CN1788215A - 核磁共振测量系统 - Google Patents

核磁共振测量系统 Download PDF

Info

Publication number
CN1788215A
CN1788215A CNA2004800131021A CN200480013102A CN1788215A CN 1788215 A CN1788215 A CN 1788215A CN A2004800131021 A CNA2004800131021 A CN A2004800131021A CN 200480013102 A CN200480013102 A CN 200480013102A CN 1788215 A CN1788215 A CN 1788215A
Authority
CN
China
Prior art keywords
sample
interrogation
magnetic field
container
output signal
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CNA2004800131021A
Other languages
English (en)
Inventor
J·A·W·M·科维
P·斯图尔特
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Linde LLC
Original Assignee
BOC Group Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by BOC Group Inc filed Critical BOC Group Inc
Publication of CN1788215A publication Critical patent/CN1788215A/zh
Pending legal-status Critical Current

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N24/00Investigating or analyzing materials by the use of nuclear magnetic resonance, electron paramagnetic resonance or other spin effects
    • G01N24/08Investigating or analyzing materials by the use of nuclear magnetic resonance, electron paramagnetic resonance or other spin effects by using nuclear magnetic resonance
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N24/00Investigating or analyzing materials by the use of nuclear magnetic resonance, electron paramagnetic resonance or other spin effects
    • G01N24/08Investigating or analyzing materials by the use of nuclear magnetic resonance, electron paramagnetic resonance or other spin effects by using nuclear magnetic resonance
    • G01N24/085Analysis of materials for the purpose of controlling industrial production systems

Landscapes

  • Physics & Mathematics (AREA)
  • High Energy & Nuclear Physics (AREA)
  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • Investigating Or Analyzing Materials By The Use Of Magnetic Means (AREA)
  • Investigating Or Analysing Biological Materials (AREA)
  • Measuring Magnetic Variables (AREA)

Abstract

一种在灌注或生产线中用于确定多个试样(1)的至少一个性质的磁共振方法的改进,包括同时向询问区域引入多个试样(1);对询问区域(103)施加梯度磁场,其中询问区域(103)内不同位置对于不同特定频率敏感;监控在不同位置上试样发射的能量并且产生具有与发射的能量(对应不同频率波段)成正比的特征的输出信号;和使信号附属于特定位置和试样(1),并且将特定位置和试样(1)的输出信号特征与从至少一个相似试样获得的相似数据比较,以便提供试样的相应性质的指示。

Description

核磁共振测量系统
技术领域
本发明涉及使用NMR(核磁共振)技术无接触式地校验称重试样。
背景技术
具有磁矩的原子核在一强磁场中将具有清晰的核震荡的频率(拉莫尔频率)。各原子核的震荡频率将取决于其质量、其双极矩、原子的化学键、原子环境(它将受与附近其它原子电磁偶联的影响),以及原子所受的磁场强度。因此,震荡频率的特征不仅是各种原子种类的特征,而且是其分子环境的特征。通过共振地激励这些震荡,可以精确地确定原子的种类及其环境。该现象称之为“核磁共振”,或NMR。
如果一RF(射频)能的脉冲施加在一特定种类和环境的原子的共振频率处(例如,水环境中的氢原子),则该类型的原子核和环境将被共振地激励,其后将形成一返回到低的激励状态的跃迁。该跃迁伴随有位于激励频率或一已知低频处的射频信号的发射。该信号称之为自由诱导衰减(FID)。该FID曲线的幅值和形状与过程中所涉及核子量相关,并与环境相联系的原子的特定状态和特性相关。
在许多特定的领域中,测量、探测和成像中使用NMR技术正变得越来越需要。NMR的非入侵、非破坏的特性已促进了工业仪器中的应用、分析和控制等的任务。
周期表中几乎所有的元素都具有非零核自旋的同位素。该核自旋造成核子磁性激活。在磁性激活的核子中,NMR仅可在天然丰度足够高而可被探测的同位素上进行。通常可见的磁性激活核子是1H、13C、19F、23Na、31P。最为普通的是1H,它也具有最大的磁矩,对于实施NMR分光镜的操作赋予其最大的优点。
应用于一静磁场Bo的试样时,试样核自旋平行于磁场方向对齐于磁场。磁矩本身可对齐,或平行于静磁场(NSNS)或反平行于磁场(NNSS)。平行于静磁场的对齐是低能状态,而对抗于磁场的对齐是高能状态。在室温下,具有低能级自旋的核子数N+略微地超过高能级的核子数N-。玻耳兹曼统计提出以下式子
             N-/N+=exp(-E/kT),           (1)
其中,E是两个自旋状态之间的能差;k是玻耳兹曼常数,1.3805×10-23J/Kelvin;以及T是开氏温度。当温度减小时,比值N-/N+也减小。当温度增加时,该比值接近1。
由于具有高能级状态下自旋的核子略微不平衡,静磁场中的一试样将显现平行于静磁场的磁化。磁化源自围绕静磁场的核运动(松弛)。该运动的频率取决于静磁场强度,并定义如下:
             v=γB          (2)
其中,B是磁场强度,γ是试样材料中至少一个原子(通常是氢原子)的旋磁比。旋磁比与所分析的核子磁矩相关。质子的旋磁比是42.57MHz/Tesla。由此测得的频率称之为拉莫尔频率,v的概念定义为静磁场内核子的运动速率,或对应于可发生上和下状态之间跃迁的能量的频率。
通过诱发这些不同校正之间的跃迁可导出基本的NMR信号。通过将一试样暴露在一RF(射频)信号的磁分量中可诱发这样的跃迁,RF信号通常由RF线圈产生。当磁分量垂直于磁场施加时,一共振发生在一特定的RF频率处(与运动频率相同,即,拉莫尔频率),对应于不同校正之间的一跃迁过程中所发射或吸收的能量。当采用一诸如0.1-2Tesla(特斯拉)(1T=10,000Gauss)范围内的强磁场时,该共振通常发生在兆赫频率范围内,对应于FM无线电频率。因此,该发射称之为射频(RF)发射。
NMR分光镜内的信号由自旋吸收的能量和自旋发射的能量之间的能差产生,前者自旋使低能状态跃迁到高能状态,而后者自旋同时地从高能状态跃迁到低能状态。因此,信号正比于两个状态之间的全域的差值。由于NMR分光镜能探测这些非常小的全域的差值,所以,NMR分光镜获得其高水平的灵敏度。正是在自旋和分光镜之间特定频率处的共振或能量交换给予NMR其灵敏度。
脉动的NMR分光镜技术涉及到一磁暴或脉动,在这样试样的质子首先在基本静止磁场内入相之后,所述磁暴或脉冲设计来激励待测量试样的特定核种类的核子;换句话说,运动受脉动而修改。通常地,静磁场Bo的方向被认为沿三维空间中的Z轴线方向。在平衡中,纯磁化矢量沿施加磁场Bo的方向布置,并称之为平衡磁化Mo。在此结构中,磁化的Z分量MZ等于Mo。MZ称之为纵向磁化。在这样一情形中,没有横向磁化(MX或MY)。
通过将核自旋系统暴露到等于自旋状态之间能差的频率能量中,可改变纯磁化。如果足够的能量投入到系统内,则能够饱和自旋系统并使MZ=0。时间常数描述MZ如何返回到其平衡值,该时间常数称之为自旋晶格松弛时间(T1)。支配该特性的方程是其位移后时间的函数,其表达如下:
          MZ=Mo(1-e-t/T1)                     (3)
T1因此定义为改变磁化的Z分量的一因子e所需要的时间。因此,在t=T1处,MZ=0.63Mo。为了合适地执行重复的测量,它是为减小背景噪声和提高信号质量所必须的,应允许Mo返回到MZ。换句话说,在饱和时等于零的纵向磁化MZ应允许完全地返回到+Z方向,并达到其平衡值Mo。尽管这在理论上可以是永远的(即,饱和之后,当t=∞时,MZ=Mo),但通常在MZ=0.99Mo时就可认为已足够了,这发生在t=5T1时。这将时间约束放置在一试样可多次地测量的速度上,或放置在通过一询问区域的试样的全部产量上。
如果自旋系统过饱和,迫使纯磁化进入Z方向,则它将沿+Z轴线以也由T1支配的速率逐渐地返回到其平衡位置。支配该特性的方程是其位移后时间的函数,其表达如下:
             MZ=Mo(1-2e-t/T1)                     (4)
自旋晶格松弛时间(T1)是将纵向磁化(MZ)和其平衡值之间的差值减小一因子e所需要的时间。因此,也需要经过t=5T1的时间,以便使MZ返回到099Mo的值,在全部的试样上设置一同样的时间约束。
如果纯磁化转入XY平面内一90°脉冲,则它将围绕Z轴线以一等于一光子频率的频率转动,具有对应于在两个自旋能级之间跃迁的能量。该频率称之为拉莫尔频率。因为各个使其和解的自旋包正经历一略微不同的磁场并因此在其自己的拉莫尔频率处转动,所以,除了转动之外,现位于XY平面内的纯磁化开始移相。脉冲之后经过的时间越长则相位差越大。如果探测器线圈仅在X方向敏感于磁场的测量,则移相导致信号的衰减,最终接近于零。描述横向磁化MXY的这种衰减的时间常数被称之为自旋-自旋松弛时间T2
         MXY=MXY0e-t/T2                      (5)
T2始终小于或等于T1。XY平面内的纯磁化趋于零,而纵向磁化增长直到Mo返回到+Z方向为止。任何横向磁化特性都呈相同的方式。
自旋-自旋松弛时间T2是减小横向磁化一因子e的时间。自旋晶格松弛和自旋-自旋松弛之间的差别在于,前者工作是将MZ返回到Mo,而后者工作是将MXY返回到零。为清晰起见,以上分别地讨论了T1和T2。即,在沿Z轴线倒退增长之前,可认为磁化矢量完全地填充了XY平面。实际上,两个过程同时地发生,唯一的限制在于T2小于或等于T1
两个因素有利于横向磁化的衰减-(1)分子互相作用(据说导致一纯T2分子作用),以及(2)Bo(施加的静磁场)的变化,据说导致不均匀的T2作用。这两种因素的组合实际上导致横向磁化的衰减。组合的时间常数称之为“T2星”并给予符号T2 *。在磁场中分子过程的T2和非均匀性的T2之间的关系是
           1/T2 *=1/T2+1/T2inh。                   (6)
不均匀性的根源可以是磁场内自然的波动,或产生磁场的磁体的不完善性,或磁性污染,例如,铁或其它铁磁性金属。
在实践中,为了使用NMR实际地测量一试样,试样首先放置在一静磁场Bo内,它是仪器的问讯区域。接下来,施加一磁脉冲,其旋转磁化矢量达到一要求的范围,通常为90°或180°。例如,一90°脉冲将磁化矢量从Z方向转到XY平面内导致横向的磁化MXY(如上所讨论)。在施加脉冲之后,发生一与激励核子相关的磁场的自由诱发衰减(FID)。
传统的富里埃变换分析将一时域谱(磁化矢量对时间的幅值)变换到一频域谱(频率对相对幅值),它从多相谱中分离出各自频率。该分离技术可有利地用来研究有关的核子。脉冲时间,即,脉冲之间的时间,脉冲相位角和试样的成分是影响该技术灵敏度的诸参数。
国际专利申请No.WO9967606(本文已援引它以供参考并在下文中作完全的叙述)描述了一用于生产线上试样的校核称重系统,包括一在问讯区域上产生静磁场的磁体,以便在位于问讯区域内的一试样内产生一纯磁化,以及一用来在问讯区域上施加一变化磁场的RF线圈,以便根据NMR原理对试样造成激励。
使用NMR技术来校核称重生产线上试样遇到了各种困难,包括但不限于:存在各种干扰物类,例如,存在于试样容器内或系统任何地方的金属颗粒,磁体或电子器件上的温度效应,试样或系统内的湿度,以及容器的机械不稳定性。
人们希望对一NMR试样校核称重系统提供一种识别和/或补偿上述不精确测量的潜在根源的系统和方法。
发明概要
本方法涉及利用核磁共振(NMR)技术校验称重包含在容器中的材料,该材料通过产品灌注线或生产线。
许多药品以硬质泡沫塑料衬垫包装。光学技术用来确定包装中药丸的存在、形状或颜色。使用NMR技术有可能确定这样包装中的内容的重量和甚至质量。
该方法提供平滑地运输通过NMR询问区域的机械上不稳定的容器的措施和方法。
提供一种核磁共振方法的改进以便在灌注或生产线上确定多个试样中至少一个性质,包括:
在询问区域中在第一方向上施加第一磁场,以便在位于询问区域中的试样内建立纯磁化;
在询问区域中在第二方向施加交替的磁场,以便临时改变位于询问区域内试样的纯磁化;和
当试样从纯磁化返回到其原始状态时,监控试样发射的能量并且产生具有与发射能量成正比的特征的输出信号;
其中:
同时在询问区域引入多个试样;
对询问区域施加梯度磁场,其中在询问区域不同位置对不同的特定频率敏感;
监控在不同位置上的试样发射的能量,并且产生具有与不同频率段对应的发射的能量成正比的特征的输出信号;和
使信号从属于特定位置和试样,并且把特定位置和试样的输出信号特征与从至少一个相似试样获得的相似数据相比,以便提供试样的相应性质的指示。
还为在灌注或生产线中用于确定试样的至少一个性质的磁性共振方法提供一种改进,其中试样包含在机械上不稳定容器中,包括:
在询问区域中在第一方向上施加第一磁场,以便在位于询问区域中的试样内建立纯磁化;
在询问区域中在第二方向施加交替的磁场,以便临时改变在位于询问区域内的试样的纯磁化;和
当试样从纯磁化返回到其原始状态时,监控试样发射的能量,并且产生具有与发射能量成正比的特征的输出信号;
其中:
使容器产生机械稳定性,以便移动通过询问区域。
可以通过提供可以夹持容器的凹坑造成稳定性,可选地包括放置和移除装置;在滚动螺旋运输结构中引导容器前进;在阵列中携带容器,可选地包括盒式系统;在通过询问区域时采用传输带夹持容器;或把容器送过询问区域而无任何间隔距离。
附图简要说明
图1为具有NMR校验称重工位的生产线示意图,该生产线用于检查通过称重工位的各容器是否含有要求的产品量。
图1a用图解阐明按照一个可替代实施例的校验称重工位形式,其中在询问区域中施加磁场梯度。
图1b用图解阐明一个可替代的校验称重工位。
图1c阐明还有一个校验称重工位。
图1d阐明另一个校验称重工位。
图1e为具有NMR校验称重工位的生产线示意平面图。
图1f为形成图1中显示校验称重工位一部分和其控制的激励和处理电子器件的方框图。
图2为引导至封闭结构内部NMR探测器的照片,探测器具有接近询问区域的开口,用于测量容器内试样。
图3A为包含NMR探测器的隔室(或封闭结构)的底部平面及部分剖面图,其中传输带在探测器外面返回。
图3B为包含NMR探测器的隔室的侧视及部分剖面图,其中传输带延伸通过询问区域。
图3C为传输带平面图,其中进给轮和中间轮用于在传输带上放置和取下试样小瓶。
图4A为包含NMR探测器的隔室的底部平面及部分剖面图,其中传输带在探测器外面返回。
图4B为包含NMR探测器的隔室的侧视及部分剖面图,其中传输带延伸通过询问区域并且具有反向弯曲传输带的轮子以便消除传输带速度的波动。
图5A为在聚合物间隔件之间夹持小瓶的传输带侧视图,其中间隔件由聚合物销子固定,并接合带有皮带销子定时孔的驱动轮和返回轮。
图5B为显示小瓶夹持在皮带上的传输带和其下部导轨的横向剖面图。
图6为接合进给轮的传输带示意图,其中进给轮采用间隔件对于小瓶精确定位。
图7A为接合进给轮的传输带示意图。
图7B为在聚合物间隔件之间夹持试样的传输带侧视图,其中间隔件由聚合物销子固定,并接合带有皮带销子定时孔的驱动轮和返回轮。
图7C为显示安瓿夹持在皮带上的传输带和其下部导轨的横向剖面图。
图8A为接合进给轮的传输带示意图,其中进给轮采用间隔件使安瓿精确定位在相邻间隔件颈部之间,并具有侧面导轨防止安瓿从载体上跌落。
图8B为在聚合物间隔件之间夹持安瓿的传输带侧视图,其中间隔件由聚合物销子固定,并接合带有皮带销子定时孔的驱动轮和返回轮,和使安瓿精确定位在相邻间隔件颈部之间的间隔件,并具有侧面导轨防止安瓿从载体上跌落。
图9A为接合进给轮的传输带示意图,其中进给轮采用间隔件使注射器精确定位在相邻间隔件颈部之间,并具有侧面导轨防止注射器从载体上跌落。
图9B为在聚合物间隔件之间夹持注射器的传输带侧视图,其中间隔件由聚合物销子固定,并接合带有皮带销子定时孔的驱动轮和返回轮,和使注射器精确定位在相邻间隔件颈部之间的间隔件,并具有侧面导轨防止注射器从载体上跌落。
图10A为包含NMR探测器的隔室的底部平面及部分剖面图,其中传输带在探测器外面返回。
图10B为包含NMR探测器的隔室的侧视及部分剖面图,其中传输带延伸通过询问区域,并携带容器或多个注射器的包装(诸如小盒)。
图10C为对于皮带输入和输出多个注射器小盒的示意图。
图11为显示比较相对磁化对于时间(以T1的分数计算)的极化曲线图。
具体实施方式
本发明涉及利用核磁共振(NMR)技术校核称重沿一生产线通过的包含在一容器内的材料。作为一个实例,校验称重被制药工业用来在灌装过程中监视和控制密封玻璃小瓶内的药量。药的重量可以小到几分之一克,并要求以每秒几个称重的速率在有几十克重的小瓶中,以百分之几的精度或甚至更高的精度进行称重。传统上,为了获得所要求的精度,必须在灌装之前和之后从生产线上移去小瓶并在精密天平上对其称重,以考虑到容器的重量。因为这非常花费时间,所以,只可一部分产品进行测试。如果探测到偏离期望值,则在问题识别之前,大批的产品可能成为废品。由于小瓶在灌装之前和之后必须进行称重,所以,称重必须在灌装和密封之间的一无菌环境中执行。
一用来确定试样质量的NMR装置通常可包括沿通过试样的第一方向产生一静磁场的装置;沿通过试样的第二方向施加一变化的激励磁场的装置;响应于激励磁场检测由试样发射的能量并输出依赖于其的一信号的装置;以及比较由所述检测装置输出的信号与储存的标定信号装置,以便提供试样质量的一指示。这样一装置可在线地用于一产品灌装线。它独立于容器质量可对容器内含物的质量提供一无接触的测量,如果容器用一不响应于NMR的材料制成,且用来确定小量试样的质量,例如,容纳在20克或以上重量的玻璃容器内的称重在0.1克和10克之间的试样。则提供试样质量的指示而不是试样的重量。
通过用预定量的试样填装容器;将各个填装好的容器运输到一称重工位;称重各容器内的试样;密封容器内的试样;并弹出任何包含的预定试样量不在一预定允差内的容器,由此该装置可用来测量一容器内的内容物。试样的称重包括:在一问讯区域内产生沿第一方向的静磁场以在位于问讯区域内的一试样内形成纯磁化;在一问讯区域内沿不同的第二方向施加变化的磁场脉冲以暂时地变化位于问讯区域内的试样的纯磁化;当试样的纯磁化返回到其原始状态时检测由试样发射的能量并输出依赖于其的一信号;以及比较由所述检测步骤输出的信号与标定数据,该标定数据将已知质量的至少一个类似的质量与检测步骤的对应信号输出相关,以便提供各容器内的试样质量的指示。
除了制药工业之外,这样一装置和方法可用于各种应用中,包括但不限于:化妆品、香水、工业化学品、生物试样和血制品等。它可测量其中100%采样可减少浪费的高价值的产品。并可用来确定呈固体形式、粉末形式、液体形式和气体形式的,或任何它们组合形式的试样的质量。
图1示出一用药物试样填充玻璃小瓶1的生产线的一部分。包括在其中的是一“内置”设置的称重工位3,用来称重通过其间的各个填充的小瓶,以及一弹出部分5,其从生产线中移去不具有足够药量而不满足产品规格书的那些小瓶。通过一传输带7小瓶1从一灌装工位(和供选择的密封工位)(未示出)运输到称重工位3,如箭头9所示,通过转动的传输带轮11,传输带7沿z方向移动。称重工位利用NMR技术来确定各玻璃小瓶1内的药物试样的质量。如本技术领域内的技术人员所认识到的,玻璃小瓶可用作为容器,因为它们不产生可与测量过程干扰的信号。在此实施例中,称重工位3包括一永久磁体13、一RF线圈15和一计算机控制系统17。磁体13横贯传输带7产生一沿x方向的均匀的直流电(DC)或静磁场。玻璃小瓶内的试样包含各具有一磁分量的核子,例如,1H核子(质子)。以上讨论的该磁分量是核子自旋的结果。
在大部分NMR系统中,静磁场强度应是这样:试样的拉莫尔频率在电磁谱的射频范围内。在试样的拉莫尔频率处并正交于静磁场定向地对试样施加一交流(AC)磁场,这将造成试样的纯磁化而围绕AC磁场轴线远离静磁场的方向转动。在此实施例中,通过对RF线圈15施加对应的AC电流可产生该磁场。纯磁化的转动角可通过变化供应到RF线圈15的能量而变化。
在此示范的实施例中,使用一可造成90°转动的激励磁场来激励试样。在90°脉冲施加到试样之后,试样留在一高能、非平衡的状态中,它从该状态松弛而回到其平衡状态。当它松弛时,发射拉莫尔频率处的电磁能,它的磁分量在RF线圈15中诱发电流,电流的峰值尤其随试样中的磁矩数量和试样中的分子数量变化。然后,接收到的信号传输到计算机控制系统17,计算机系统比较从未知试样中收到的信号的峰值与从带有一已知质量(或重量)的标定试样中收到的信号的幅值,以确定被试验试样的质量(或重量)。校验称重工位3可产生和接收能激励试样中不同NMR响应元件所需的不同拉莫尔频率处的信号。如果计算机控制系统17可储存对于各个不同试样的标定数据,则校验称重工位将能使用来自不同NMR响应元件的NMR信号来确定各种试样的质量。
现将参照图2详细描述一实施例的操作,图2是该实施例的计算机控制系统17的主要部件的方框图。该控制系统包括一用来将控制系统连接到RF线圈15的连接终端21。该连接终端21通过开关23可连接到一信号发生器25和一功率放大器27,它们的操作可分别产生和放大施加到RF线圈15的激励信号。连接终端21还通过开关23可连接到一放大从试验中的试样接收到的信号的接收放大器31。然后,该放大的信号被滤波器33滤波而去除噪音分量,然后,传送到混合器35,在混合器中,通过将接收到的信号乘上由信号发生器25产生的一合适的混合信号,该接收到的信号向下转换为一中间频率(IF)。由混合器35输出的该IF信号然后被滤波器37滤波而去除由混合器35产生的不希望的分量。然后,通过A/D转换器39将滤波后的IF信号转换为对应的数字信号,并输送到微处理器41。
如虚线的控制线43和45所示,微处理器41控制信号发生器25和开关23的操作。操作微处理器41可确保:当填充的小瓶1位于校验称重工位3内的要求的部位处时,信号发生器25可产生激励信号。微处理器41从位置传感器电子器件47中接收到的信号中知道何时小瓶1位于正确的部位,所述位置传感器电子器件47通过连接终端49连接到安装在校验称重工位3内的一光学位置传感器50。参照图1,当玻璃小瓶1通过光学位置传感器50时,一光束52中断。这被位置传感器电子器件47探测到,它又将该信号传输到微处理器41。根据该信息和传输带47的速度(由传输带控制器51提供),微处理器对突然施加激励电流确定合适的时间并因此将信号传输到信号发生器25。
如磁共振技术领域内的技术人员将认识到的,在试样进入由磁体13产生的静磁场之后,试样沿X方向形成纯磁化需花费有限的时间。如果在磁化完全形成之前,激励信号施加到RF线圈15,则由试样产生的信号强度将不达到其最大值。
纯磁化和由此由试样产生的合成信号的强度在静磁场内随时间变化。纵向松弛时间取决于被试验的试样和静磁场的强度。因此,给定静磁场的强度和试验的试样的类型,可确定松弛的时间。该信息组合传输带7的速度,可确定确保试验的试样产生尽可能大的信号所需要的沿Z方向的磁体13的最小长度。
在一实施例中,一电容器(未示出)横贯RF线圈15的端部进行连接,以使它调整到试样的拉莫尔频率。通过静磁场的DC磁场强度乘以该元件的旋磁比(对于氢,它是42.57MHz/Tesla),可计算诸如氢那样的一MR响应元件的拉莫尔频率。其它MR响应元件的旋磁比可从CRC出版公司出版的《CRC化学和物理手册》中查找到。以此方法调整RF线圈15使得系统不敏感于电磁干扰,或从不同旋磁比的核子发射的其它MR信号。流过RF线圈15的激励电流产生沿Z方向的对应的磁场。该激励的磁场造成小瓶1内试样纯磁化,以在拉莫尔频率处围绕Z轴线转动或旋进。当激励电流从RF线圈15中移去时,试样中的核子开始松弛而回到其平衡位置,同时发射拉莫尔频率处的RF能量。这在RF线圈15诱发出以指数规律衰减的信号,并称之为横向松弛时间。这取决于被试验的试样而不是静磁场。
如图所示,在激励电流停止后不久,诱发信号的峰值就达到其最大值,此后,信号衰减到零。试样在RF线圈15内诱发的信号的幅值正比于试样中磁矩的数量。因此,在此实施例中,微处理器41监视激励信号已从RF线圈15中移去之后从A/D转换器39中接收到的峰值信号水平。或者,微处理器可确定在某一时间周期上的平均信号,或拟合曲线的形状以便提高精度。
在一实施例中,然后,微处理器41比较该峰值信号水平与通过试验一类似试样或已知质量的试样而获得的标定数据,以对目前正在试验的试样质量提供一个指示。在此实施例中,在生产批量开始并储存在存储器53内之前,在一标定的程序中,从多个不同已知质量的类似试样中可获得该标定数据。在此实施例中,标定数据是一函数,该函数使从试验中的试样接收到的MR信号的峰值与试样的质量相关。
如以上实施例所述,当试样的纯磁化返回到其原始的平衡状态,并产生具有正比于发射能量特征的输出信号(诸如当前的幅值)时,RF探头监视由试样发射的能量。计算机控制系统接收RF探头输出信号。一处理器比较当前幅值或其它输出信号特征与从已知质量的至少一个试样中获得的类似数据,并从比较结果中确定试样的质量。应该理解到,尽管为了说明的目的实施例描述为测量诱发信号的峰值,但也可采用任何化学计量特征的技术,它可从发射的能量和产生的输出信号中导出一单一的值。一般来说,比较技术可包括比较试样的FID特征与至少一个已知试样的类似FID特征,即,标定数据。
在一实施例中,如果微处理器41确定正在分析的当前试样的质量不是在一给定允差内的要求的质量,则它在控制线55上输出一控制信号到剔除控制器57。然后,该剔除控制器输出一信号到连接到剔除工位5的输出终端59,当小瓶到达剔除工位5时,令剔除工位从传输带7中去除正在试验的当前小瓶1。
如图2所示,计算机控制系统17还可包括一用户接口61,以允许用户将对于给定批量的产品各试样的正确质量应如何的程序输入控制系统17内。
在某些实施例中,对每一个小瓶确定试样质量的一单一的测量。通过重复测量而求取其平均值可提高测量的精度。然而,在同一试样上所作测量的速率由以上讨论的松弛时间所确定。具体来说,在激励信号移去之后,对于质子大约需花费3倍的松弛时间来返回到其静磁场中的初始对齐状态,此时,还可施加一突发的激励电流。
也可使用多个沿Z方向空间分离的不同RF线圈来获得单独的测量。或者,在小瓶每次到达问讯区域时传输带可停止,并作多个测量。
如果磁体和RF线圈的问讯区域足够大而考虑到传输带的速度允许采取多次测量,则同一试样的多次测量也是可能的。在这样一实施例中,系统的精确度将取决于为讯区域内的RF线圈和磁场的均匀性,以及取决于系统信号对噪音和RF线圈的填充因子。如果磁体和RF线圈的磁场图形预先知道,则可利用该知识在不同测量信号上作纠正。再者,也可提供附加的X、Y和Z线圈(在本技术领域内已知为薄垫片)来提高静磁场的均匀性。
在一实施例中,在任何一时间时一单一的小瓶位于RF线圈15问讯区域内。图1a示意地示出另一实施例,其中,一校验称重工位3的诸部件允许多个小瓶同时地位于RF线圈15内的问讯区域,其允许个别地测量各个小瓶内的试样的质量。为了做到这一点,在这样的实施例中,除了静磁体13和RF线圈15,分离的一对线圈71和73位于传输带7的两侧,它们的操作可横贯传输带7提供一磁场梯度。由于这样的梯度,各个玻璃小瓶所经历的静磁场将是不同的,因此,在问讯区域内的各个三个小瓶中的试样的拉莫尔频率将是不同的。因此,通过在合适的拉莫尔频率处施加三个不同的窄带RF脉冲,可分别地问讯各个小瓶。
或者,可在问讯区域上施加一宽带RF脉冲,如在MR成像的标准做法中那样,在激励脉冲结束之后,对接收到的信号进行富里埃变换即可分解取自试样的合成的MR信号。
参照图1a,梯度的线圈布置成施加一沿与磁体13产生的静磁场相同方向的梯度。如在磁共振成像技术领域内众所周知的,梯度线圈可布置成沿X、Y或Z轴线中的一个或多个轴线提供磁场梯度,这样,问讯区域的全部体积可在空间上分解。图1b示出一实施例,其中,两个梯度线圈71和73设置在RF线圈的问讯区域的相对端。在此实施例中,RF线圈15包括三个分离的部分15a、15b和15c。如本技术领域内的技术人员将会认识的,通过沿传输带7的长度通过问讯区域施加一磁场梯度,可以与参照图1a所描述的实施例中相同的方式,单独地或同时地问讯各个试样。
在参照图1a和1b所描述的实施例中,多个试样位于问讯区域内,或者单独地或者同时地进行问讯。在这些实施例中,由于各个这些试样将经历一略微不同的磁场,并相对于RF线圈位于不同的位置,所以,对于各个检测位置可采取单独的标定数据,以便努力减小静磁场或RF线圈中的不均匀性造成的误差。
在上述的实施例中,RF线圈沿传输带7的运动方向产生一沿Z方向的磁场。RF线圈可相对于DC磁场位于任何角度,只要它所产生的磁场在试验的试样上相当均匀,并且假定它包括一正交于静磁场的分量。图1c示意地示出一实施例,其中,三个分离的RF线圈15d、15e和15f设置在传输带7的下方,各个RF线圈操作而产生一沿Y方向的AC磁场。该实施例允许三个小瓶中的试样同时地被试验。它还允许系统三次问讯各个小瓶中的试样,各个RF线圈问讯一次。
在上述实施例中,使用一永久磁体来产生静磁场。如本技术领域内的技术人员将会认识到的,电磁铁、承载电流的线圈,或超导磁体可用来替代永久磁体产生必要的DC磁场。此外,在上述实施例中,DC磁场沿X方向施加在传输带上。如本技术领域内的技术人员将会认识到的,DC磁场可沿任何方向通过试样进行施加。例如,磁体的北极和南极可放置在传输器的上方和下方,使RF线圈沿与第一实施例相同的定向。图1d示出还有另一实施例,其中,电磁线圈75沿着传输带7的长度盘绕,以便沿着传输带7的长度即沿Z方向产生静磁场。在此实施例中,RF线圈15设置在传输器7的一侧,而一单独的探测器线圈77设置在传输器7的另一相对侧。
           在小瓶中产品材料的连续、非接触式称重
图1e显示生产线的示意图,其中采用NMR校验称重工位对小瓶、或其它相似容器进行称重,其中多个产品材料的试样同时进入询问区域。一般地说,校验称重工位100包括输入部分101,其中包括传输带或其它运输机构,校验称重工位102,其中包含磁铁、射频天线(或NMR探测器),和部分地限定询问区域103,引导到弹出缓冲器105的弹出部分104,和输出部分106。校验称重工位100可包含操作面板107。
在图2-6中,详细地显示校验称重工位100的部件。例如,图2为传输带(作为输入部分101的一部分)的照片,传输带引导到校验称重工位102,其中校验称重部分102由封闭结构110(图3A-3C、4A和4B)限定。如在图3A和4A中可见,永久磁铁包含在校验称重壳体111内,NMR探测器由数字112表示,并且二者均设置在封闭结构110内。
磁铁的内孔尺寸容许设置用于要求测量的产品的运输装置。在磁铁内,NMR探测器112作为射频电磁发送/接收器工作,既激励材料又接收响应。NMR探测器112的构造使其对于运输机构具有最大的裕度可以输送产品通过系统。
为确定特定产品的重量,采用诸如响应信号幅值的特征。为确定涉及不止一个产品的特定响应,可能采用具有梯度的特殊磁场。这些磁场促使其位置对于特定频率比较敏感。当采用梯度磁场时,在不同位置上的产品将产生能够在不同频率段分离的NMR信号。每一频率段的信号内容然后可以附属到特定产品/位置上。通过利用响应曲线的形状,可以监控其内容的几个质量方面,如产品的降格和有效配料的的成分。例如,采用已知校准试样确定“样板”FID以便提供校准数据。在化学分析中采用的已知NMR技术以定量分析方式比较曲线形状用来提供比较。
为运输包含在小瓶中的产品材料通过封闭结构110,设置如图3B和4B中所示的传输带113通过封闭机构102,并且用来平滑地从输入部分101(在图1E中位于封闭结构102的上游)运输到弹出部分104(在图1E中位于封闭结构102的下游)。传输带113用来作为小瓶的载体,并且从一组包括凯夫拉、特氟纶、聚酯、聚氨酯、芳香尼龙、玻璃或其它热塑性塑料中选出的材料构成。为通过NMR探测器112输入小瓶,传输带113从输入部分101移动通过NMR探测器112。如在图3B和4B中可见,当传输带113沿第二水平平面114B返回时,它在NMR探测器112外面(和下面)移动。
输入部分10包括输入轮115,配置成为可接收从输入部分其余部分的各种小瓶。如在图3C和6可见,输入轮115包括各接收凹坑116,隔开分布在输入轮115的周围,并且理想地具有接纳个别小瓶的尺寸。
输入轮115的旋转(在图3C中可见为逆时针方向)使个别小瓶以隔开的关系转移到传输带。更具体地说,当输入轮115旋转时,接纳凹坑116之间的距离促进小瓶116以隔开距离的关系放置在传输带113上。
进一步促进小瓶沿传输带113隔开距离的措施为各成对的间隔件118。成对的间隔件118沿传输带113以间隔的距离设置,以便在其中间限定接收区域。成对的间隔件118利用销子122附着在传输带113上。成对的间隔件118和销子122可以用聚甲醛(POM)和/或聚氯乙烯(PVC)制成。
在附着成对的间隔件118以外,也设置销子122与在第一驱动轮124(设置在封闭结构102的下游)和在第二驱动轮125(设置在封闭结构102的下游)上的定时孔123接合。销子122与设置在第一驱动轮124和第二驱动轮125的定时孔的合作使传输带113移动。如在图4B可见,可以设置第一辅助轮126和第二辅助轮127以便反向弯曲传输带113,并减少传输带113的速度波动。传输带113的反向弯曲在小瓶沿传输带113上的隔开距离的关系方面提供附加的一致性。还有,如在图3B、4B、5A和5B中可见,设置下导轨128以保持传输带113和支承在其上面小瓶沿水平面114A的移动。下导轨128也用来保持传输带113的横向位置,如在图5B中可见。
如在图5A中可见,在成对间隔件118之间的间距,因此即接纳区域120的尺寸应该配合小瓶(其中一个在图3B、4B、5A和解B中显示为数字130)的直径。因此当小瓶130从输入轮115转移时,传输带113配置为可以在成对间隔件118之间和在接纳区域120中接受个别的小瓶130。当小瓶130位于接纳区域120中时,小瓶130正确地隔开距离以便沿传输带113移动通过询问区域103,并且更具体地说,通过NMR探测器112。
在询问区域103中小瓶经过分析以后,小瓶130从传输带113上被中间轮132移去。中间轮132可以是弹出部分104的一部分。如同输入轮115,中间轮132(图3C)包括各隔开布置在其周围的接纳凹坑116,并且具有理想的接纳小瓶尺寸。中间轮132的旋转(在图3可见为逆时针方向)使个别的小瓶130在传输带113上接纳在接纳凹坑116中,并此后移动到弹出部分104的其余部分。如在图1E中可见,弹出部分104配置成为可以分隔小瓶130。被询问过程弹出的小瓶130被引导到弹出缓冲部分105,而那些未被弹出的小瓶130被引导到输出部分106。
不过,NMR校验称重工位还有其它配置可以对试样质量(包含在不是小瓶130的其它容器中,诸如硬质泡沫塑料衬垫包装、安瓿和针筒)进行测量。
在安瓿、针筒和硬质泡沫塑料衬垫包装中产品材料的连续、非接触式称重
以上讨论对于包含在小瓶中产品材料(即,流体药品)应用NMR技术确定其重量或其它性质。如以上讨论确定,较佳地,小瓶通过设计用于NMR测量的特定的设置平滑地进行运输。不过,当前不可能以非破坏性方式确定包含在安瓿和针筒内的产品材料的其它性质。即使使用如以上描述的NMR校验称重工位设置,由于这些容器的机械不稳定性不可能确定安瓿和针筒的特性。这样一来,当前不存在确定安瓿和针筒内容的重量或其它性质的非破坏性方法。
NMR已经证明可以应用作为确定产品材料重量和其他性质的工艺技术。不过,在当前的生产环境中,安瓿和针筒二者均比普通的小瓶更难以处理。此外,在当前的生产环境中,它们通常也按阵列或矩阵运输。作为利用NMR进行非接触式、非破坏性测量材料(诸如液体和/或以上描述的玻璃小瓶中粉末)方法的改进,NMR校验称重工位可以适应于采用NMR在安瓿和针筒中测量产品材料的技术。在此讨论两个方面。第一方面集中在特定的解决方法,适合于处理同时移动多个安瓿或针筒通过询问区域103,而第二方面集中在测量包含在多个布置成为阵列或矩阵(即,多排容器)的容器中的产品材料。由于第二方面,可以对于多个包装容器(包括小瓶、安瓿和针筒)应用梯度磁场,例如检查现存的产品。
如以上讨论,安瓿和针筒在机械方面高度不稳定。因此特定配置的传输带可适合于夹持容器而运输通过系统。例如,如在图7A-7C中可见,很难用携带小瓶130的传输带携带安瓿(一般用数字140表示)。虽然接纳区域120可以配合安瓿140的尺寸,某些安瓿140的重心可能太高。因此,如果安瓿140放置在成对间隔件118之间的接纳区域120中,当传输带113移动(和包含在其上面的多个安瓿)通过封闭结构110和询问区域103时,安瓿140可能颠覆。
多个安瓿140(图8A和8B)和针筒(在图9A和9B中一般用数字142表示)可以利用特别配置的传输带143同时移动通过封闭结构110和询问区域103。传输带143用来作为安瓿140或针筒142的载体,可以包括“沙漏”型间隔件144,以克服其内在的机械不稳定性方式夹持安瓿140和针筒142。如以上所讨论,和如在图8B和9B中可见,设置下导轨128可保证支承安瓿140和/或针筒142的传输带143和间隔件144支承在水平面114A中。
如最好在图8B和9B中可见,间隔件144沿传输带113互相邻近隔开,并且利用销子145固定在传输带上。销子145可与第一驱动轮124和第二驱动轮125合作,其方式如以上所描述的驱使传输带移动。
间隔件144由空隙隔开,而空隙奠定凹坑(或接纳区域)146以便接纳安瓿140或针筒142。凹坑道146形成在连结板148之间和相邻间隔件144的颈部149之间,并且容许安瓿140和针筒142通过输入轮150(图8A和9A)以如以上讨论的间隔关系放置在相邻间隔件144之间。
作为对于输入轮150的替代方案,安瓿140和针筒142可以用真空抽吸杯(在顶部吸住安瓿和针筒)或者机械提升机构(二者均可在提放机械手中实施)放置在间隔件144之间。此外,可以设置长形滚动螺旋结构引导安瓿和针筒沿生产线前进而不采用传输带143。长形滚动螺旋结钩可引导安瓿140或针筒142通过封闭结构110和进入询问区域103。
在沿传输带143的运动中,安瓿140和针筒142是稳定的,因为颈部149之间的凹坑146相对较小,并且安瓿140和针筒142有效地夹定在其中。此外,如在图8B和9B中可见,侧面导轨152用来维持安瓿140和针筒142在被输入轮150放置以后,沿传输带定位在凹坑136中,而安瓿140和针筒142由间隔件144上表面154携带容许安瓿140和针筒142相当大的部分浮动在连结板148之间的凹坑146部分中。如此,利用传输带142和限定凹坑146的间隔件144,安瓿140和针筒142的内在不稳定性被克服(并产生机械稳定性)。因此,包含在个别行列中小瓶(如所讨论)、安瓿和针筒内的材料可以移动通过封闭结构110,并且这些材料的重量或其它性质可以在询问区域103中测量。
作为对于设置的传输带143和间隔件144替代物,小盒(可在图10A-10C看见)一般用数字160表示。小盒160配置成为以互相隔开的关系容纳多个安瓿140或针筒142的载体,并且与这些安瓿140或针筒142同时移动通过封闭结构110和进入询问区域103。如在图10C中可见,小盒160可以通过输入输送器164(作为输入工位10的一部分)和输出输送器165(作为弹出部分105的一部分)进入或离开传输带163。此外,传输带163不需要以上讨论的间隔件,但是配置为可以用以上讨论的方式运输小盒160通过封闭结构110和进入询问区域103。
可替代地,可以使用硬质泡沫塑料衬垫包装、吹塑-灌注-密封包装、和包袋,只要传输带相应地适合,或者个别容器(包括小瓶130、安瓿140或针筒142)可以输入通过系统而在相邻的容器之间没有任何隔开的距离。例如,多个硬质泡沫塑料衬垫包装可以互相附着(形成一个硬质泡沫塑料衬垫包装作为载体),并且这些硬质泡沫塑料衬垫包装可以沿传输带同时输入通过封闭结构110和进入询问区域103。由于产品材料之间的间隔距离按照硬质泡沫塑料衬垫包装的配置预先确定,以上描述的特别配置的传输带113或传输带143就不必要。第二替代方案(代替小瓶130的传输带113和安瓿140及针筒142的传输带142)类似装瓶生产线,其中多个容器同时输入通过封闭结构110和进入询问区域103,容器本身用来保持其互相处于正确位置。第二替代方案需要NMR系统特别的布置。NMR系统必须配置成为从相邻容器滤去交互联结的效应,并且可以通过如此设计发射器/接收器(NMR探测器),使其每次只能有一个试样受到激励和测量,或者通过按波段施加梯度磁场在单独的容器上。
当测量包含在针筒142内的材料重量或其它性质时,在把金属针配合在针筒上时将出现特殊问题。通常金属,不论是铁或非铁金属,肯定影响发生器建立的磁场和频率。因此,应该对发生器和相应电子器件作出特殊布置以便使其对于金属不敏感,并且对磁共振测量方法只有有限的影响。
如此,磁共振测量方法也可适应于存在其它诸如金属盖帽等容器部件。如果没有特殊布置,金属盖帽等存在,如以上所讨论,将在功能上影响NMR探测器。有两种方法可以适应这一问题,包括但不限于以下方法。首先,当产品对于NMR信号造成的影响忽略不计地较小(相对与噪音/信号比)或者对于各盖帽的影响是不变的,可能用带有盖帽的产品校准测量系统。其次,可能在探测器中如此设计导体图案,使发射区域在高度上受到限制而不能激励盖帽的材料。
此外,磁共振测量方法可以适合于容器封盖装置(诸如橡胶塞子)的存在。像其它固体部件一样,橡胶塞子的T2(自旋-自旋松弛)很短。仅仅探测器结束需要的等待时间和滤波器结束时间就足够固体信号消逝完毕。如果塞子包含某些“液体”成分,类似一些硅油成分,可能必须增加一些额外的等待时间。
以上列出的机构包括应用按单排移动的安瓿。不过,可能安瓿或针筒按阵列的多排或矩阵定位。通过应用特定的NMR技术(诸如应用梯度磁场),有可能选择性地测量包含在任何特定安瓿或针筒材料的重量或其它性质。当测量在库存中已经多重包装的容器时特别有价值。
按照一个实施例,一种确定布置在矩阵中产品内容的方法是采用梯度磁场。因为在NMR中共振频率线性地与磁场强度成正比,梯度磁场造成产品在不同位置响应不同频率的波段。当过滤去这些波段并从而选择出问题中的试样时,通过如以上描述的途径,确定自由诱发衰减(FID)的幅值,就可能确定其内容的重量或其它性质。
                    不完全磁化测量技术
在应用NMR技术,以非固定方式,确定容器(诸如小瓶)内容特征时,在试样处于测量位置以前,试样移动通过磁场并且因此被预先磁化(或预先极化)。在测量位置,试样可以用激励脉冲激励,例如90°脉冲。该脉冲促使质子的自旋在平面中进动,垂直于主磁场。松弛过程由个别质子的旋转运动移相所支配,并且该自由诱发衰减(FID)信号被测量。该信号的幅值与试样中质子量成正比,并且因此试样的校准容许该方法用来作为测量方法,诸如用于称重。
极化过程为具有典型时间常数的过程,T1(自旋-晶格常数)。当预先磁化完成时,一般可以进行NMR测量。当采取5倍于T1的时间作为磁化时间时,该阶段就已达到。对于许多药品而言,T1大约为1秒的量级。对于完全磁化的NMR测量,将必须5秒的预先磁化步骤。
在其方法应用于快速移动试样上的实施例中,测量施加于不完全磁化的试样并且该测量足够精确如果每一个相继试样的历史(对于暴露在磁场而言)完全相同,例如:T1影响因子已知(通过特定的校准)并且能够综合在测量计算中(例如,温度),而且每一个相继试样的速度并不变化,或者精确地已知和可以补偿。
图11的曲线显示磁化曲线和具有典型地用于磁化T1一半的结果,只产生39%的磁化。
虽然本发明已经详细地通过以上详细描述和前面的例子进行描述,这些例子仅用于说明的目的,并且应该理解本行业熟练人士可以作出变化和变型而不偏离本发明的精神和范围。应该理解,以上描述的实施例不仅仅可供替代,还可以综合。

Claims (16)

1.一种在灌注或生产线中用于确定多个试样至少一个性质的磁共振方法,包括:
在询问区域中在第一方向施加磁场,以便在位于询问区域的试样上建立纯磁化;
在询问区域中在第二方向施加交替磁场,以便临时改变在位于询问区域的试样的纯磁化;和
监控试样在其纯磁化返回到其原始状态时发射的能量,并且产生具有与发射的能量成正比的特征的输出信号;
其特征为:
在询问区域中同时引入多个试样;
对询问区域施加梯度磁场,其中在询问区域中不同位置对不同特定频率敏感;
监控在不同位置上的试样发射的能量,并且产生具有与不同频率波段对应的发射的能量成正比的特征的输出信号;和
使信号附属于特定位置和试样,并且将特定位置和试样的输出信号特征与从至少一个相似试样获得的相似数据比较,以便提供试样的相应性质的指示。
2.如权利要求1所述的方法,其特征在于,包括比较输出信号的幅值,和其中所指示的性质为试样的重量。
3.如权利要求1所述的方法,其特征在于,包括比较输出信号响应曲线的形状,和其中所指示的性质为试样的成分。
4.如权利要求1、2或3中任何一个所述的方法,其特征在于,多个试样包含在硬质泡沫塑料衬垫包装中。
5.如权利要求1、2或3中任何一个所述的方法,其特征在于,多个试样包含在布置在载体的各单独容器中。
6.如权利要求5所述的方法,其特征在于,载体为多个容器的包装。
7.如权利要求5所述的方法,其特征在于,载体为适合于夹持容器的传输带。
8.如权利要求1、2或3中任何一个所述的方法,其特征在于,多个试样包含在诸容器内,而容器具有能够影响磁场的成分,影响包括以下至少一个:
a.延迟所述监控一直到该成分的信号消逝;
b.在相似的数据中包括对应于该成分的信号;或
c.适应于询问区域,使其不激励该成分。
9.一种在灌注或生产线中用于确定试样的至少一个性质的磁共振方法,其中试样包含在机械上不稳定的容器中,包括:
在询问区域中在第一方向施加磁场,以便在位于询问区域的试样上建立纯磁化;
在询问区域中在第二方向施加交替磁场以便临时改变在位于询问区域内的试样的纯磁化;和
监控试样在其纯磁化返回到其原始状态时发射的能量,并且产生具有与发射的能量成正比的特征的输出信号;
其特征为:
使容器产生机械稳定性,以便移动通过询问区域。
10.如权利要求9所述的方法,其特征在于,容器从包括安瓿、针筒、硬质泡沫塑料衬垫包装、吹塑-灌注-密封包装和包袋的组群中选出。
11.如权利要求9或10所述的方法,其特征在于,所述产生稳定性从下列一组方法中选出:
a.提供夹持容器的凹坑,可选择地包括提供放置和移去装置;
b.引导容器进入滚动螺旋结构
c.运送成阵列的、可选地在小盒系统内的容器;
d.使传输带适合于夹持容器并且被运输通过询问区域;
e.输入容器通过询问区域而无任何间隔距离。
12.如权利要求11所述的方法,其特征在于,多个容器同时引入询问区域,包括以下方法之一:
a.每次激励和测量一个试样;或
b.对各单独容器按频率段施加梯度磁场。
13.如权利要求12所述的方法,其特征在于,包括:
在询问区域中同时引入多个试样;
对询问区域施加梯度磁场,其中在询问区域中的不同位置对于不同的特定频率敏感;
监控在不同位置上试样发射的能量,并且产生具有与不同频率波段对应的发射的能量成正比的特征的输出信号;和
使信号附属于特定位置和试样,并且将特定位置和试样的输出信号特征与从至少一个相似试样获得的相似数据比较,以便提供试样的相应性质的指示。
14.如权利要求9或10之一所述的方法,其特征在于,容器具有能够影响磁场的成分,影响包括以下至少一个:
a.延迟所述监控一直到各成分的信号消逝;
b.在相似的数据中包括对应于各成分的信号;或
c.适应于询问区域,使其不激励各成分。
15.如权利要求1或9所述的方法,其特征在于,试样发射的能量被监控,并且输出信号在试样在T1到达完全磁化以前产生。
16.如权利要求1或9所述的方法,其特征在于,输出信号特征为输出信号幅值。
CNA2004800131021A 2003-05-16 2004-04-30 核磁共振测量系统 Pending CN1788215A (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US47112503P 2003-05-16 2003-05-16
US60/471,125 2003-05-16

Publications (1)

Publication Number Publication Date
CN1788215A true CN1788215A (zh) 2006-06-14

Family

ID=33476797

Family Applications (1)

Application Number Title Priority Date Filing Date
CNA2004800131021A Pending CN1788215A (zh) 2003-05-16 2004-04-30 核磁共振测量系统

Country Status (6)

Country Link
US (1) US6946838B2 (zh)
EP (1) EP1625407A4 (zh)
JP (1) JP2007502431A (zh)
KR (1) KR20060038375A (zh)
CN (1) CN1788215A (zh)
WO (1) WO2004104601A2 (zh)

Families Citing this family (27)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1787885A (zh) * 2003-05-16 2006-06-14 波克股份有限公司 Nmr称重核查系统的清洁方法
US7061239B2 (en) * 2004-04-30 2006-06-13 The Boc Group, Inc. Method for magnetic field tracking in a NMR check weighing system
US7084627B2 (en) * 2004-04-30 2006-08-01 The Boc Group, Inc. Method for triggering NMR measurement in a NMR check weighing system
US7064548B2 (en) * 2004-04-30 2006-06-20 The Boc Group, Inc. RF probe apparatus for NMR check weighing system
US7002346B2 (en) * 2004-05-03 2006-02-21 The Boc Group, Inc. Method for accurate determination of sample temperature in a NMR check weighing system
JP2007536509A (ja) * 2004-05-04 2007-12-13 ザ・ビーオーシー・グループ・インコーポレーテッド Nmr重量測定検査システムにおける近接する試料の影響の補償方法。
DE102004022687B4 (de) * 2004-05-05 2012-01-05 Bruker Biospin Gmbh Time-Domain-Verfahren zum quantitativen Bestimmen des Gehalts zumindest einer Komponente einer Probe mittels eines niedrigauflösenden Kernresonanz-Pulsspektrometers
DE102004029633B4 (de) * 2004-06-18 2012-01-05 Bruker Biospin Gmbh NMR-Apparatur
DE102005006725B4 (de) * 2005-02-03 2010-06-02 Bruker Biospin Gmbh Vorrichtung und Probenkopf zum Bestimmen einer quantitativen Eigenschaft einer Probensubstanz mittels magnetischer Resonanz
GB0508547D0 (en) * 2005-04-28 2005-06-01 Boc Group Plc Conveyor system
US7363161B2 (en) * 2005-06-03 2008-04-22 Baker Hughes Incorporated Pore-scale geometric models for interpretation of downhole formation evaluation data
US7298142B2 (en) * 2005-06-27 2007-11-20 Baker Hughes Incorporated Method and apparatus for reservoir fluid characterization in nuclear magnetic resonance logging
JP4913386B2 (ja) * 2005-10-25 2012-04-11 株式会社明治 食品品質の自動検査装置および検査方法
WO2007071511A1 (en) * 2005-12-22 2007-06-28 Pirelli Tyre S.P.A. Method and apparatus for automatically analyzing the characteristics of an elastomeric material included in a tire
GB2435098A (en) * 2006-02-10 2007-08-15 Boc Group Plc NMR measurement of sample mass
KR100803133B1 (ko) * 2006-04-27 2008-02-14 엘지전자 주식회사 채널 정보를 다양한 방식으로 디스플레이 시키는 장치 및그 제어방법
DE102007044016B4 (de) * 2007-09-14 2010-12-16 Bruker Biospin Gmbh Probenwechseleinrichtung mit auf mäanderförmiger Bahn geführten Probenaufnahmen, insbesondere für ein NMR-Spektrometer, und Kernspinresonanz-Spektrometer
CA2700970A1 (en) * 2007-09-28 2009-04-09 T2 Biosystems, Inc. Nmr diagnostics by means of a plastic sample container
GB0804764D0 (en) * 2008-03-14 2008-04-16 Cheyney Design & Dev Ltd Test apparatus
US8970217B1 (en) 2010-04-14 2015-03-03 Hypres, Inc. System and method for noise reduction in magnetic resonance imaging
US9442173B2 (en) * 2010-05-28 2016-09-13 Hts—110 Limited NMR assessment system and method
US10338015B2 (en) * 2013-03-04 2019-07-02 The Regents Of The University Of California Methods and apparatus for analysis of sealed containers
US9752998B1 (en) 2013-09-05 2017-09-05 Owens Brockway Glass Container Inc. Detecting anomalies in glass articles using NMR imaging
US9952167B1 (en) * 2014-03-07 2018-04-24 Seafood Analytics Method and device to aid in the inspection and certification of harvested food for human consumption
WO2018045366A2 (en) * 2016-09-02 2018-03-08 Schlumberger Technology Corporation Methods for interpreting nmr data
DE102022001594A1 (de) * 2022-05-06 2023-11-09 Giesecke+Devrient Currency Technology Gmbh Sensorelement, Prüfvorrichtung und Verfahren für die Prüfung von Datenträgern mit Spinresonanz-Merkmal
DE102022001593A1 (de) * 2022-05-06 2023-11-09 Giesecke+Devrient Currency Technology Gmbh Sensorelement, Prüfvorrichtung und Verfahren für die Prüfung eines Datenträgers mit Spinresonanz-Merkmal

Family Cites Families (24)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE1803372C3 (de) 1968-10-16 1979-05-17 Unilever N.V., Rotterdam (Niederlande) Verfahren und Vorrichtung zum Messen der Masse einer Reihe von Gegenständen
US3796873A (en) 1971-05-03 1974-03-12 Colgate Palmolive Co Container fill weight control using nuclear radiation
IT969518B (it) * 1971-08-06 1974-04-10 Ngz Ges U Co Kg Apparecchio ricevitore automatico di monete con dispositivo di impi laggio e di avvolgimento
US4417662A (en) * 1981-05-04 1983-11-29 Eli Lilly And Company Vial inspection machine
US4500247A (en) * 1982-05-03 1985-02-19 Eli Lilly And Company Syringe inspection apparatus
JPS58221151A (ja) * 1982-06-18 1983-12-22 Mochida Pharmaceut Co Ltd 薬剤成分管理装置
GB2149509B (en) 1983-11-12 1987-04-01 Vnii Maslichnykh Kultur Im V S Controlling nuclear magnetic resonance analysis
US4727325A (en) * 1985-10-16 1988-02-23 Hitachi, Ltd. NMR imaging method
DE3910297A1 (de) * 1989-03-30 1990-10-04 Micro Epsilon Messtechnik Beruehrungslos arbeitendes wegmesssystem
US5049819A (en) * 1989-06-30 1991-09-17 Auburn International, Inc. Magnetic resonance analysis in real time, industrial usage mode
US5015954A (en) * 1989-06-30 1991-05-14 Auburn International, Inc. Magnetic resonance analysis in real time, industrial usage mode
US5291422A (en) * 1992-01-28 1994-03-01 Sgi International Broadband instrument for nondestructive measurement of material properties
US5397987A (en) * 1993-03-03 1995-03-14 Rheometrics, Inc. Method and apparatus for analyzing samples using nuclear magnetic resonance
IL126347A (en) * 1996-03-29 2003-11-23 Lawrence Berkeley National Lab Enhancement of nmr and mri in the presence of hyperpolarized noble gases
JP3086868B2 (ja) * 1997-05-16 2000-09-11 農林水産省農業研究センター所長 生育状態解析装置および方法
AR015217A1 (es) * 1998-01-16 2001-04-18 Numar Corp UNA HERRAMIENTA DE RESONANCIA MAGNETICA NUCLEAR (RMN) PARA CONDUCIR MEDICIONES DE UNA FORMACION DE TIERRA QUE RODEA UN POZO DE SONDEO, UN METODO PARA EFECTUAR DICHAS MEDICIONES MIENTRAS SE EFECTUA EL TALADRO Y UNA DISPOSICIoN PARA HACER MEDICIONES DE RMN.
GB9801622D0 (en) * 1998-01-23 1998-03-25 Inst Of Food Research Improvements in and relating to magnetic resonance imaging
GB9803487D0 (en) * 1998-02-20 1998-04-15 Inst Of Food Research Nuclear magnetic resonance spectroscopy
US6028428A (en) * 1998-04-09 2000-02-22 Cunningham; Charles H. Multiband selective RF pulse construction for NMR measurement sequences
GB9813673D0 (en) * 1998-06-24 1998-08-26 Scient Genarics Ltd Contactless check weighing
US6377049B1 (en) * 1999-02-12 2002-04-23 General Electric Company Residuum rare earth magnet
US6333629B1 (en) * 1999-07-22 2001-12-25 Intermagnetics General Corporation Method for non-invasively and without contact, inspecting foil enclosed packages, using magnetic resonance techniques
EP1257471B1 (en) * 2000-02-18 2004-06-23 Glaxo Group Limited System and method for check-weighing the content of a blister
US6894772B2 (en) * 2001-02-12 2005-05-17 Analytical Spectral Devices System and method for grouping reflectance data

Also Published As

Publication number Publication date
KR20060038375A (ko) 2006-05-03
EP1625407A2 (en) 2006-02-15
WO2004104601A2 (en) 2004-12-02
US20040251904A1 (en) 2004-12-16
US6946838B2 (en) 2005-09-20
WO2004104601A3 (en) 2005-06-02
JP2007502431A (ja) 2007-02-08
EP1625407A4 (en) 2006-11-29

Similar Documents

Publication Publication Date Title
CN1788215A (zh) 核磁共振测量系统
CN1788214A (zh) 核磁共振测量系统
CN1119630C (zh) 重量检查装置及方法
US8471558B2 (en) System and method for improving the analysis of chemical substances using NQR
CN1788216A (zh) 用于粉末的重量和湿度的nmr测量系统
US7061239B2 (en) Method for magnetic field tracking in a NMR check weighing system
US7002346B2 (en) Method for accurate determination of sample temperature in a NMR check weighing system
US20060192557A1 (en) Apparatus and probe head for determining a quantitative property of a sample substance by means of magnetic resonance
US7008486B2 (en) Cleaning method for NMR check weighing system
KR20070012729A (ko) Nmr 검량 시스템에서 근접 샘플 효과를 보상하는 방법
US9442173B2 (en) NMR assessment system and method
GB2435098A (en) NMR measurement of sample mass
WO2007144206A2 (en) Method of determining the mass of a plurality of samples by means of nmr

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C02 Deemed withdrawal of patent application after publication (patent law 2001)
WD01 Invention patent application deemed withdrawn after publication