CN1801342A - 信息处理装置 - Google Patents

信息处理装置 Download PDF

Info

Publication number
CN1801342A
CN1801342A CN200510125472.0A CN200510125472A CN1801342A CN 1801342 A CN1801342 A CN 1801342A CN 200510125472 A CN200510125472 A CN 200510125472A CN 1801342 A CN1801342 A CN 1801342A
Authority
CN
China
Prior art keywords
light
center
far
field pattern
area
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN200510125472.0A
Other languages
English (en)
Other versions
CN100524478C (zh
Inventor
高桥雄一
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Publication of CN1801342A publication Critical patent/CN1801342A/zh
Application granted granted Critical
Publication of CN100524478C publication Critical patent/CN100524478C/zh
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11BINFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
    • G11B7/00Recording or reproducing by optical means, e.g. recording using a thermal beam of optical radiation by modifying optical properties or the physical structure, reproducing using an optical beam at lower power by sensing optical properties; Record carriers therefor
    • G11B7/12Heads, e.g. forming of the optical beam spot or modulation of the optical beam
    • G11B7/125Optical beam sources therefor, e.g. laser control circuitry specially adapted for optical storage devices; Modulators, e.g. means for controlling the size or intensity of optical spots or optical traces
    • G11B7/126Circuits, methods or arrangements for laser control or stabilisation
    • G11B7/1263Power control during transducing, e.g. by monitoring

Landscapes

  • Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Optical Head (AREA)

Abstract

本发明提供一种信息处理装置,是将从光源出射的光照射在记录介质上,并对记录介质进行信息的记录和再生的至少一方的信息处理装置,其具备:发射光的光源(1);将来自光源的光向记录介质汇聚的聚光元件(7);以及,接受来自光源(1)的光的一部分的检测器(5)。在由光源所发射的光的远场图形中,在将入射到聚光元件(7)中的区域和入射到检测器(5)中的区域分别设为开口区域(A)和受光区域(B),并将光的发射角的较窄方向设为(x)方向、较宽方向设为(y)方向时,受光区域(B)的(x)方向的中心相对于远场图形的(x)方向的中心偏移。从而,即使光输出功率的变动引起光源的发射角发生变化,也能正确地监视光输出功率。

Description

信息处理装置
技术领域
本发明,涉及光学地进行信息记录再生的信息处理装置。
背景技术
近年,光学地进行信息的记录再生的信息处理装置正在普及起来。特别是,在压缩光盘(以下简略称为CD)、微型盘(Mini-Disk,以下称为MD)、数字化多功能光盘(Digital Versatile Disc,以下称为DVD)、蓝光光盘(Blu-ray Disc,以下称为BD)等的盘状记录介质中,记录再生影像、图像、声音等各种信息的数据的光盘装置正在广泛普及。
在这些装置中,通常用半导体激光器作为记录再生用的光源,从半导体激光器出射的光经过透镜等被汇聚到记录介质上。在数据的记录时,通过提高半导体激光器的光输出功率,提高形成于记录介质上的光斑中的光的强度,从而使记录介质的反射率和磁性等物理性质变化。藉此,数据被作为标记或凹坑记录于记录介质中。在数据再生时,通过以比记录时低的光输出功率使半导体激光器发光,并检测标记或凹坑中的记录介质的反射率或磁性等的物理性质的不同,来从记录介质中再生数据。
在这种装置中,需要将光源的光输出功率在低输出功率至高输出功率的较宽的范围内变化。另外,用于稳定地进行数据的记录的光斑的最佳光强度,因记录介质的扫描速度、记录介质的种类或固体的不同而不同。因此,在记录时,必须总将光源的光输出功率控制为最适当的记录条件。
另外,近年来对数据的高速记录的需求也不断提升。为了在相同种类的记录介质中,更高速地进行记录,一般采用提高记录介质的扫描速度的方法。可是,若增大扫描速度,则由所照射的光提供给记录介质的每单位面积的能量降低。因此,为了确保记录时必要的光强,需要使光源以更高的光输出功率发光。
另一方面,也不断推进提高记录密度的技术开发,形成于记录介质上的标记和凹坑的物理尺寸不断变小。为了在记录介质上稳定地形成(记录)较小的标记,有必要对将光照射到记录介质上的时间与照射的光强度,同时进行高精度的控制。
这样,为了在宽范围中高精度地控制光源的光输出功率,光盘装置中,检测来自光源的出射光的强度,并基于检测结果控制光源的光输出功率。具体来讲,由检测器检测出光源所发出的光的一部分,并通过对光源的光输出功率进行实时监控,来控制光源的输出(例如,参照专利文献1)。
参照图22A至图26说明该以往技术。图22A和图22B,分别是表示以往的光盘装置中的光学系统的结构的俯视图和侧视图。图22A所示的俯视图,是从记录介质侧观察的光学系统。如这些图所示,作为光源的半导体激光器221所发射的光222,被准直透镜223变为平行光,平行光的一部分透过反射镜224入射到光输出功率监视用检测器225中。检测器225的输出,被输入到激光器控制电路226中,半导体激光器221的输出,被控制为必要的值。另一方面,反射镜224所反射的光,透过聚光透镜227,向记录介质228聚光。由记录介质228所反射的光,逆着原来的光路,被检测用衍射元件229衍射,并透过准直透镜223入射到位于半导体激光器221的附近的信号检测用检测器2210以及2211中。根据入射到检测器2210和2211的光,进行焦点、跟踪、RF等各种信号的检测。检测器2210、2211的结构、和各种信号的检测方式,并非本发明的本质构成要素,另外由于各种结构已被周知,因此省略其说明。
图23,表示从半导体激光器221发射的光的远场图形(Far FieldPattern,也被略为FFP)。图23的远场图形231中的聚光透镜227的开口区域232(区域A)、以及光输出功率监视用的检测器225的受光区域233的(区域B)的中心,与远场图形231的中心大致一致。远场图形231如图24所示,大致为正态分布。在聚光透镜的开口中心和光输出功率监视用检测器的受光区域的中心,配置为与远场图形的中心相一致的情况下,来自光源的光的利用效率变得最高。因此,通常以远场图形231、开口区域232以及受光区域233的中心一致的方式,来配置半导体激光器221、聚光透镜227以及检测器225。
【专利文献1】特许第2907759号公报
【非专利文献1】松下技术期刊Vol.45No.6(Dec.1999)
近年来,为了实现半导体激光器的高输出化和高温工作性能的改善,降低半导体激光器的工作电流的实折射率导波型激光器,已被实际应用(例如,参照非专利文献1)。这种半导体激光器,一般具有水平方向的光发射角随光输出功率变化的特性。图25,是示意表示实折射率导波型激光器的光强度和水平方向上的光发射角的关系的图。在图25所示的例子中,示出了若高强度变强则光的发射角变宽。
在将具有这种特性的实折射率导波型激光器用于光盘装置的光源的情况下,透过聚光透镜照射在记录介质上的光量(以下,称作Po)、与入射到光输出功率监视用的检测器中的光量(以下称作Pm)的比,会因光输出功率而变化。因此,不能确保Pm/Po的线形性,很难进行正确的光输出功率控制。如图26所示,在确保Pm/Po的线形性的情况下,Pm/Po为直线251,与此相对,由于无法确保线形性,Pm/Po如曲线252和曲线253所示。
其原因在于,如图23所示,聚光透镜的开口区域232(区域A)和光输出功率监视用检测器的受光区域233(区域B)的尺寸和形状不同,来自半导体激光器的出射光,被区域A以及区域B各自耦合的效率(设为ηA,ηB)之比,因半导体激光器的光输出功率变化。
也就是说,若设半导体激光器的光输出功率为P1时的各耦合效率分别为ηA1、ηB1,光输出功率为P2时的各耦合效率分别为ηA2、ηB2,则下述(数学式1)的关系成立。
ηB 1 ηA 1 ≠ ηB 2 ηA 2 …(数学式1)
因此,Pm/Po(=ηA/ηB)失去线形性。由于Pm/Po失去线形性,因而不能正确地控制半导体激光器的光输出功率。具体来说,就是半导体激光器的光输出功率偏离了目标值。
发明内容
本发明的目的为提供一种解决该课题,并能够正确地监视光输出功率的信息处理装置。
本发明的信息处理装置,将从光源出射的光照射在记录介质上,并对所述记录介质进行信息的记录和再生的至少一方,其中,具备:光源,其发射光;聚光元件,其将来自所述光源的光向记录介质汇聚;以及,检测器,其接受来自所述光源的光的一部分,在从所述光源发射的光的远场图形中,将入射到所述聚光元件中的区域和入射到所述检测器中的区域分别设为开口区域A和受光区域B,并将所述光的发射角的较窄方向设为x方向、较宽方向设为y方向时,所述受光区域B的x方向的中心,相对于所述远场图形的x方向的中心偏移。
在某一优选实施方式中,在将所述开口区域A的x方向的宽度设为2rAx、将所述受光区域B的x方向的宽度设为2rBx,将所述开口区域A的x方向上的中心、和所述远场图形的x方向的光强度分布的中心的距离设dAx,将所述受光区域B的x方向上的中心、和所述远场图形的x方向的光强度分布的中心的距离设为dBx时,所述rAx、rBx、dAx和dBx满足以下关系,rAx>rBx,且dAx<dBx。
在某一优选实施方式中,所述rAx、rBx、dAx和dBx满足以下关系,dAx<0.25rAx,且0.25rAx<dBx<0.55rAx。
在某一优选实施方式中,在将所述开口区域A的y方向上的中心、和所述远场图形的y方向的光强度分布的中心的距离设为dAy,将所述受光区域B的y方向上的中心、和所述远场图形的y方向的光强度分布的中心的距离设为dBy时,dAy和dBy满足dBy>dAy的关系。
在某一优选实施方式中,在将所述开口区域A的y方向的宽度设为2rAy时,dBy和rAy满足dBy>rAy的关系。
在某一优选实施方式中,信息处理装置具备多个所述光源,并且从所述多个光源到所述聚光元件的各个光轴至少部分一致。
本发明的信息处理装置,将从多个光源出射的光照射在记录介质上,并对所述记录介质进行信息的记录和再生的至少一方,其中,具备:第一光源和第二光源;聚光元件,其将来自所述第一光源和第二光源的光向记录介质汇聚;以及,检测器,其接受来自所述第一光源和第二光源的光的一部分,在从所述第一光源发射的光的第一远场图形中,将入射到所述聚光元件中的区域和入射到所述检测器中的区域分别设为开口区域A1和受光区域B1,并将所述光的发射角的较窄方向设为x方向、较宽方向设为y方向时,所述受光区域B1的x方向的中心,相对于所述第一远场图形的x方向的中心偏移,在从所述第二光源发射的光的第二远场图形中,将入射到所述聚光元件中的区域和入射到所述检测器中的区域分别设为开口区域A2和受光区域B2,并将所述光的发射角的较窄方向设为x方向、较宽方向设为y方向时,所述受光区域B2的x方向的中心,相对于所述第二远场图形的x方向的中心偏移。
在某一优选实施方式中,在将所述开口区域A1的x方向的宽度设为2rA1x、将所述受光区域B1的x方向的宽度设为2rB1x,将所述开口区域A1的x方向上的中心、和所述第一远场图形的x方向的光强度分布的中心的距离设为dA1x,将所述受光区域B1的x方向上的中心、和所述第一远场图形的x方向的光强度分布的中心的距离设为dB1x,并且,将所述开口区域A2的x方向的宽度设为2rA2x、将所述受光区域B2的x方向的宽度设为2rB2x,将所述开口区域A2的x方向上的中心、和所述第二远场图形的x方向的光强度分布的中心的距离设为dA2x,将所述受光区域B2的x方向上的中心、和所述第二远场图形的x方向的光强度分布的中心的距离设为dB2x时,所述rA1x、rB1x、dA1x、dB1x、rA2x、rB2x、dA2x及dB2x,满足以下关系,rA1x>rB1x,rA2x>rB2x,(rA1x/rB1x)>(rA2x/rB2x),且(dB1x/rB1x)>(dB2x/rB2x)。
在某一优选实施方式中,所述rA1x、rB1x、dA1x和dB1x,满足dA1x<0.25rA1x,且0.25rA1x<dB1x<0.55rA1x。
在某一优选实施方式中,在将所述开口区域A1的y方向上的中心、和所述第一远场图形的y方向的光强度分布的中心的距离设为dA1y,将所述受光区域B1的y方向上的中心、和所述第一远场图形的y方向的光强度分布的中心的距离设为dB1y时,所述dA1y和dB1y满足dB1y>dA1y的关系。
在某一优选实施方式中,在将所述开口区域A1的y方向的宽度设为2rA1y时,所述dB1y和rA1y,满足dB1y>rA1y的关系。
按照本发明,在从光源出射的光的远场图形中,在光的发射角的较窄方向上,检测器的受光区域中心相对于远场图形中心偏移。因此,即使在光源的光发射角因光输出功率而变化的情况下,也能够抑制透过聚光元件入射到记录介质上的光量与入射到检测器中的光量的比的、因光输出功率导致的变化。因此,即使在光输出功率于较宽的范围内变化的情况下,也能够高精度控制光源的输出功率。从而,实现了能够以高记录密度高速地记录再生信息的信息处理装置。
附图说明
图1A是说明本发明的信息处理装置的第一实施方式中的水平方向的主要结构的图。
图1B是表示第一实施方式中的垂直方向的主要结构的图。
图1C是表示本发明的信息处理装置的第一实施方式的方框图。
图2A表示第一实施方式中的垂直于光源的光轴的面内的远场图形。
图2B表示图2A所示的远场图形的x方向上的强度分布。
图3A是表示第一实施方式中,发射角从8deg向10deg变化,dBx=0时的Po和Pm的Δθx相关性的图。
图3B是表示第一实施方式中,发射角从8deg向10deg变化,dBx=0时的Pm/Po的Δθx相关性的图。
图3C是表示第一实施方式中,发射角从8deg向10deg变化,dBx=0.87时的Po和Pm的Δθx相关性的图。
图3D是表示第一实施方式中,发射角从8deg向10deg变化,dBx=0.87时的Pm/Po的Δθx相关性的图。
图4A是表示第一实施方式中发射角从6deg向8deg变化,dBx=0时的Po和Pm的Δθx相关性的图。
图4B是表示第一实施方式中发射角从6deg向8deg变化,dBx=0时的Pm/Po的Δθx相关性的图。
图4C是表示第一实施方式中发射角从6deg向8deg变化,dBx=0.87时的Po和Pm的Δθx相关性的图。
图4D是表示第一实施方式中发射角从6deg向8deg变化,dBx=0.87时的Pm/Po的Δθx相关性的图。
图5A是表示第一实施方式中发射角从10deg向12deg变化,dBx=0时的Po和Pm的Δθx相关性的图。
图5B是表示第一实施方式中发射角从10deg向12deg变化,dBx=0时的Pm/Po的Δθx相关性的图。
图5C是表示第一实施方式中发射角从10deg向12deg变化,dBx=0.87时的Po和Pm的Δθx相关性的图。
图5D是表示第一实施方式中发射角从10deg向12deg变化,dBx=0.87时的Pm/Po的Δθx相关性的图。
图6A是表示第一实施方式中fc=15和dBx=0时的Po和Pm的Δθx相关性的图。
图6B是表示第一实施方式中fc=15和dBx=0时的Pm/Po的Δθx相关性的图。
图6C是表示第一实施方式中fc=15和dBx=0.87时的Po和Pm的Δθx相关性的图。
图6D是表示第一实施方式中fc=15和dBx=0.87时的Pm/Po的Δθx相关性的图。
图7A是表示第一实施方式中fc=25和dBx=0时的Po和Pm的Δθx相关性的图。
图7B是表示第一实施方式中fc=25和dBx=0时的Pm/Po的Δθx相关性的图。
图7C是表示第一实施方式中fc=25和dBx=0.87时的Po和Pm的Δθx相关性的图。
图7D是表示第一实施方式中fc=25和dBx=0.87时的Pm/Po的Δθx相关性的图。
图8A是表示第一实施方式中rB=0.25和dBx=0时的Po和Pm的Δθx相关性的图。
图8B是表示第一实施方式中rB=0.25和dBx=0时的Pm/Po的Δθx相关性的图。
图8C是表示第一实施方式中rB=0.25和dBx=0.87时的Po和Pm的Δθx相关性的图。
图8D是表示第一实施方式中rB=0.25和dBx=0.87时的Pm/Po的Δθx相关性的图。
图9A是表示第一实施方式中rB=0.45和dBx=0时的Po和Pm的Δθx相关性的图。
图9B是表示第一实施方式中rB=0.45和dBx=0时的Pm/Po的Δθx相关性的图。
图9C是表示第一实施方式中rB=0.45和dBx=0.87时的Po和Pm的Δθx相关性的图。
图9D是表示第一实施方式中rB=0.45和dBx=0.87时的Pm/Po的Δθx相关性的图。
图10A是表示第一实施方式中rA=1和dBx=0时的Po和Pm的Δθx相关性的图。
图10B是表示第一实施方式中rA=1和dBx=0时的Pm/Po的Δθx相关性的图。
图10C是表示第一实施方式中rA=1和dBx=0.87时的Po和Pm的Δθx相关性的图。
图10D是表示第一实施方式中rA=1和dBx=0.87时的Pm/Po的Δθx相关性的图。
图10E是表示第一实施方式中rA=1和dBx=0.46时的Po和Pm的Δθx相关性的图。
图10F是表示第一实施方式中rA=1和dBx=0.46时的Pm/Po的Δθx相关性的图。
图11A是表示第一实施方式中rA=3和dBx=0时的Po和Pm的Δθx相关性的图。
图11B是表示第一实施方式中rA=3和dBx=0时的Pm/Po的Δθx相关性的图。
图11C是表示第一实施方式中rA=3和dBx=0.87时的Po和Pm的Δθx相关性的图。
图11D是表示第一实施方式中rA=3和dBx=0.87时的Pm/Po的Δθx相关性的图。
图11E是表示第一实施方式中rA=3和dBx=1.13时的Po和Pm的Δθx相关性的图。
图11F是表示第一实施方式中rA=3和dBx=1.13时的Pm/Po的Δθx相关性的图。
图12是表示第一实施方式中的最佳dx和rA的关系的图。
图13A是表示第一实施方式中,在给定条件下且dBx=0时的Po和Pm的Δθx相关性的图。
图13B是表示第一实施方式中在给定条件下且dBx=0时的Pm/Po的Δθx相关性的图。
图13C是表示第一实施方式中在给定条件下且dBx=0.5时的Po和Pm的Δθx相关性的图。
图13D是表示第一实施方式中在给定条件下且dBx=0.5时的Pm/Po的Δθx相关性的图。
图13E是表示第一实施方式中在给定条件下且dBx=1.1时的Po和Pm的Δθx相关性的图。
图13F是表示第一实施方式中在给定条件下且dBx=1.1时的Pm/Po的Δθx相关性的图。
图14A表示第一实施方式中的与光源的光轴垂直的面内的远场图形。
图14B表示图14A所示的远场图形的y方向上的强度分布。
图15A表示第一实施方式中的与光源的光轴垂直的面内的远场图形。
图15B表示图15A所示的远场图形的y方向上的强度分布。
图16A是说明本发明的信息处理装置的第二实施方式中的水平方向的主要结构的图。
图16B是说明第二实施方式中的垂直方向的主要结构的图。
图17A是表示第二实施方式中的与光源的光轴垂直的面内的远场图形。
图17B表示图17A所示的远场图形的x方向上的强度分布。
图18是说明第二实施方式的变形例中的水平方向的主要结构的图。
图19A是说明本发明的信息处理装置的第二实施方式中的水平方向的主要结构的图。
图19B是说明本发明的信息处理装置的第二实施方式中的水平方向的主要结构的另一图。
图19C是说明第二实施方式中的垂直方向的主要结构的图。
图20A表示第二实施方式中的垂直于第一光源的光轴的面内的远场图形。
图20B表示第二实施方式中的垂直于第二光源的光轴的面内的远场图形。
图20C表示图20A所示的远场图形的x方向上的强度分布。
图20D表示图20B所示的远场图形的x方向上的强度分布。
图21A是表示第三实施方式中dB1x=0.87时的Po2和Pm2的Δθx相关性的图。
图21B是表示第三实施方式中dB1x=0.87时的Pm2/Po2的Δθx相关性的图。
图21C是表示第三实施方式中dB1x=-0.87时的Po2和Pm2的Δθx相关性的图。
图21D是表示第三实施方式中dB1x=-0.87时的Pm2/Po2的Δθx相关性的图。
图22A是说明以往的信息处理装置中的水平方向的主要结构的图。
图22B是说明以往的信息处理装置中的垂直方向的主要结构的图。
图23是表示以往的信息处理装置中的与光轴垂直的平面中的光源的远场图形的图。
图24是表示光源的远场图形的光强度分布的图。
图25是表示另一光源的远场图形的光强度分布的图。
图26是表示以往的信息处理装置中的Pm/Po的关系的图。
图中:1、13、221-半导体激光器,2、14、222-出射光,3、223-准直透镜,4、224-反射镜,5、10、11、17、18、225、2210、2211-检测器,6、226-激光器控制电路,7、227-聚光透镜,8、228-记录介质,9、229-衍射元件,12、16-反射镜上的光束,15-分束器,111、112、171、201、202、231-远场图形,112、202、232-聚光透镜的开口区域,113、203、233-检测器的受光区域。
具体实施方式
以下,作为本发明中的信息处理装置的一例,说明在盘状记录介质上记录再生影像或图像、声音等各种信息的数据的光盘装置。但是,只要是从光源出射的光照射在记录介质上、并对记录介质进行信息的记录和再生的至少一项的装置,本发明也适用于其他的信息处理装置。本发明也适用于诸如全息图像记录装置、曝光装置、激光打印机等。
(第一实施方式)
图1A和图1B,分别表示本发明的光盘装置中的光学系统的结构的俯视图和侧视图。图1A所示的俯视图,是从记录介质侧观察光学系统。另外,图1C是表示光盘装置的结构的方框图。
如图1C所示,光盘装置500具备:光拾取器510;控制系统514;数据处理系统512;往复驱动部516;旋转驱动部518;驱动器520、522;以及,控制器524。
旋转驱动部518,具有用于载置作为信息记录介质的光盘8的转盘(turm table),在转盘上载置光盘8,进行旋转驱动。如以下文中所说明的,光拾取器510,具有用以调节照射信息记录面的光的聚光状态的聚光透镜,将光向光盘8的信息记录面汇聚,利用汇聚后的光将数据记录在信息记录面上,或将记录于信息记录面上的数据再生。
控制系统514,根据向信息记录面汇聚的光在信息记录面中反射所得到的反射光,生成进行光盘8的旋转控制、以及向光盘8的信息记录面汇聚的光的聚光状态及聚光位置的控制的控制信号。根据控制信号,驱动器520、522驱动旋转驱动部518以及往复驱动部516。另外,驱动光拾取器510的聚光元件驱动部(图中未示出)。数据处理系统512,根据反射光再生记录于信息记录面的数据。
图1A和图1B所示的光学系统,包含于图1C所示的光拾取器510中。也就是说,如图1A和图1B所示,光拾取器510具备:半导体激光器1、聚光透镜7以及检测器5。另外,具备:准直透镜3,反射镜4,检测用衍射元件9,以及检测器10、11。从作为光源的半导体激光器1以给定的发射角出射的光2’的一部分光2,被导向聚光透镜7。更详细来说,从半导体激光器1出射的光2,被准直透镜3变为平行光,平行光的一部分(例如5%)透过反射镜4入射到光输出功率监视用检测器5。检测器5的输出,被输入到激光器控制电路6,并且半导体激光器221的输出,被根据检测器5的输出控制为给定的值。另一方面,反射镜4所反射的剩余部分(例如95%)的光2,透过检测用衍射元件9和聚光透镜7,向记录介质8聚光。虽然在本实施方式中,将聚光透镜作为聚光元件使用,但也可以使用棱镜等透镜以外的其他聚光元件。记录介质8的信息记录层中反射的光,逆着原来的光路,并被检测用衍射元件9衍射,透过准直透镜3入射到设置于半导体激光器1的近旁的信号检测用检测器10、11。入射到检测器10、11中的光,如图1C所示,被输入到控制系统514以及数据处理系统512中。
如图1A所示,本发明的特征之一为,检测器5的受光部的中心,相对于光束12的中心,在水平(x)方向上偏移。以下详细地说明该特征。
图2A和图2B,是从半导体激光器1出射的光的远场图形,图2A表示垂直于光轴的分布。另外,图2B表示x轴方向的光强度分布。这里,x轴是从半导体激光器1出射的光的发射角最狭窄的方向。另外,设从半导体激光器1出射的光的发射角最宽的方向为y轴。在实折射率型半导体激光器1中,光发射角随着光输出功率向狭窄的方向变化。在本实施方式中,半导体激光器1是实折射率型半导体激光器,发射角在水平方向变得狭窄。也就是说,水平方向是x方向。
这里,所谓远场图形,是指从离作为光源的半导体激光器1极远的位置观测到的出射光的分布。如图1A和图1B所示,考虑离半导体激光器1的出射面距离L的平面P1中观测到的出射光的分布的情况下,若L为10mm以上,则距半导体激光器1足够远,能够将平面P1上观测到的出射光的分布视为远场图形。但是,远场图形未必在图1A和图1B所示的位置中观测或定义,只要离半导体激光器1的出射面距离L以上,例如可在准直透镜3和反射镜4之间观测。
如图2所示,在垂直于光轴的截面中,出射光的远场图形111具有椭圆形状。另外,在图2A中,示出了远场图形111中的聚光透镜7的开口区域112(开口区域A)和检测器5的受光区域113(区域B)。在例如按照图1A和图1B那样在平面P1中定义远场图形的情况下,在横切平面P1的光中,入射到聚光透镜7和检测器5的受光部的光束区域分别是开口区域112和受光区域113。开口区域112和受光区域113,在图2A中具有圆形状。可是,开口区域112和受光区域113的形状也可以是圆以外的形状,也可以是矩形或多边形。如果是聚光透镜7和检测器5中存在没有接受半导体激光器1的出射光的区域,则效率变差,因此开口区域112和受光区域113完全被包含在远场图形111中。
如图2B所示,在设开口区域112的x方向的宽度为2rAx,受光区域113的x方向的宽度为2rBx时,rAx和rBx满足rAx>rBx的关系。另外,开口区域112的中心112C大致和远场图形111的中心111C大致一致。与此相对,受光区域113的中心113C,在x方向上相对于远场图形111的中心111C偏移。设该偏移量为dBx。另外,设透过聚光透镜7照射在光盘8上的光量和入射到检测器5中的光量分别为Po、Pm。
以下,用具体例表示半导体激光器1的x方向上的光发射角变化时的dBx与Po、Pm、Pm/Po的关系。光学系统如图1A和图1B所示构成,半导体激光器1的x方向(水平方向)的发射角θx(半值全角),在低输出时为θx(Lo)=8deg,在高输出时为θx(Hi)=10deg。因此,若将光输出功率从高输出向低输出(或者从低输出向高输出)变化,则发射角θx的差Δθx为0到2deg。另外,垂直方向的发射角θy与输出无关,设θy=17deg固定。在设准直透镜3的焦距为fc为20mm,聚光透镜7的开口具有圆形,设其半径rA为2mm,检测器5的受光部具有圆形,设其半径rB为0.35mm时,计算Po、Pm、Pm/Po随Δθx(θx的因光输出功率引起的变化)如何变化。图3A和图3B表示其结果。
如图3A所示,在dBx=0时,Po、Pm的对Δθx的相关性,由曲线31-a和32-a表示。如从图3A所明了的那样,Pm的对Δθx的相关性较大。因此,若Δθx从0向2deg变化,则如图3B中曲线33-a所示那样,Pm/Po变化约9%。另外,图中的Pm/Po的值,用Δθx=0时的值标准化。在以后的图中也同样进行标准化。
图3C和图3D,示出了在dBx=0.87mm时的Po、Pm以及Pm/Po的对Δθx的相关性。如图3C所示,Po、Pm对Δθx的相关性由曲线31-b和32-b所示。如从图3C所明了的那样,Po和Pm对Δθx的相关性变得基本相同。因此,即使在Δθx从0向2deg变化的情况下,如图3D中曲线33-b所示的那样,Pm/Po的变化被降低至约0.2%,Pm/Po实质上固定。
为了抑制对应Δθx的Pm/Po的变化,对支配性的参数进行研究,以下,对其结果进行说明。首先,在将半导体激光器1的发射角θx在低输出时设为θx(Lo)=6deg、在高输出时设为θx(Hi)=8deg的情况下,调查dBx的影响。将设dBx=0、此外的参数利用前述的值得到的结果,在图4A和图4B中表示。在图4A中,Po、Pm对Δθx的相关性,由曲线41-a和42-a表示。如从图中所明了的那样,Pm对Δθx的相关性较大。因此,如图4B所示的那样,若Δθx从0向2deg变化,则如曲线43-a所示的那样,Pm/Po变化约15%。
与此相对,在令dBx=0.87mm的情况下,Po、Pm对Δθx的相关性,如图4C的曲线41-b和曲线42-b所示。虽然Po对Δθx的相关性,与dBx=0时相比变化不大,但是Pm对Δθx的相关性有较大的减少,变得与Po对Δθx的相关性大致相等。因此,在图4D中,如曲线43-b所示的那样,Δθx从0向2deg变化时的Pm/Po变化,被降低至约3%。
接下来,调查将半导体激光器1的发射角θx在低输出时设为θx(Lo)=10deg,在高输出时设为θx(Hi)=12deg时的dBx的影响。在图5A和图5B中表示,设dBx=0、且这以外的参数利用前述的值而得到的结果。
在图5A中,Po、Pm对Δθx的相关性,由曲线51-a和52-a表示。如从图中所明了的那样,Pm对Δθx的相关性较大。因此,如图5B所示的那样,若Δθx从0向2deg变化,则如曲线53-a所示的那样,Pm/Po约变化6%。
与此相对,在令dBx=0.87mm的情况下,Pm对Δθx的相关性,由图5C的曲线51-b和曲线52-b表示。如从图5C所明了的那样,Po、Pm对Δθx的相关性较为一致。因此,如图5D的曲线53-b所示的那样,即使Δθx从0向2deg变化,Pm/Po的变化也被降低至1%以下。
被作为用于向CD、MD、DVD、BD之类的记录介质进行记录的光源使用的半导体激光器,通常被使用为,在低输出时具有从6deg到10deg的发射角θx(Lo),并且高输出时和低输出时发射角的差Δθx为2deg左右。因此,如参照图3A到图5D所说明的那样,在将偏移量dBx设为0.87mm的情况下,在通常的记录用半导体激光器的发射角θx的范围内,不相关于θx的值,可以说由Δθx所引起的Pm/Po的变化被很好地抑制了。也就是说,在由光源出射的光的发射角因光输出功率而发生变化的情况下,通过使检测器的受光区域的中心,在发射角变化最大的方向上相对于远场图形的光强度分布的中心偏移,从而能够降低发射角变动的影响,并正确地监视来自光源的光输出功率。
接下来,说明这种效果在使准直透镜3的焦距fc变化的情况下,产生何种影响。首先,图6A至图6D示出了设fc=15mm时的结果。另外,这里将半导体激光器1的发射角θx在低输出时设为θx(Lo)=8deg,在高输出时设为θx(Hi)=10deg。
在dBx=0时,Po、Pm对Δθx的相关性由图6A的曲线61-a和62-a表示。如从图中所明了的那样,Pm对Δθx的相关性较大。因此,如图6B所示的那样,若Δθx从0向2deg变化,则如曲线63-a所示的那样,Pm/Po约变化13%。
另一方面,在令dBx=0.87mm的情况下,Po、Pm对Δθx的相关性由图6C的曲线61-b和曲线62-b表示。如从图中所明了的那样,由于Pm对Δθx的相关性变小,因此Po和Pm对Δθx的相关性的差变小。因此,如图6D所示,即使Δθx从0向2deg变化,也如曲线63-b所示的那样,Pm/Po的变化被降低至3%。
图7A至图7D,表示设准直透镜3的焦距fc为25mm时的结果。在dBx=0时,Po、Pm对Δθx的相关性,由图7A的曲线71-a和72-a表示。如从图中所明了的那样,虽然与fc=15mm时相比,差变小了,但是Pm对Δθx的相关性还是比Po大。因此,如图7B所示的那样,若Δθx从0向2deg变化,则如曲线73-a所示的那样,Pm/Po约变化6%。
与此相对,在令dBx=0.87mm的情况下,Po、Pm对Δθx的相关性由图7C的曲线71-b和曲线72-b表示。如从图中所明了的那样,Pm和Po对Δθx的相关性变得大致相等。因此,如图7D所示,即使Δθx从0向2deg变化,也如曲线73-b所示的那样,Pm/Po几乎不变化,变化约在1%以下。
所谓准直透镜的焦距的变化,等价于入射到聚光透镜7的光的边缘强度发生变化。这里所谓边缘强度,是指将聚光透镜7的开口区域112中得到最大光强度的点中的强度设为100%时,开口区域112的边缘(外周)中的强度。在准直透镜的焦距fc从15mm向25mm变化的情况下,入射到聚光透镜7的光的水平方向的边缘强度,从约8%变化至约56%。该范围基本覆盖了:向CD、MD、DVD、BD之类的记录介质进行记录的光盘装置中,从被聚光透镜汇聚的光斑的聚光性、和来自光源的光利用效率的观点出发,作为设计光学系统时的条件使用的边缘强度的值。因此,在通常的边缘强度条件下,无论边缘强度(或者,准直透镜的焦距)如何,通过将检测器的受光区域的中心,在发射角变化最大的方向上相对于远场图形的光强度分布的中心偏移,从而能够降低发射角变动的影响,并正确地监视来自光源的光输出功率。
接下来,说明检测器5的受光部的面积所导致的影响。图8A至图8D,示出了将检测器5的受光部的半径rB设为0.25mm时的计算结果。这里将准直透镜3的焦距fc设为20mm,其他条件按照上述。
在dBx=0时,Po、Pm对Δθx的相关性,由图8A的曲线81-a和82-a表示。如从图中所明了的那样,Pm对Δθx的相关性较大。因此,如图8B所示的那样,若Δθx从0向2deg变化,则如曲线83-a所示的那样,Pm/Po约变化9%。
另一方面,在令dBx=0.87mm的情况下,Po、Pm对Δθx的相关性由图8C的曲线81-b和曲线82-b表示。如从图中所明了的那样,Pm和Po对Δθx的相关性非常好地一致。因此,如图8D所示,即使Δθx从0向2deg变化,也如曲线83-b所示的那样,Pm/Po被降低至约0.2%以下,Pm/Po实质上固定。
在将受光部的半径rB设为0.45mm的情况下,也得到了大致相同的结果。具体来说,在dBx=0时,Po、Pm对Δθx的相关性由图9A的曲线91-a和92-a表示。如从图中所明了的那样,Pm对Δθx的相关性较大。因此,如图9B所示的那样,若Δθx从0向2deg变化,则如曲线93-a所示的那样,Pm/Po约变化9%。
另一方面,在令dBx=0.87mm的情况下,Po、Pm对Δθx的相关性由图9C的曲线91-b和曲线92-b表示。如从图中所明了的那样,Pm和Po对Δθx的相关性非常好地一致。因此,如图9D所示,即使Δθx从0向2deg变化,也如曲线93-b所示的那样,Pm/Po的变化率被降低至约0.1%以下,Pm/Po实质上固定。
在向CD、MD、DVD、BD之类的记录介质进行记录的光盘装置中,通常利用受光部的直径为Φ0.5mm至Φ0.9mm左右的检测器进行光输出功率的检测。因此,在这些通常的光盘装置中,无论检测器的受光部的大小如何,通过将检测器的受光区域的中心,在发射角变化最大的方向上相对于远场图形的光强度分布的中心偏移大约0.87mm,从而能够降低发射角变动的影响,并正确地监视来自光源的光输出功率。
最后,说明聚光透镜7的开口区域的面积所导致的影响。这里,设检测器的受光部的半径rB为0.35mm。首先,图10A至图10D示出了将聚光透镜的开口区域的半径rA设为1mm时的计算结果。
在dBx=0时,Po、Pm对Δθx的相关性由图10A的曲线101-a和102-a表示。如从图中所明了的那样,Pm和Po对Δθx的相关性的差异并不那么大。因此,如图10B所示的那样,若Δθx从0向2deg变化,则如曲线103-a所示的那样,Pm/Po收纳于约3%的变化内。
另一方面,在令dBx=0.87mm的情况下,Po、Pm对Δθx的相关性由图10C的曲线101-b和曲线102-b表示。如从图中所明了的那样,Pm对Δθx的相关性,与dBx=0时相比大幅减少。因此,Po和Pm对Δθx的相关性的差反而变大了。其结果,如图10D所示,若Δθx从0向2deg变化,则如曲线103-b所示的那样,Pm/Po的变化增大至约7%。
在该条件下最大程度抑制Pm/Po的变化的dBx,是dBx=0.46mm。如图10E的曲线101-c和102-c所示的那样,Po和Pm对Δθx的相关性几乎一致。此时,如图10F所示,若Δθx从0向2deg变化,则如曲线103-c所示的那样,Pm/Po几乎固定,变化被收纳于±0.2%以下。
接下来,图11A至图11D示出了将聚光透镜的开口区域的半径rA设为3mm时的计算结果。在dBx=0时,Po、Pm对Δθx的相关性由图11A的曲线111-a和112-a表示。如从图中所明了的那样,Pm对Δθx的相关性较大。因此,如图11B所示的那样,若Δθx从0向2deg变化,则如曲线113-a所示的那样,Pm/Po约变化15%。
另一方面,在令dBx=0.87mm的情况下,Po、Pm对Δθx的相关性由图11C的曲线111-b和曲线112-b表示。如从图中所明了的那样,虽然Pm对Δθx的相关性变小,但与Po对Δθx的相关性尚有差距。因此,如图11D所示,若Δθx从0向2deg变化,则如曲线113-b所示的那样,Pm/Po的变化约为6%。
在该条件下最大程度抑制Pm/Po的变化的dBx,是dBx=1.13mm。如图11E的曲线111-c和曲线112-c所示的那样,Po和Pm对Δθx的相关性几乎一致。此时,如图11F所示,若Δθx从0向2deg变化,则如曲线113-c所示的那样,Pm/Po几乎固定,变化收纳在±0.5%以下。
根据这些结果,能够在聚光透镜的开口区域的半径rA、和远场图形的光强度分布的中心与检测器的受光区域的中心的距离dBx中,找出相关性。图12示出了rA和最佳dBx之间的关系。如图12所示,可以看出,在rA为1~3mm的范围中,最佳dBx和rA之比(dBx/rA)的值为0.38至0.46。在该rA的范围中,最佳dBx和rA之比的平均值为0.42。根据以上的研究,可以说,为了抑制对应Δθx的Pm/Po变化,若将dBx/rA设定为0.42左右,则能够获得一定效果。
可是,在构成实际的装置的情况下,受到例如需要寻求光输出功率监视用检测器的光检测敏感度和入射的光量的匹配、以及装置尺寸和布局上的制约等设计上的约束,有时无法采用根据dBx/rA求出的最佳的dBx。对在那种情况下,也可取得抑制对应Δθx的Pm/Po变化的效果的dBx的范围进行说明。
基于以下所示的条件,在聚光透镜的开口区域的中心和检测器的受光区域的中心一致的情况下(dBx=0),Po和Pm用图13A的曲线131-a和曲线132-a表示Δθx的相关性。另外,在Δθx从0deg向2deg变化时,如图13B所示的那样,Pm/Po约变化9%。
光源低输出时的发射角θx(Lo):8deg
光源高输出时的发射角θx(Hi):10deg
光源的y方向的发射角θy:17deg(固定)
准直透镜的焦距fc:20mm
开口区域的半径rA:2mm
受光区域的半径rB:0.35mm
在该条件下,可将Pm/Po的变化抑制在±6%以下的dBx的范围,是0.5至1.1。图13C和图13D,示出了dBx为0.5时Po、Pm以及Pm/Po的Δθx的相关性。另外,图13E和图13F,示出了dBx为1.1时的Po、Pm以及Pm/Po的Δθx的相关性。若dBx的值具有如此程度的自由度,则能在满足装置的设计上的制约的同时,抑制对应Δθx的Pm/Po变化。此时,dBx/rA满足,0.25<dBx/rA<0.55(0.25rA<dBx<0.55rA)的关系。
另外,虽然在本实施方式中,令聚光透镜的开口区域的中心、与由光源出射的光的远场图形的光强度分布的中心相一致,但也可令其不一致。具体来说,也可以用比检测器的受光区域的中心的x方向上的偏移量dBx小的值,将聚光透镜的开口区域的中心从远场图形的光强度分布中心偏移设定。由于聚光透镜的开口区域较大,边缘强度较低,因此开口区域的中心位置上的Δθx所引起的摄入效率的变动(ΔPo),与受光区域相比较小。例如,如图3A的曲线31-a所示,在dAx=0,θx从8deg向10deg变化的情况下,Po降低12%。与此相对,相同条件下令dAx=0.25rAx(=0.5mm)时Po降低11%。这样,即使dAx变动,ΔPo也几乎不变化。因此,在将光透镜的开口区域的中心和远场图形的光强度分布的中心的、x方向的距离设为dAx时,只要满足dAx<0.25rAx,可得到上述结果。
另外,虽然在本实施方式中,聚光透镜的开口区域和检测器的受光区域具有圆形状,但是也可以如前所述,具有矩形形状或多边形形状。此时,将开口区域和受光区域的x方向上的宽度,分别设为2rAx和2rBx,若rAx和rBx满足上述条件,则能够得到本发明的效果。
另外,通常在实折射率型半导体激光器中,虽然在x方向上发射角随着光输出功率变化,但是y方向的发射角不变化。因此,只要满足上述的条件,检测器5的受光区域的中心在y方向上也可偏移。如图14A和图14B所示,作为受光区域113相对于从光源出射的光的远场图形111的y方向上的光分布中心111C的y方向上的偏移量的、远场图形111的中心111C和受光区域113的中心113C的距离dBy,只要受光区域113位于远场图形111内,可以取任意的值。因此,可出于例如调节入射到受光区域中的光量的目的来向y方向偏移,也可出于构成光学系统的各构成要件的设计上的理由来将受光区域向y方向偏移。
但是,如图1A和1B所示,在以检测器5检测出入射到聚光透镜7的光的一部分的方式来构成光学系统的情况下,受光区域113,在y方向上不能够设置于开口区域112的外部。也就是说,在将开口区域112的y方向的宽度设为2rAy的情况下,需要满足dBy<rAy。
另外,如上所述,在y方向上开口区域112的中心和远场图形111的中心111C也不必一致,也可以以比受光区域113的y方向上的偏移量小的值,使开口区域112的中心从远场图形111的中心111C偏移。即,在将光透镜的开口区域的中心和远场图形的光强度分布的中心的、y方向的距离设为dAy时,满足dBy>dAy即可。
再有,在本实施方式中,虽然以检测器5检测出入射到聚光透镜7的光的一部分的方式来构成光学系统,但检测器也可以设于入射到聚光透镜7的光的光路之外。例如,也可以如图1B所示的那样,在准直透镜3上的入射到聚光透镜7的光2的光路的外侧,设置检测器5’。此时,如图15A所示,在与从光源所发射的光的光轴垂直的远场图形中,检测器5’的受光区域113位于反射镜4的区域151的外侧。图15B表示远场图形的y方向上的光强度的分布。如图15A和图15B所示,若设聚光透镜的开口区域112的y方向的宽度为2rAy,则此时的受光区域113的中心113C和远场图形111的中心111C的中心的距离dBy’,满足dBy’>rAy。若采用这种构造的光学系统,能够在监视光输出功率且不损失光量的情况下,将来自光源的光导向聚光透镜7。
如以上所详细说明的,按照本发明,在从光源出射的光的远场图形中,在光的发射角较狭窄的方向上,检测器的受光区域中心相对于远场图形中心偏移。因此,即使在光源的光发射角因光输出功率变化的情况下,也能够将透过聚光元件入射到记录介质上的光量Po、与入射到检测器中的光量Pm的比Pm/Po的因光输出功率而发生的变化抑制。为了得到这种效果,只要令设置检测器的位置位于给定的范围内即可,无需对以往的装置附加新的构成要素。因此,通过简单的结构,即使在光输出功率于较宽的范围内变化的情况下,也能够高精度地控制光源的输出。由此,实现能够以高记录密度高速地记录再生信息的信息处理装置。
(第二实施方式)
图16A和图16B,是分别表示本发明中的光盘装置的第二实施方式中的光学系统的结构的俯视图和侧视图。图16A所示的俯视图,是从记录介质侧观察光学系统。
虽然本实施方式的信息处理装置与第一实施方式相同,也是光盘装置,但是具备发射不同波长的光的两个半导体激光器1和半导体激光器13。半导体激光器1和半导体激光器13通常不被同时驱动,而是根据记录介质的种类,选择性地驱动其中的一方。在信息处理装置是光盘装置的情况下,半导体激光器1和半导体激光器13,可以是出射诸如CD、DVD、BD用的波长780nm、650nm和400nm的光的半导体激光器的任何两种。
由作为第一光源的半导体激光器1出射的光2,透过分束器15,被准直透镜3变为平行光,平行光的一部分透过反射镜4入射到光输出功率监视用检测器5中。检测器5的输出,被输入到激光器控制电路6,并根据检测器5的输出,控制半导体激光器1的输出。另一方面,由反射镜4所反射的光透过聚光透镜7,向记录介质8汇聚。记录介质8的信息记录面上的反射后的光,逆着原来的光路,被检测用衍射元件9衍射,透过准直透镜3入射到位于半导体激光器1的近旁的信号检测用检测器10和11。由入射到检测器10和检测器11中的光所产生的信号,如第一实施方式所说明的那样,被输入到控制系统514和数据处理系统512中。
另一方面,由作为第二光源的半导体激光器13出射的光14,由分束器15所反射,并透过准直透镜3,平行光的一部分透过反射镜4入射到光输出功率监视用检测器5中。检测器5的输出,被输入到激光器控制电路6,并基于检测器5的输出控制半导体激光器13的输出。而反射镜4所反射的光透过聚光透镜7,向记录介质8汇聚。由记录介质8反射的光逆着原来的光路,并被检测用衍射元件9衍射,透过准直透镜3入射到位于半导体激光器13的近旁的信号检测用检测器17和检测器18中。由入射到检测器17和检测器18中的光所产生的信号,被输入到控制系统514和数据处理系统512中。如图16A和图16B所示,由半导体激光器1所出射的光2和由半导体激光器13所出射的光14的光轴相互一致。
图17A,示出了与由半导体激光器1所出射的光2和由半导体激光器13所出射的光14的光轴相垂直的平面上的、各个远场图形111、117。另外,图17B示出了x方向的光强度分布。本实施方式中,由于光2和光14的光轴的一致,因此聚光透镜7中的开口区域112对于光2和光14是通用的。另外,由半导体激光器1所出射的光2和由半导体激光器13所出射的光14,在x方向上发射角分别为最狭窄。如第一实施方式所说明的那样,检测器5的受光区域113比开口区域112小。开口区域112的中心112C和远场图形111的中心111C以及远场图形117的中心117C大致一致。另外,检测器5的受光区域113的中心113C,相对于远场图形111的中心111C和远场图形117的中心117C,在水平(x)方向上偏移。
若设开口区域112的x方向的宽度为2rAx、受光区域113的x方向的宽度为2rBx、受光区域113的中心和远场图形111的中心111C的x方向上的距离为dBx,则与第一实施方式相同,rAx、rBx满足rAx>rBx的关系。另外,dBx、rA满足,0.25<dBx/rA<0.55的关系。
若将半导体激光器1和半导体激光器13的光输出功率分别设为Po1和Po2,并将从这些激光器入射到检测器5的光量分别设为Pm1和Pm2,则如第一实施方式所说明的那样,即使发射角因光输出功率变动而变动,Pm1/Po1以及Pm2/Po2的变动也被抑制。
另外,能够使检测器5的受光区域向y方向任意地偏移。因此,能够通过如上所述那样使受光区域在x方向上偏移来抑制Pm1/Po1以及Pm2/Po2的变动,并且,通过使受光区域在y方向上偏移来调节向检测器入射的光的量。再有,能够如上所述,将受光区域配置于反射镜区域的外侧。
另外,在本实施方式中,虽然检测器检测透过反射镜4的光,但也可以将检测器设于其他位置。例如,也可以如图18所示,分束器15使从半导体激光器1出射的光的大部分(例如95%)透过而导向准直透镜3,将剩余部分(例如大约5%)通过分束器15反射而导向检测器5。此时,也可以将光学系统设计为:从半导体激光器13出射的光的大部分由分束器15反射而导向准直透镜3,其余部分通过透过分束器15而导向检测器5。
(第三实施方式)
图19A和图19B,是表示本发明的光盘装置的第三实施方式中的光学系统的结构的俯视图。这些俯视图,是从记录介质侧观察光学系统。另外,图19C是表示本发明的光盘装置的第三实施方式中的光学系统的结构的侧视图。
本实施方式的信息处理装置与第二实施方式相同,也是具备发射不同波长的光的两个半导体激光器1和半导体激光器13的光盘装置。可是,与第二实施方式相比,半导体激光器1和半导体激光器13的配置不同,在本实施方式中,半导体激光器1和半导体激光器13被以邻接的方式配置。
如图19A和图19C所示,由作为第一光源的半导体激光器1出射的光2,被准直透镜3变为平行光,平行光的一部分透过反射镜4入射到光输出功率监视用检测器5中。检测器5的输出如图19C所示,被输入到激光器控制电路6中,控制半导体激光器1的输出。另一方面,由反射镜4所反射的光透过聚光透镜7,向记录介质8汇聚。记录介质8的信息记录面上反射后的光,逆着原来的光路,并被检测用衍射元件9衍射,透过准直透镜3入射到位于半导体激光器1的近旁的信号检测用检测器10和检测器11中。检测器10和检测器11的输出,被输入到控制系统514和数据处理系统512中。
如图19B和图19C所示,由作为第二光源的半导体激光器13出射的光14,被准直透镜3变为平行光,平行光的一部分透过反射镜4入射到光输出功率监视用检测器5中。检测器5的输出如图19C所示,被输入到激光器控制电路6中,控制半导体激光器13的输出。另一方面,由反射镜4所反射的光透过聚光透镜7,向记录介质8汇聚。记录介质8的信息记录面上反射的光,逆着原来的光路,被检测用衍射元件9衍射,透过准直透镜3入射到位于半导体激光器13的近旁的信号检测用检测器10和检测器11中。检测器10和检测器11的输出,被输入到控制系统514和数据处理系统512中。
半导体激光器1和半导体激光器13,在同一封装内在x方向上隔开距离Δ并排配置。另外,半导体激光器1的发光点的位置,被配置于光学系统的大概光轴上。此时,半导体激光器13的发光点位置,相对于光学系统的光轴,在x方向上偏移。因此,入射到聚光透镜7的光的远场图形的x方向中心,由半导体激光器1出射的光与光学系统的光轴大致一致,与此相对,由半导体激光器13出射的光相对于光学系统的光轴在x方向上产生偏移。
图20A和图20B,表示与由半导体激光器1出射的光2和由半导体激光器13出射的光14的各自的光轴相垂直的平面上的远场图形。另外,图20C和图20D,表示由半导体激光器1出射的光2和由半导体激光器13出射的光14的x方向上的光强度分布。
如上所述,由半导体激光器1出射的光2的光轴,与光学系统的光轴大致一致。因此远场图形111的中心111C和聚光透镜7的开口区域112的中心112C,在x方向上一致。与此相对,由半导体激光器13所出射的光14的光轴,被相对于光学系统的光轴偏移。因此,由半导体激光器13所出射的光14的远场图形201的中心201C,相对于聚光透镜7的开口区域202的中心202C,在x方向上被偏移。
将半导体激光器1和半导体激光器13的距离Δ设为0.11mm,将半导体激光器1和半导体激光器13的低输出时的x方向(水平方向)的发射角θx(Lo)设为8deg,将高输出时的发射角θx(Hi)设为10deg。设y方向(垂直方向)的发射角θy与输出无关,固定为17deg。设准直透镜3的焦距fc为20mm,聚光透镜7的开口为圆形,将半导体激光器1所涉及的开口区域112的半径rA1设为2mm,将半导体激光器13所涉及的开口区域202的半径rA2设为1.5mm。另外,将检测器5的受光区域也设成圆形,将半导体激光器1所涉及的受光区域113的半径rB1x以及半导体激光器13所涉及的受光区域203的半径rB2x设为0.35mm。
在将来自半导体激光器1的光透过聚光透镜照射在记录介质上的光量设为Po1,入射到光输出功率监视用检测器的光量设为Pm1;将来自半导体激光器13的光透过聚光透镜照射在记录介质上的光量设为Po2,入射到光输出功率监视用检测器的光量设为Pm2时,为了抑制由Δθx(θx的由光输出功率引起的变化)所引起的Pm1/Po1变动,将半导体激光器1的远场图形的中心111C与受光区域113的中心113C的x方向上的距离dB1x,设为0.87。
此时,如图19A和图19B所示,将半导体激光器13的发光点在x方向上配置成,相对于光学系统的光轴位于受光区域203的中心203C的对侧。这样,通过半导体激光器13的发光点相对于光学系统的光轴的偏移,半导体激光器13的远场图形的x方向上的中心201C,位于聚光透镜7的开口区域202的中心202C、和受光区域203的中心203C之间。也就是说,若设半导体激光器13的远场图形的中心201C和受光区域203的中心203C的x方向上的距离为dB2x,则dB1x和dB2x满足dB1x>dB2x的关系。
此时,Po和Pm对Δθx的相关性由图21A的曲线211-a和212-a所示。如从图中所明了的那样,Po和Pm对Δθx的相关性的差较小。因此,如图21所示,即使Δθx从0deg向2deg变化,Pm/Po的变化也约为1%。可以说是良好的Pm/Po特性。
另一方面,在将检测器5的受光区域113,在x方向上配置成相对于光学系统的光轴位于与半导体激光器13的发光点同侧(即dB1x=-0.87mm)的情况下,能够与dB1x=0.87mm时同样,对Pm1/Po1对应Δθx的变动进行抑制。但是,如图21C的曲线211-b和212-b所示的那样,Po2和Pm2对Δθx的相关性的差变大。其结果,如图21D所示,与dB1x为0.87mm的情况相比,Pm2/Po2的变动变大,若Δθx从0deg向2deg变化,则ΔPm2/Po2变化约6%。
也就是说,要想抑制半导体激光器1的由Δθx的变动所引起的Pm1/Po1变动,检测器5的受光区域113的中心113C,无论是以x方向的正方向还是负方向偏移均能得到相同的效果。但是,要想抑制与半导体激光器1在x方向上并排配置的半导体激光器13的由Δθx变动所引起的Pm2/Po2变动,检测器5的受光区域113的中心113C的x方向上的偏移,在rA1>rA2时通过配置为dB1x>dB2x的关系,能够良好地同时抑制Pm1/Po1的变动和Pm2/Po2的变动。同样,在rA1<rA2的情况下,通过配置为dB1x<dB2x的关系,能够良好地同时抑制Pm1/Po1的变动和Pm2/Po2的变动。由于使用波长不同的光源会导致检测器5的受光区域的大小不同,因此这些条件,优选以各种光源对应的受光区域的大小标准化。具体来说,(rA1/rB1)>(rA2/rB2)时,优选满足(dB1x/rB1)>(dB2x/rB2)。另外,(rA1/rB1)<(rA2/rB2)时,优选满足(dB1x/rB1)<(dB2x/rB2)。
即使光源的发射角变化也能够将Pm/Po的变化抑制在±6%以下的条件,与第一实施方式相同,rA1x、rB1x、dA1x和dB1x,只要满足dA1x<0.25rA1x和0.25rA1x<dB1x<0.55rA1x的关系即可。
另外,如第一实施方式所说明的那样,能够使检测器5的受光区域向y方向任意偏移。因此,通过将来自半导体激光器的出射光的远场图形中的、光输出功率监视用检测器的受光区域的中心,相对于远场图形的中心和聚光透镜的开口区域的中心在y方向上偏移,能够实现Pm1/Po1和Pm2/Po2的变动的抑制、以及向光输出功率监视用检测器的入射光量的匹配的兼顾。
再有,通过使光输出功率监视用检测器在y方向上偏移,使得光输出功率监视用检测器的受光区域位于聚光透镜的开口区域的外侧,并将光输出功率监视用检测器的受光区域配置于反射镜的外侧,则能够在不因监视光输出功率而损失光量的情况下,将光导向聚光透镜。
本发明适用于光学地进行信息的记录再生的信息处理装置,特别适用于具备发射角随光输出功率变化的一个或两个以上的光源的光盘装置等的信息处理装置。

Claims (11)

1、一种信息处理装置,将从光源出射的光照射在记录介质上,并对所述记录介质进行信息的记录和再生的至少一方,其中,
具备:光源,其发射光;
聚光元件,其将来自所述光源的光向记录介质汇聚;以及,
检测器,其接受来自所述光源的光的一部分,
在从所述光源发射的光的远场图形中,将入射到所述聚光元件中的区域和入射到所述检测器中的区域分别设为开口区域A和受光区域B,并将所述光的发射角的较窄方向设为x方向、较宽方向设为y方向时,所述受光区域B的x方向的中心,相对于所述远场图形的x方向的中心偏移。
2、根据权利要求1所述的信息处理装置,其中,
在将所述开口区域A的x方向的宽度设为2rAx、将所述受光区域B的x方向的宽度设为2rBx,将所述开口区域A的x方向上的中心、和所述远场图形的x方向的光强度分布的中心的距离设dAx,将所述受光区域B的x方向上的中心、和所述远场图形的x方向的光强度分布的中心的距离设为dBx时,所述rAx、rBx、dAx和dBx满足以下关系,
rAx>rBx,且dAx<dBx。
3、根据权利要求2所述的信息处理装置,其中,
所述rAx、rBx、dAx和dBx满足以下关系,
dAx<0.25rAx,且0.25rAx<dBx<0.55rAx。
4、根据权利要求2所述的信息处理装置,其中,
在将所述开口区域A的y方向上的中心、和所述远场图形的y方向的光强度分布的中心的距离设为dAy,将所述受光区域B的y方向上的中心、和所述远场图形的y方向的光强度分布的中心的距离设为dBy时,dAy和dBy满足dBy>dAy的关系。
5、根据权利要求4所述的信息处理装置,其中,
在将所述开口区域A的y方向的宽度设为2rAy时,dBy和rAy满足dBy>rAy的关系。
6、根据权利要求1所述的信息处理装置,其中,
具备多个所述光源,并且从所述多个光源到所述聚光元件的各个光轴,至少部分一致。
7、一种信息处理装置,将从多个光源出射的光照射在记录介质上,并对所述记录介质进行信息的记录和再生的至少一方,其中,
具备:第一光源和第二光源;
聚光元件,其将来自所述第一光源和第二光源的光向记录介质汇聚;以及,
检测器,其接受来自所述第一光源和第二光源的光的一部分,
在从所述第一光源发射的光的第一远场图形中,将入射到所述聚光元件中的区域和入射到所述检测器中的区域分别设为开口区域A1和受光区域B1,并将所述光的发射角的较窄方向设为x方向、较宽方向设为y方向时,所述受光区域B1的x方向的中心,相对于所述第一远场图形的x方向的中心偏移,
在从所述第二光源发射的光的第二远场图形中,将入射到所述聚光元件中的区域和入射到所述检测器中的区域分别设为开口区域A2和受光区域B2,并将所述光的发射角的较窄方向设为x方向、较宽方向设为y方向时,所述受光区域B2的x方向的中心,相对于所述第二远场图形的x方向的中心偏移。
8、根据权利要求7所述的信息处理装置,其中,
在将所述开口区域A1的x方向的宽度设为2rA1x、将所述受光区域B1的x方向的宽度设为2rB1x,将所述开口区域A1的x方向上的中心、和所述第一远场图形的x方向的光强度分布的中心的距离设为dA1x,将所述受光区域B1的x方向上的中心、和所述第一远场图形的x方向的光强度分布的中心的距离设为dB1x,
并且,将所述开口区域A2的x方向的宽度设为2rA2x、将所述受光区域B2的x方向的宽度设为2rB2x,将所述开口区域A2的x方向上的中心、和所述第二远场图形的x方向的光强度分布的中心的距离设为dA2x,将所述受光区域B2的x方向上的中心、和所述第二远场图形的x方向的光强度分布的中心的距离设为dB2x时,所述rA1x、rB1x、dA1x、dB1x、rA2x、rB2x、dA2x及dB2x,满足以下关系,
rA1x>rB1x,
rA2x>rB2x,
(rA1x/rB1x)>(rA2x/rB2x),且
(dB1x/rB1x)>(dB2x/rB2x)。
9、根据权利要求8所述的信息处理装置,其中,
所述rA1x、rB1x、dA1x和dB1x,满足
dA1x<0.25rA1x,且
0.25rA1x<dB1x<0.55rA1x。
10、根据权利要求8所述的信息处理装置,其中,
在将所述开口区域A1的y方向上的中心、和所述第一远场图形的y方向的光强度分布的中心的距离设为dA1y,将所述受光区域B1的y方向上的中心、和所述第一远场图形的y方向的光强度分布的中心的距离设为dB1y时,所述dA1y和dB1y满足dB1y>dA1y的关系。
11、根据权利要求10所述的信息处理装置,其中,
在将所述开口区域A1的y方向的宽度设为2rA1y时,所述dB1y和rA1y,满足dB1y>rA1y的关系。
CNB2005101254720A 2004-11-17 2005-11-17 信息处理装置 Expired - Fee Related CN100524478C (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2004332991 2004-11-17
JP2004332991 2004-11-17

Publications (2)

Publication Number Publication Date
CN1801342A true CN1801342A (zh) 2006-07-12
CN100524478C CN100524478C (zh) 2009-08-05

Family

ID=36386131

Family Applications (1)

Application Number Title Priority Date Filing Date
CNB2005101254720A Expired - Fee Related CN100524478C (zh) 2004-11-17 2005-11-17 信息处理装置

Country Status (2)

Country Link
US (1) US7522484B2 (zh)
CN (1) CN100524478C (zh)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPWO2006112153A1 (ja) * 2005-03-30 2008-12-04 パイオニア株式会社 光ピックアップ装置及び情報記録再生装置
JP2010205351A (ja) * 2009-03-04 2010-09-16 Tdk Corp 光検出器、光検出器の製造方法及び光検出システム
JP2012022154A (ja) * 2010-07-14 2012-02-02 Mitsubishi Electric Corp 波長多重受信モジュール

Family Cites Families (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5499262A (en) * 1992-03-18 1996-03-12 Rohm Co., Ltd. Semiconductor laser light source unit
US5640380A (en) * 1994-08-04 1997-06-17 Matsushita Electric Industrial Co., Ltd. Optical head with a translucent plate to split a light beam
JP2907759B2 (ja) 1994-08-04 1999-06-21 松下電器産業株式会社 光ヘッド装置
JP3743732B2 (ja) * 1997-01-28 2006-02-08 パイオニア株式会社 光ピックアップ装置
CN1139918C (zh) * 1997-02-24 2004-02-25 三洋电机株式会社 光读出装置及使用该装置的光学记录媒体驱动装置
US6014361A (en) * 1997-04-11 2000-01-11 Matushita Electric Industrial Co., Ltd. Beam expander to change an elliptical light beam emitted from a laser source to a circular light beam
JPH11273119A (ja) * 1998-03-24 1999-10-08 Pioneer Electron Corp 光学式ピックアップ装置
CN1275230A (zh) * 1998-06-15 2000-11-29 皇家菲利浦电子有限公司 用于扫描光记录载体的装置
KR100416350B1 (ko) * 1998-11-09 2004-01-31 마쯔시다덴기산교 가부시키가이샤 광정보처리장치 및 광학소자
US6618417B2 (en) * 1998-11-30 2003-09-09 The Furukawa Electric Co., Ltd. Ridge waveguide semiconductor laser diode
US6674709B1 (en) * 1999-04-23 2004-01-06 Matsushita Electric Industrial Co., Ltd. Optical head apparatus
JP4285955B2 (ja) * 2001-09-07 2009-06-24 三洋電機株式会社 ホログラム光学素子、位置ずれ検出装置および光学記録媒体駆動装置
WO2003085790A1 (fr) * 2002-04-04 2003-10-16 Sharp Kabushiki Kaisha Dispositif laser a semi-conducteur

Also Published As

Publication number Publication date
US7522484B2 (en) 2009-04-21
US20060104185A1 (en) 2006-05-18
CN100524478C (zh) 2009-08-05

Similar Documents

Publication Publication Date Title
CN1199162C (zh) 光拾波装置
CN1059284C (zh) 光头的跟踪误差检测装置
CN1174389C (zh) 光学传感器及光盘播放机
CN1725322A (zh) 光学头、用于装配透镜的设备和方法
CN1192375C (zh) 聚束元件、光头、光信息存储再生装置及光信息存储再生方法
CN1508783A (zh) 光学元件、透镜、光头、光学信息装置及采用其的系统
CN1196122C (zh) 光拾取装置
CN1629950A (zh) 光拾取头、光再生装置以及光记录再生装置
CN100350290C (zh) 光拾取装置及光信息存储再生装置
CN1168073C (zh) 光记录媒体的制造方法和制造装置
CN1801342A (zh) 信息处理装置
CN1311447C (zh) 光盘装置
CN1220072C (zh) 透镜、组合透镜及其制造方法、光学拾波装置及光盘装置
CN1258251C (zh) 半导体激光装置和光学读写装置
CN1204116A (zh) 光盘和光盘装置
CN1910670A (zh) 对物光学元件以及光拾取装置
CN1277258C (zh) 光学拾取装置
CN1221953C (zh) 像差检测方法和使用其的光记录再现方法与光记录再现装置
CN1501113A (zh) 用于光拾取装置的光学系统
CN1420377A (zh) 物镜及拾光装置
CN1959822A (zh) 光拾取装置
CN1201305C (zh) 记录和再现设备以及光学头
CN1246844C (zh) 光学拾波装置
CN1992014A (zh) 光学拾取装置和光盘装置
CN1658302A (zh) 光盘驱动设备

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C14 Grant of patent or utility model
GR01 Patent grant
CF01 Termination of patent right due to non-payment of annual fee

Granted publication date: 20090805

Termination date: 20141117

EXPY Termination of patent right or utility model