CN1797714A - 氧化硅制备方法 - Google Patents

氧化硅制备方法 Download PDF

Info

Publication number
CN1797714A
CN1797714A CNA2004100918999A CN200410091899A CN1797714A CN 1797714 A CN1797714 A CN 1797714A CN A2004100918999 A CNA2004100918999 A CN A2004100918999A CN 200410091899 A CN200410091899 A CN 200410091899A CN 1797714 A CN1797714 A CN 1797714A
Authority
CN
China
Prior art keywords
silicon substrate
electrolyte
silicon oxide
anodic oxidation
preparing
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CNA2004100918999A
Other languages
English (en)
Inventor
廖伟见
李欣和
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hongfujin Precision Industry Shenzhen Co Ltd
Hon Hai Precision Industry Co Ltd
Original Assignee
Hongfujin Precision Industry Shenzhen Co Ltd
Hon Hai Precision Industry Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hongfujin Precision Industry Shenzhen Co Ltd, Hon Hai Precision Industry Co Ltd filed Critical Hongfujin Precision Industry Shenzhen Co Ltd
Priority to CNA2004100918999A priority Critical patent/CN1797714A/zh
Priority to US11/302,755 priority patent/US20060141751A1/en
Publication of CN1797714A publication Critical patent/CN1797714A/zh
Pending legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having at least one potential-jump barrier or surface barrier, e.g. PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having at least one potential-jump barrier or surface barrier, e.g. PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic System or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/30Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26
    • H01L21/31Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26 to form insulating layers thereon, e.g. for masking or by using photolithographic techniques; After treatment of these layers; Selection of materials for these layers
    • H01L21/314Inorganic layers
    • H01L21/316Inorganic layers composed of oxides or glassy oxides or oxide based glass
    • H01L21/3165Inorganic layers composed of oxides or glassy oxides or oxide based glass formed by oxidation
    • H01L21/31654Inorganic layers composed of oxides or glassy oxides or oxide based glass formed by oxidation of semiconductor materials, e.g. the body itself
    • H01L21/3167Inorganic layers composed of oxides or glassy oxides or oxide based glass formed by oxidation of semiconductor materials, e.g. the body itself of anodic oxidation
    • H01L21/31675Inorganic layers composed of oxides or glassy oxides or oxide based glass formed by oxidation of semiconductor materials, e.g. the body itself of anodic oxidation of silicon
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25DPROCESSES FOR THE ELECTROLYTIC OR ELECTROPHORETIC PRODUCTION OF COATINGS; ELECTROFORMING; APPARATUS THEREFOR
    • C25D11/00Electrolytic coating by surface reaction, i.e. forming conversion layers
    • C25D11/02Anodisation
    • C25D11/32Anodisation of semiconducting materials
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02107Forming insulating materials on a substrate
    • H01L21/02225Forming insulating materials on a substrate characterised by the process for the formation of the insulating layer
    • H01L21/02227Forming insulating materials on a substrate characterised by the process for the formation of the insulating layer formation by a process other than a deposition process
    • H01L21/0223Forming insulating materials on a substrate characterised by the process for the formation of the insulating layer formation by a process other than a deposition process formation by oxidation, e.g. oxidation of the substrate
    • H01L21/02233Forming insulating materials on a substrate characterised by the process for the formation of the insulating layer formation by a process other than a deposition process formation by oxidation, e.g. oxidation of the substrate of the semiconductor substrate or a semiconductor layer
    • H01L21/02236Forming insulating materials on a substrate characterised by the process for the formation of the insulating layer formation by a process other than a deposition process formation by oxidation, e.g. oxidation of the substrate of the semiconductor substrate or a semiconductor layer group IV semiconductor
    • H01L21/02238Forming insulating materials on a substrate characterised by the process for the formation of the insulating layer formation by a process other than a deposition process formation by oxidation, e.g. oxidation of the substrate of the semiconductor substrate or a semiconductor layer group IV semiconductor silicon in uncombined form, i.e. pure silicon
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02107Forming insulating materials on a substrate
    • H01L21/02225Forming insulating materials on a substrate characterised by the process for the formation of the insulating layer
    • H01L21/02227Forming insulating materials on a substrate characterised by the process for the formation of the insulating layer formation by a process other than a deposition process
    • H01L21/02258Forming insulating materials on a substrate characterised by the process for the formation of the insulating layer formation by a process other than a deposition process formation by anodic treatment, e.g. anodic oxidation

Abstract

一种氧化硅制备方法,其包括以下步骤:提供一具有清洁抛光面的硅衬底;提供一注有电解液的阳极氧化槽;提供一铂片置于阳极氧化槽内电解液中作为阴极电极;将上述硅衬底置于阳极氧化槽内电解液中作为阳极电极,硅衬底的抛光面与阴极电极相对;以直流电源连接两电极,并以紫外线照射阳极氧化槽内的电解液反应预定时间;将硅衬底取出进行清洗、干燥、冷却后制得成品。

Description

氧化硅制备方法
【技术领域】
本发明涉及一种氧化硅制备方法,尤其涉及一种于硅衬底上制作二氧化硅层的阳极氧化制备方法。
【背景技术】
在微电子学领域,随着超大规模集成电路的发展,高质量的超薄栅极氧化层成为改善晶体管性能的关键。半导体制造工艺中超薄栅极氧化层主要是二氧化硅层,其直接形成于硅衬底。早期,超薄栅极氧化层的形成方法主要包括:热氧化法(Thermal Oxidation)、化学气相沉积法(Chemical VaporDeposition,CVD)、等离子增强化学气相沉积法(Plasma Enhanced ChemicalVapor Deposition,PECVD)以及液相沉积法(Liquid Phase Deposition,LPD)。其中,热氧化法需要在极高的温度环境下进行,对环境要求颇高。CVD,PECVD与LPD虽然能够克服以上缺点,却很难形成均一厚度的氧化硅层,且形成过程缓慢耗时。
阳极氧化法的发现使制作更高质量的栅极氧化层成为可能。1956年A.Uhlir与D.R.Turner首次借助于在氢氟酸(HF)溶液中对硅衬底进行阳极氧化制备得到多孔二氧化硅层,其制作方法是将一对电极置于HF溶液的工艺槽中,硅衬底被设置于两电极之间,并在电极之间通以电流,二氧化硅层即形成于硅衬底上。然而,此种阳极氧化形成二氧化硅的技术虽然较传统的热氧化以及化学气相沉积法技术有着均匀性更佳的优点,但该阳极氧化方法制程时间较长,同时,阳极的金属元素会溶解于HF溶液中并在二氧化硅的形成过程中沾污硅衬底,该二氧化硅层的纯度与密度都受到影响。
美国专利第5,736,454号揭示一种通过阳极氧化形成二氧化硅层以制作晶体管薄栅极氧化层的工艺方法,其将硅衬底作为阳极电极与金属铂质阴极电极同时置于电解液中,通入直流电源一段时间后经过阳极氧化反应形成二氧化硅层于硅衬底。由于其电解液是采用纯水,同时直接采用硅衬底作为阳极电极,该方法能够有效地克服以金属作为阳极溶解于HF电解液对形成二氧化硅层的影响。然而,由于纯水中离子能量不够,此种阳极氧化法的制程时间仍然较长,且由于离子活性低,其所形成的二氧化硅层与硅衬底之间的界面接触却会变差,容易脱落。
因此,提供一种制程时间短且能在硅衬底均匀形成稳定的二氧化硅层的氧化硅制备方法成为必要。
【发明内容】
为解决现有技术的技术问题,本发明的目的是提供一种制程时间短且能在硅衬底均匀形成稳定的二氧化硅层的氧化硅制备方法。
为实现本发明的目的,本发明提供一种氧化硅制备方法,其包括以下步骤:
提供一具有清洁抛光面的硅衬底;
提供一注有电解液的阳极氧化槽;
提供一铂片置于阳极氧化槽内电解液中作为阴极电极;
将上述硅衬底置于阳极氧化槽内电解液中作为阳极电极,硅衬底的抛光面与阴极电极相对;
以直流电源连接两电极,并以紫外线照射阳极氧化槽内的电解液反应预定时间;
将硅衬底取出进行清洗、干燥、冷却后制得成品。
其中,本发明的氧化硅制备方法所选用的电解液为去离子水,直流电源的电流密度为1~100μAcm-2,反应时间为5~30分钟,所形成的二氧化硅层的厚度为100~1000埃。
与现有技术相比较,本发明的氧化硅制备方法由于在进行阳极氧化时加以紫外线照射去离子水,使得去离子水电解后产生的离子能够获得额外的能量,并在与硅衬底的硅原子反应时能产生更完整的键结结构,减少二氧化硅层与硅衬底间界面的缺陷,进而能够减少漏电流,改善阳极氧化的质量。此外,由于紫外线的照射使得水中离子获得较高能量,亦会使得整个阳极氧化反应的速率增加,从而能够减少阳极氧化所需时间。
【附图说明】
图1是本发明氧化硅制备方法的流程示意图。
图2是本发明氧化硅制备方法所使用的设备的示意图。
【具体实施方式】
下面将结合附图及具体实施例对本发明进行详细说明。
请参阅图1,本发明提供一种氧化硅制备方法,其包括以下步骤:
步骤100是提供一具有一清洁抛光面的硅衬底,其可将硅衬底的一面抛光后用去离子水进行洗涤;
步骤200是提供一阳极氧化槽,阳极氧化槽内注入有电解液,该电解液为去离子水;
步骤300是提供一铂金属片电极置于阳极氧化槽内电解液中作为阴极电极,该铂金属片电极电性连接直流电源的负极;
步骤400是将上述硅衬底置于阳极氧化槽内电解液中作为阳极电极,其中,该硅衬底的抛光面与阴极电极相对,该硅衬底电性连接直流电源的正极;
步骤500是接通直流电源,同时以紫外线照射阳极氧化槽内的电解液以增加水中离子能量反应预定时间,其中,该直流电源输出的电流密度为1~100μAcm-2
步骤600是将形成有二氧化硅层的硅衬底从阳极氧化槽中取出进行清洗、干燥、冷却后制得成品。
其中,整个阳极氧化反应的时间为5~30分钟,二氧化硅层的厚度为100~1000埃。
请参阅第二图,本发明于硅衬底制作二氧化硅层的阳极氧化方法是采用现有的阳极氧化设备10,其包括:一阳极氧化槽11,其中注入有电解液12,本发明的电解液是采用去离子水;一硅衬底14与铂片13分别作为阳极电极与阴极电极置于电解液12中,其中硅衬底14相对于铂片13的一面事先经过抛光清洗;一直流电源15,其正极电性连接硅衬底14,负极连接铂片13,该直流电源可以提供稳定的直流电,其电流密度为1~100μAcm-2。在二氧化硅层的形成过程中,以紫外线16均匀照射阳极氧化槽11中的电解液12,当直流电源15接通时,去离子水由于电解作用分解成氢离子(H+)与具有强氧化作用的氢氧根离子(OH-)。由于硅衬底14连接直流电源15的正极,氢氧根离子(OH-)受到硅衬底14上的正电压吸引而飘移过去,进而与硅衬底上的硅原子进行氧化反应,生成二氧化硅。
本发明的氧化硅制备方法由于在进行阳极氧化时加以紫外线照射去离子水,使得去离子水电解后产生的离子能够获得额外的能量,并在与硅衬底的硅原子反应时能产生更完整的键结结构,减少二氧化硅层与硅衬底间界面的缺陷,进而能够减少漏电流,改善阳极氧化的质量。此外,由于紫外线的照射使得水中离子获得较高能量,亦会使得整个阳极氧化反应的速率增加,从而能够减少阳极氧化所需时间。

Claims (5)

1.一种氧化硅制备方法,其包括以下步骤:
提供一具有清洁抛光面的硅衬底;
提供一注有电解液的阳极氧化槽;
提供一铂片置于阳极氧化槽内电解液中作为阴极电极;
将上述硅衬底置于阳极氧化槽内电解液中作为阳极电极,硅衬底的抛光面与阴极电极相对;
以直流电源连接两电极,并以紫外线照射阳极氧化槽内的电解液反应预定时间;
将硅衬底取出进行清洗、干燥、冷却后制得成品。
2.如权利要求1所述的氧化硅制备方法,其特征在于该电解液为去离子水。
3.如权利要求1所述的氧化硅制备方法,其特征在于该预定时间为5~30分钟。
4.如权利要求1所述的氧化硅制备方法,其特征在于该直流电源输出的电流密度为1~100μAcm-2
5.如权利要求1所述的氧化硅制备方法,其特征在于该二氧化硅层的厚度为100~1000埃。
CNA2004100918999A 2004-12-25 2004-12-25 氧化硅制备方法 Pending CN1797714A (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
CNA2004100918999A CN1797714A (zh) 2004-12-25 2004-12-25 氧化硅制备方法
US11/302,755 US20060141751A1 (en) 2004-12-25 2005-12-14 Method for making a silicon dioxide layer on a silicon substrate by anodic oxidation

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CNA2004100918999A CN1797714A (zh) 2004-12-25 2004-12-25 氧化硅制备方法

Publications (1)

Publication Number Publication Date
CN1797714A true CN1797714A (zh) 2006-07-05

Family

ID=36612272

Family Applications (1)

Application Number Title Priority Date Filing Date
CNA2004100918999A Pending CN1797714A (zh) 2004-12-25 2004-12-25 氧化硅制备方法

Country Status (2)

Country Link
US (1) US20060141751A1 (zh)
CN (1) CN1797714A (zh)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104251878A (zh) * 2014-09-09 2014-12-31 武汉品生科技有限公司 一种高通量、高灵敏度、表面激光解析质谱纳米靶板及其制作方法和应用
CN104701179A (zh) * 2013-12-10 2015-06-10 英飞凌科技股份有限公司 用于形成半导体器件的方法
CN104701180A (zh) * 2013-12-10 2015-06-10 英飞凌科技股份有限公司 用于形成半导体器件的方法

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7365399B2 (en) * 2006-01-17 2008-04-29 International Business Machines Corporation Structure and method to form semiconductor-on-pores (SOP) for high device performance and low manufacturing cost
TWI453864B (zh) * 2010-11-12 2014-09-21 Ind Tech Res Inst 半導體結構及其製作方法
US10941501B2 (en) * 2013-03-29 2021-03-09 Analytical Specialties, Inc. Method and composition for metal finishing

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5495121A (en) * 1991-09-30 1996-02-27 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device
US5331180A (en) * 1992-04-30 1994-07-19 Fujitsu Limited Porous semiconductor light emitting device
US5923511A (en) * 1995-05-26 1999-07-13 International Business Machines Corporation Directly contactable disk for vertical magnetic data storage
US5616233A (en) * 1996-05-01 1997-04-01 National Science Council Method for making a fluorinated silicon dioxide layer on silicon substrate by anodic oxidation at room temperature
US5736454A (en) * 1997-03-20 1998-04-07 National Science Council Method for making a silicon dioxide layer on a silicon substrate by pure water anodization followed by rapid thermal densification
DE10007480A1 (de) * 2000-02-18 2001-08-23 Provera Ges Fuer Projektierung Bipolare Elektrode mit Halbleiterbeschichtung und damit verbundenes Verfahren zur elektrolytischen Wasserspaltung
US6887310B2 (en) * 2002-07-17 2005-05-03 National Taiwan University High-k gate dielectrics prepared by liquid phase anodic oxidation

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104701179A (zh) * 2013-12-10 2015-06-10 英飞凌科技股份有限公司 用于形成半导体器件的方法
CN104701180A (zh) * 2013-12-10 2015-06-10 英飞凌科技股份有限公司 用于形成半导体器件的方法
CN104701179B (zh) * 2013-12-10 2019-06-04 英飞凌科技股份有限公司 用于形成半导体器件的方法
CN104251878A (zh) * 2014-09-09 2014-12-31 武汉品生科技有限公司 一种高通量、高灵敏度、表面激光解析质谱纳米靶板及其制作方法和应用

Also Published As

Publication number Publication date
US20060141751A1 (en) 2006-06-29

Similar Documents

Publication Publication Date Title
KR100326229B1 (ko) 전극구조,전해에칭공정및이를이용한장치,및광전발생장치를제조하기위한공정
JP5123394B2 (ja) 太陽電池の金属電極の電気化学的堆積方法
US5863412A (en) Etching method and process for producing a semiconductor element using said etching method
JP2009534813A (ja) 太陽電池用電極の製造方法およびその電気化学的析出装置
US4260427A (en) CdTe Schottky barrier photovoltaic cell
WO2015004274A1 (en) Electrochemical method for transferring graphene
US9982360B2 (en) Method for transfering a graphene layer
Evans et al. Electrodeposition of platinum metal on TiN thin films
CN1797714A (zh) 氧化硅制备方法
CN101396651B (zh) 一种纳米有序构造的光电转换复合薄膜及其制备方法
TW200936815A (en) Diamond electrode, treatment device, and method for producing diamond electrode
CN108007950B (zh) Ipmc驱动过程中金属电极动态修复的方法
US4289602A (en) Electrochemical oxidation of amorphous silicon
JP3413090B2 (ja) 陽極化成装置及び陽極化成処理方法
JP3097805B2 (ja) 太陽電池とその製造方法並びにめっき方法
KR101370637B1 (ko) Cis계 박막 코팅 장치
JP2966332B2 (ja) 光起電力素子の製造方法及び装置
JP2006512483A (ja) 薄層状の化合物i−iii−vi2の生産用電解浴の再生方法
WO2010034725A2 (en) Method for the production of a semiconductor component, in particular a solar cell, on the basis of a thin silicon layer
CN1558447B (zh) 薄膜晶体管的制造方法
CN112114460B (zh) 基于阵列基板的绝缘单元及其制备方法、阵列基板及其制备方法、显示机构
CN114715978B (zh) 一种mos电化学阴极电产水合电子去除全氟化合物的应用
CN111139515A (zh) 一种制作薄膜光电传感材料的工具及方法
JPH05152271A (ja) 半導体または半絶縁性ボデイのエツチング表面の処理方法、このような方法によつて得られる集積回路、及びこのような方法を実施するためのアノード酸化装置
CN115650219A (zh) 一种cvd石墨烯的转移方法

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C02 Deemed withdrawal of patent application after publication (patent law 2001)
WD01 Invention patent application deemed withdrawn after publication