ct再構成方法
US20050249432A1 (en) * 2004-02-10 2005-11-10 Yu Zou Imaging system
JP2006527851A (ja) * 2003-06-18 2006-12-07 コーニンクレッカ フィリップス エレクトロニクス エヌ ヴィ 動き補償再構成技法
WO2007054843A1 (en) * 2005-11-10 2007-05-18 Koninklijke Philips Electronics, N.V. Pet imaging using anatomic list mode mask

Family Cites Families (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB2164230A (en) 1984-08-29 1986-03-12 Clayton Found Res Three-dimensional time-of-flight positron emission camera system
US5550892A (en) 1995-03-24 1996-08-27 The Regents Of The University Of California Enhanced local tomography
US5539800A (en) 1995-03-24 1996-07-23 The Regents Of The University Of California, Office Of Technology Transfer Pseudolocal tomography
US5717211A (en) 1996-07-22 1998-02-10 The Regents Of The University Of California Generalized local emission tomography
US6147353A (en) * 1997-05-30 2000-11-14 Picker International, Inc. Image shift for gamma camera
US5953388A (en) * 1997-08-18 1999-09-14 George Mason University Method and apparatus for processing data from a tomographic imaging system
EP1102611B1 (en) * 1998-08-06 2006-05-03 Wisconsin Alumni Research Foundation Delivery modification system for radiation therapy
US6771732B2 (en) * 2002-02-28 2004-08-03 The Board Of Trustees Of The University Of Illinois Methods and apparatus for fast divergent beam tomography
US6810102B2 (en) * 2002-10-04 2004-10-26 Ge Medical Systems Global Technology Company, Llc Methods and apparatus for truncation compensation
CN101088028B (zh) 2004-12-22 2011-08-31 皇家飞利浦电子股份有限公司 实时列表模式重建
US7897926B2 (en) 2005-04-14 2011-03-01 Koninklijke Philips Electronics N.V. Three-dimensional time-of-flight pet with coarse angular and slice rebinning
EP1902328B1 (en) * 2005-07-08 2015-11-11 Wisconsin Alumni Research Foundation Constrained backprojection reconstruction method for undersampled mri
US7381959B2 (en) 2005-08-17 2008-06-03 General Electric Company Technique for reconstructing PET scan images
US20070076933A1 (en) 2005-09-30 2007-04-05 Jared Starman Estimating the 0th and 1st moments in C-arm CT data for extrapolating truncated projections
JP5254810B2 (ja) * 2006-02-28 2013-08-07 コーニンクレッカ フィリップス エレクトロニクス エヌ ヴィ リストモードデータに基づく局所動き補償
US7848559B2 (en) * 2006-05-17 2010-12-07 Siemens Medical Solutions Usa, Inc. Discrete axial re-binning of time-of-flight positron emission tomography data
GB2450073B (en) * 2006-08-25 2009-11-04 Siemens Molecular Imaging Ltd Regional reconstruction of spatially distributed functions
US7680240B2 (en) * 2007-03-30 2010-03-16 General Electric Company Iterative reconstruction of tomographic image data method and system

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1997005574A1 (en) * 1995-07-27 1997-02-13 Imperial Cancer Research Technology Limited Raw data segmentation and analysis in image tomography
JP2004513735A (ja) * 2000-11-22 2004-05-13 コーニンクレッカ フィリップス エレクトロニクス エヌ ヴィ 三次元立案標的容積
JP2006527851A (ja) * 2003-06-18 2006-12-07 コーニンクレッカ フィリップス エレクトロニクス エヌ ヴィ 動き補償再構成技法
JP2005148076A (ja) * 2003-11-17 2005-06-09 General Electric Co <Ge> 多モードエッジ情報を用いる反復ct再構成方法
US20050249432A1 (en) * 2004-02-10 2005-11-10 Yu Zou Imaging system
WO2007054843A1 (en) * 2005-11-10 2007-05-18 Koninklijke Philips Electronics, N.V. Pet imaging using anatomic list mode mask

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012515342A (ja) * 2009-01-19 2012-07-05 コーニンクレッカ フィリップス エレクトロニクス エヌ ヴィ リストモードpet撮像における領域再構成及び定量的評価
JP2020519863A (ja) * 2017-05-01 2020-07-02 コーニンクレッカ フィリップス エヌ ヴェKoninklijke Philips N.V. 定量的分子撮像のための正確なハイブリッドデータセットの生成
JP7326160B2 (ja) 2017-05-01 2023-08-15 コーニンクレッカ フィリップス エヌ ヴェ 定量的分子撮像のための正確なハイブリッドデータセットの生成
JP2020091277A (ja) * 2018-12-04 2020-06-11 キヤノンメディカルシステムズ株式会社 医用画像処理装置、陽電子放射断層撮像装置、医用画像処理方法及び医用画像処理プログラム
JP7356278B2 (ja) 2018-12-04 2023-10-04 キヤノンメディカルシステムズ株式会社 医用画像処理装置、陽電子放射断層撮像装置、医用画像処理方法及び医用画像処理プログラム

Also Published As

Publication number Publication date
WO2008146186A3 (en) 2009-01-29
CN101681520A (zh) 2010-03-24
US20100303319A1 (en) 2010-12-02
RU2009149481A (ru) 2011-07-10
EP2156408A2 (en) 2010-02-24
CN101681520B (zh) 2013-09-25
WO2008146186A2 (en) 2008-12-04
US8457380B2 (en) 2013-06-04
RU2471204C2 (ru) 2012-12-27
EP2156408B1 (en) 2021-03-17

Similar Documents

Publication Publication Date Title
US8457380B2 (en) PET local tomography
JP5149192B2 (ja) 解剖学的リストモードマスクを用いるpetイメージング
JP4965575B2 (ja) 分布させた反復的画像再構成
Beekman et al. Efficient fully 3-D iterative SPECT reconstruction with Monte Carlo-based scatter compensation
EP3067864B1 (en) Iterative reconstruction with enhanced noise control filtering
EP2232445B1 (en) Method for image reconstruction using sparsity-constrained correction
US20090110256A1 (en) System and method for image-based attenuation correction of pet/spect images
Wieczorek The image quality of FBP and MLEM reconstruction
JP2011503570A (ja) 減衰マップを形成するための装置及び方法
US10489940B2 (en) System and computer-implemented method for improving image quality
AU2017203626A1 (en) A method and apparatus for motion correction in CT imaging
US8509504B2 (en) Point spread function radial component implementation in Joseph&#39;s forward projector
US6804325B1 (en) Method for position emission mammography image reconstruction
Friot et al. Iterative tomographic reconstruction with TV prior for low-dose CBCT dental imaging
US11164344B2 (en) PET image reconstruction using TOF data and neural network
US20220375038A1 (en) Systems and methods for computed tomography image denoising with a bias-reducing loss function
WO2012066443A1 (en) Fast computation of the sensitivity matrix in iterative algorithms
Lalush Fourier rebinning applied to multiplanar circular-orbit cone-beam SPECT
US8437525B2 (en) Method and system for using a modified ordered subsets scheme for attenuation weighted reconstruction
Li et al. Lesion quantification in dual-modality mammography using expectation maximization with attenuation correction

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20110427

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120821

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20121116

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20130425