CN1793407A - 纳米碳化硅颗粒增强铝基复合材料及制备方法 - Google Patents

纳米碳化硅颗粒增强铝基复合材料及制备方法 Download PDF

Info

Publication number
CN1793407A
CN1793407A CN 200510127307 CN200510127307A CN1793407A CN 1793407 A CN1793407 A CN 1793407A CN 200510127307 CN200510127307 CN 200510127307 CN 200510127307 A CN200510127307 A CN 200510127307A CN 1793407 A CN1793407 A CN 1793407A
Authority
CN
China
Prior art keywords
silicon carbide
nano silicon
raw material
carbide granulate
composite material
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN 200510127307
Other languages
English (en)
Other versions
CN1333101C (zh
Inventor
耿林
曹国剑
曲寿江
郑镇洙
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Harbin Institute of Technology
Original Assignee
Harbin Institute of Technology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Harbin Institute of Technology filed Critical Harbin Institute of Technology
Priority to CNB2005101273079A priority Critical patent/CN1333101C/zh
Publication of CN1793407A publication Critical patent/CN1793407A/zh
Application granted granted Critical
Publication of CN1333101C publication Critical patent/CN1333101C/zh
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Carbon And Carbon Compounds (AREA)
  • Powder Metallurgy (AREA)
  • Manufacture Of Alloys Or Alloy Compounds (AREA)

Abstract

纳米碳化硅颗粒增强铝基复合材料及制备方法,它涉及一种碳化硅增强铝基复合材料及制备方法。它解决了传统制备颗粒增强铝基复合材料的方法中纳米级增强颗粒不能均匀分布于铝基体内,制备工艺繁杂,成本高的问题。纳米碳化硅颗粒增强铝基复合材料由纳米碳化硅颗粒和铝粉作为原料制成;其中纳米碳化硅颗粒的体积占原料体积的0.5~20%,铝粉的体积占原料体积的80~99.5%。其制备方法:1.将原料混合投入密封球磨罐后抽真空再充入氩气反复进行2~10次;2.高能球磨;3.热压烧结;4.热挤压,即得到纳米碳化硅颗粒增强铝基复合材料。本发明制备工艺简单,成本低,纳米碳化硅颗粒在铝基体内分布均匀,制粉率高,而且,复合材料的力学性能有显著提高。

Description

纳米碳化硅颗粒增强铝基复合材料及制备方法
技术领域
本发明涉及一种碳化硅增强铝基复合材料及制备方法。
背景技术
传统制备颗粒增强铝基复合材料的方法不能使纳米级增强颗粒均匀分布于铝基体内,而且制备工艺繁杂,成本高,不易推广应用。
发明内容
本发明的目的是为了解决传统制备颗粒增强铝基复合材料的方法中纳米级增强颗粒不能均匀分布于铝基体内,制备工艺繁杂,成本高的问题,而提供的一种纳米碳化硅颗粒增强铝基复合材料及制备方法。纳米碳化硅颗粒增强铝基复合材料由纳米碳化硅颗粒和铝粉作为原料制成;其中纳米碳化硅颗粒的体积占原料体积的0.5~20%,铝粉的体积占原料体积的80~99.5%。其制备方法按以下步骤进行:(一)将占原料体积0.5~20%的纳米碳化硅颗粒和占原料体积80~99.5%的铝粉混合投入密封球磨罐后抽真空再充入氩气这一操作反复进行2~10次;(二)高能球磨:陶瓷磨球与原料的质量比为4∶1,球磨机转速为300±100r/min,每隔30±5min停机一次,待原料冷却至室温后继续球磨,球磨共24±1h;(三)热压烧结:将球磨过的原料装入模具中冷压,使原料的致密度达到70%,再放入空气炉中以5~20℃/min的速度升温到580±20℃,压力为200±10MPa,并保温、保压10±2min,然后降压、冷却至常压、室温得到坯料;(四)热挤压:将坯料和挤压模具分别在420±20℃条件下保温30±5min,然后挤压,挤压比为25∶1,即得到纳米碳化硅颗粒增强铝基复合材料。
本发明制备工艺简单,成本低,纳米碳化硅颗粒在铝基体内分布均匀,制粉率高,而且,复合材料的力学性能有显著提高,纳米碳化硅颗粒增强铝基复合材料与铝进行比较抗拉强度提高了40~94%、硬度提高了45~103%。
具体实施方式
具体实施方式一:本实施方式纳米碳化硅颗粒增强铝基复合材料由纳米碳化硅颗粒和铝粉作为原料制成;其中纳米碳化硅颗粒的体积占原料体积的0.5~20%,铝粉的体积占原料体积的80~99.5%。
具体实施方式二:本实施方式与具体实施方式一的不同点是:纳米碳化硅颗粒增强铝基复合材料由占原料体积1~15%的纳米碳化硅颗粒和占原料体积85~99%的铝粉制成。
具体实施方式三:本实施方式与具体实施方式一的不同点是:纳米碳化硅颗粒增强铝基复合材料由占原料体积3%的纳米碳化硅颗粒和占原料体积97%的铝粉制成。
具体实施方式四:本实施方式与具体实施方式一的不同点是:纳米碳化硅颗粒增强铝基复合材料由占原料体积5%的纳米碳化硅颗粒和占原料体积95%的铝粉制成。
具体实施方式五:本实施方式与具体实施方式一的不同点是:纳米碳化硅颗粒增强铝基复合材料由占原料体积10%的纳米碳化硅颗粒和占原料体积90%的铝粉制成。
具体实施方式六:本实施方式与具体实施方式一的不同点是:纳米碳化硅颗粒增强铝基复合材料由占原料体积17%的纳米碳化硅颗粒和占原料体积83%的铝粉制成。
具体实施方式七:本实施方式与具体实施方式一、二、三、四、五或六的不同点是:纳米碳化硅颗粒的粒度为20±10nm,铝粉的粒度为10±2μm。
具体实施方式八:本实施方式与具体实施方式七的不同点是:纳米碳化硅颗粒的粒度为20nm,铝粉的粒度为10μm。
具体实施方式九:本实施方式按以下步骤制备纳米碳化硅颗粒增强铝基复合材料:(一)将占原料体积0.5~20%的纳米碳化硅颗粒和占原料体积80~99.5%的铝粉混合投入密封球磨罐后抽真空再充入氩气这一操作反复进行2~10次;(二)高能球磨:陶瓷磨球与原料的质量比为4∶1,球磨机转速为300±100r/min,每隔30±5min停机一次,待原料冷却至室温后继续球磨,球磨共24±1h;(三)热压烧结:将球磨过的原料装入模具中冷压,使原料的致密度达到70%,再放入空气炉中以5~20℃/min的速度升温到580±20℃,压力为200±10MPa,并保温、保压10±2min,然后降压、冷却至常压、室温得到坯料;(四)热挤压:将坯料和挤压模具分别在420±20℃条件下保温30±5min,然后挤压,挤压比为25∶1,即得到纳米碳化硅颗粒增强铝基复合材料。
具体实施方式十:本实施方式与具体实施方式九的不同点是:步骤(一)将占原料体积1~15%的纳米碳化硅颗粒和占原料体积85~99%的铝粉混合投入密封球磨罐中。
具体实施方式十一:本实施方式与具体实施方式九的不同点是:步骤(一)将占原料体积3%的纳米碳化硅颗粒和占原料体积97%的铝粉混合投入密封球磨罐中。
具体实施方式十二:本实施方式与具体实施方式九的不同点是:步骤(一)将占原料体积5%的纳米碳化硅颗粒和占原料体积95%的铝粉混合投入密封球磨罐中。
具体实施方式十三:本实施方式与具体实施方式九的不同点是:步骤(一)将占原料体积10%的纳米碳化硅颗粒和占原料体积90%的铝粉混合投入密封球磨罐中。
具体实施方式十四:本实施方式与具体实施方式九的不同点是:步骤(一)将占原料体积17%的纳米碳化硅颗粒和占原料体积83%的铝粉混合投入密封球磨罐中。
具体实施方式十五:本实施方式与具体实施方式九的不同点是:步骤(一)中抽真空后密封球磨罐内的压力低于10-2pa,充入氩气后密封球磨罐内的压力为1×105~1.5×105Pa。
具体实施方式十六:本实施方式与具体实施方式九的不同点是:步骤(一)纳米碳化硅颗粒和铝粉混合投入密封球磨罐后抽真空再充入氩气这一操作反复进行3~7次。
具体实施方式十七:本实施方式与具体实施方式九的不同点是:步骤(一)纳米碳化硅颗粒和铝粉混合投入密封球磨罐后抽真空再充入氩气这一操作反复进行3次。
具体实施方式十八:本实施方式与具体实施方式九的不同点是:纳米碳化硅颗粒的粒度为20±10nm,铝粉的粒度为10±2μm。
具体实施方式十九:本实施方式与具体实施方式九的不同点是:纳米碳化硅颗粒的粒度为20nm,铝粉的粒度为10μm。
具体实施方式二十:本实施方式与具体实施方式九的不同点是:步骤(二)中球磨机转速为300r/min,每隔30min停机一次,待原料冷却至室温后继续球磨,球磨共24h。
具体实施方式二十一:本实施方式与具体实施方式九的不同点是:步骤
(三)中空气炉以10~15℃/min的速度升温到580℃,压力为200MPa,并保温、保压10min。
具体实施方式二十二:本实施方式与具体实施方式九的不同点是:步骤
(三)中空气炉以20℃/min的速度升温到580℃,压力为200MPa,并保温、保压10min。
具体实施方式二十三:本实施方式与具体实施方式九的不同点是:步骤(四)中坯料和挤压模具分别在420℃条件下保温30min。
具体实施方式二十四:本实施方式对纳米碳化硅颗粒增强铝基复合材料与铝进行力学性能测试。6组纳米碳化硅颗粒增强铝基复合材料中纳米碳化硅颗粒分别占原料体积的1%、3%、5%、10%、15%、20%,其余体积为铝粉。
表1是室温下各组材料力学性能的测试结果,从表1中的数据可发现纳米碳化硅颗粒增强铝基复合材料的力学性能比铝有显著的提高。
表1
材料   抗拉强度(MPa) 硬度(Hv)
 铝   141   40
 加入1%(体积)纳米碳化硅颗粒的纳米碳化硅颗粒增强铝基复合材料 202 59
 加入3%(体积)纳米碳化硅颗粒的纳米碳化硅颗粒增强铝基复合材料 270 74.6
  加入5%(体积)纳米碳化硅颗粒的纳米碳化硅颗粒增强铝基复合材料 273 81
  加入10%(体积)纳米碳化硅颗粒的纳米碳化硅颗粒增强铝基复合材料 243 85
  加入15%(体积)纳米碳化硅颗粒的纳米碳化硅颗粒增强铝基复合材料 221 80
  加入20%(体积)纳米碳化硅颗粒的纳米碳化硅颗粒增强铝基复合材料 208 83

Claims (9)

1、纳米碳化硅颗粒增强铝基复合材料,其特征是它由纳米碳化硅颗粒和铝粉作为原料制成;其中纳米碳化硅颗粒的体积占原料体积的0.5~20%,铝粉的体积占原料体积的80~99.5%。
2、根据权利要求1所述的纳米碳化硅颗粒增强铝基复合材料,其特征在于纳米碳化硅颗粒增强铝基复合材料由占原料体积1~15%的纳米碳化硅颗粒和占原料体积85~99%的铝粉制成。
3、根据权利要求1所述的纳米碳化硅颗粒增强铝基复合材料,其特征在于纳米碳化硅颗粒增强铝基复合材料由占原料体积3%的纳米碳化硅颗粒和占原料体积97%的铝粉制成。
4、根据权利要求1、2或3所述的纳米碳化硅颗粒增强铝基复合材料,其特征在于纳米碳化硅颗粒的粒度为20±10nm,铝粉的粒度为10±2μm。
5、纳米碳化硅颗粒增强铝基复合材料的制备方法,其特征是它按下述步骤进行:(一)将占原料体积0.5~20%的纳米碳化硅颗粒和占原料体积80~99.5%的铝粉混合投入密封球磨罐后抽真空再充入氩气这一操作反复进行2~10次;(二)高能球磨:陶瓷磨球与原料的质量比为4∶1,球磨机转速为300±100r/min,每隔30±5min停机一次,待原料冷却至室温后继续球磨,球磨共24±1h;(三)热压烧结:将球磨过的原料装入模具中冷压,使原料的致密度达到70%,再放入空气炉中以5~20℃/min的速度升温到580±20℃,压力为200±10MPa,并保温、保压10±2min,然后降压、冷却至常压、室温得到坯料;(四)热挤压:将坯料和挤压模具分别在420±20℃条件下保温30±5min,然后挤压,挤压比为25∶1,即得到纳米碳化硅颗粒增强铝基复合材料。
6、根据权利要求5所述的纳米碳化硅颗粒增强铝基复合材料的制备方法,其特征在于步骤(一)将占原料体积1~15%的纳米碳化硅颗粒和占原料体积85~99%的铝粉混合投入密封球磨罐中。
7、根据权利要求5所述的纳米碳化硅颗粒增强铝基复合材料的制备方法,其特征在于步骤(一)将占原料体积3%的纳米碳化硅颗粒和占原料体积97%的铝粉混合投入密封球磨罐中。
8、根据权利要求5所述的纳米碳化硅颗粒增强铝基复合材料的制备方法,其特征在于步骤(一)中抽真空后密封球磨罐内的压力低于10-2Pa,充入氩气后密封球磨罐内的压力为1×105~1.5×105Pa。
9、根据权利要求5所述的纳米碳化硅颗粒增强铝基复合材料的制备方法,其特征在于纳米碳化硅颗粒粒度为20±10nm,铝粉粒度为10±2μm。
CNB2005101273079A 2005-12-06 2005-12-06 纳米碳化硅颗粒增强铝基复合材料的制备方法 Expired - Fee Related CN1333101C (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CNB2005101273079A CN1333101C (zh) 2005-12-06 2005-12-06 纳米碳化硅颗粒增强铝基复合材料的制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CNB2005101273079A CN1333101C (zh) 2005-12-06 2005-12-06 纳米碳化硅颗粒增强铝基复合材料的制备方法

Publications (2)

Publication Number Publication Date
CN1793407A true CN1793407A (zh) 2006-06-28
CN1333101C CN1333101C (zh) 2007-08-22

Family

ID=36805056

Family Applications (1)

Application Number Title Priority Date Filing Date
CNB2005101273079A Expired - Fee Related CN1333101C (zh) 2005-12-06 2005-12-06 纳米碳化硅颗粒增强铝基复合材料的制备方法

Country Status (1)

Country Link
CN (1) CN1333101C (zh)

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN100543165C (zh) * 2007-11-23 2009-09-23 中国铝业股份有限公司 真空搅拌复合颗粒增强铝基复合材料及其制备工艺
CN101876017B (zh) * 2009-12-15 2012-02-29 哈尔滨工业大学 纳米陶瓷颗粒增强泡沫铝基复合材料的制备方法
CN102534627A (zh) * 2010-12-13 2012-07-04 北京有色金属研究总院 一种SiC/Al复合材料表面的发黑处理方法
CN102601356A (zh) * 2012-04-10 2012-07-25 河南理工大学 一种铝包碳化硅复合颗粒及由其制备的复合材料
CN102618740A (zh) * 2011-12-27 2012-08-01 中国科学院苏州纳米技术与纳米仿生研究所 一种碳化硅增强型铝基复合材料及其制备方法
CN102747254A (zh) * 2012-07-27 2012-10-24 哈尔滨工业大学 一种外加纳米陶瓷颗粒增强晶内型铝基复合材料及其制备方法
CN106244893A (zh) * 2016-08-31 2016-12-21 河南科技大学 一种纳米碳化硅颗粒增强铝基复合材料及其制备方法
CN108149182A (zh) * 2017-12-20 2018-06-12 商丘工学院 粉芯铝丝材电弧喷涂制备碳化硅铝基复合材料的方法
CN108559929A (zh) * 2018-05-29 2018-09-21 合肥智慧龙图腾知识产权股份有限公司 一种汽车车身用铝基轻质材料及其制备方法
CN108580922A (zh) * 2018-04-13 2018-09-28 东北大学 一种制备高性能铝基碳化硅的方法
CN110257741A (zh) * 2019-07-01 2019-09-20 东北轻合金有限责任公司 一种SiC颗粒增强6092铝基复合材料型材的挤压方法
CN111172417A (zh) * 2020-01-20 2020-05-19 西安交通大学 一种内生氧化物强化合金的粉末冶金材料及其制备方法

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1200125C (zh) * 2003-07-29 2005-05-04 哈尔滨工业大学 可控体积份数SiCp/Al复合材料的压力铸造制备方法
CN1298877C (zh) * 2004-03-11 2007-02-07 山东理工大学 陶瓷颗粒增强铝基纳米复合材料的制造方法
CN1246113C (zh) * 2004-10-26 2006-03-22 哈尔滨工业大学 晶须与纳米颗粒混杂增强铝基复合材料的压力铸造方法

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN100543165C (zh) * 2007-11-23 2009-09-23 中国铝业股份有限公司 真空搅拌复合颗粒增强铝基复合材料及其制备工艺
CN101876017B (zh) * 2009-12-15 2012-02-29 哈尔滨工业大学 纳米陶瓷颗粒增强泡沫铝基复合材料的制备方法
CN102534627A (zh) * 2010-12-13 2012-07-04 北京有色金属研究总院 一种SiC/Al复合材料表面的发黑处理方法
CN102618740A (zh) * 2011-12-27 2012-08-01 中国科学院苏州纳米技术与纳米仿生研究所 一种碳化硅增强型铝基复合材料及其制备方法
CN102601356B (zh) * 2012-04-10 2013-05-29 河南理工大学 一种铝包碳化硅复合颗粒及由其制备的复合材料
CN102601356A (zh) * 2012-04-10 2012-07-25 河南理工大学 一种铝包碳化硅复合颗粒及由其制备的复合材料
CN102747254A (zh) * 2012-07-27 2012-10-24 哈尔滨工业大学 一种外加纳米陶瓷颗粒增强晶内型铝基复合材料及其制备方法
CN106244893A (zh) * 2016-08-31 2016-12-21 河南科技大学 一种纳米碳化硅颗粒增强铝基复合材料及其制备方法
CN108149182A (zh) * 2017-12-20 2018-06-12 商丘工学院 粉芯铝丝材电弧喷涂制备碳化硅铝基复合材料的方法
CN108580922A (zh) * 2018-04-13 2018-09-28 东北大学 一种制备高性能铝基碳化硅的方法
CN108559929A (zh) * 2018-05-29 2018-09-21 合肥智慧龙图腾知识产权股份有限公司 一种汽车车身用铝基轻质材料及其制备方法
CN110257741A (zh) * 2019-07-01 2019-09-20 东北轻合金有限责任公司 一种SiC颗粒增强6092铝基复合材料型材的挤压方法
CN111172417A (zh) * 2020-01-20 2020-05-19 西安交通大学 一种内生氧化物强化合金的粉末冶金材料及其制备方法

Also Published As

Publication number Publication date
CN1333101C (zh) 2007-08-22

Similar Documents

Publication Publication Date Title
CN1793407A (zh) 纳米碳化硅颗粒增强铝基复合材料及制备方法
CN101956149B (zh) 一种制备纳米碳管增强铝基复合材料的工艺
CN102618740A (zh) 一种碳化硅增强型铝基复合材料及其制备方法
CN110000388B (zh) 一种新型石墨烯纳米片增强金属基复合材料的制备方法
CN1472354A (zh) 颗粒增强铝基复合材料及其零部件和零部件的近净成形工艺
CN110273092A (zh) 一种CoCrNi颗粒增强镁基复合材料及其制备方法
CN1718792A (zh) 钛颗粒增强镁基复合材料的制备方法
CN111876622A (zh) 一种石墨烯增强铝合金抗拉导热复合材料的制备方法
CN1908214A (zh) 碳硅化钛基梯度材料及原位反应的制备方法
CN1912161A (zh) 一种细晶TiAl金属间化合物材料的制备方法
CN112143924A (zh) 一种用于腐蚀环境的多尺度高强高熵合金材料的制备方法
CN112592188A (zh) 一种石墨烯复合碳化硅陶瓷材料的制备方法
CN112267038A (zh) 一种bn纳米片/铝基复合材料的制备方法
CN109504869A (zh) 一种具有仿生多级结构的金属基纳米复合材料及其制备方法
CN107513651B (zh) 一种钛颗粒增强镁基复合材料的制备方法
CN1924073A (zh) 无定形碳纤维铝基复合材料及其制备方法
CN113699410B (zh) 基于二步法增材的仿蜂窝结构抗冲击钛基体复合材料
CN101062862A (zh) 复相陶瓷材料及其制造方法
CN112453386A (zh) 一种石墨烯铝基复合材料及其制备方法
CN114951664A (zh) 一种石墨烯与碳化硅混杂增强铝基复合材料的制备方法
CN115679141A (zh) 一种层状分布陶瓷增强铝复合材料的制备方法
CN1775988A (zh) 原位自生增强Ni3Al复合材料及其制备方法
CN110405207B (zh) 一种pe-cvd辅助sps烧结制备石墨烯增强钛基复合材料的方法
CN113957294A (zh) 一种CrCoNi中熵合金增强Al基复合材料及其制备方法
CN116005084B (zh) 一种W颗粒-TiB晶须杂化增强钛基复合材料及其制备方法

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C14 Grant of patent or utility model
GR01 Patent grant
C19 Lapse of patent right due to non-payment of the annual fee
CF01 Termination of patent right due to non-payment of annual fee