CN1785831A - 一种采用电渗析去除水中氨氮的方法 - Google Patents

一种采用电渗析去除水中氨氮的方法 Download PDF

Info

Publication number
CN1785831A
CN1785831A CN 200510010556 CN200510010556A CN1785831A CN 1785831 A CN1785831 A CN 1785831A CN 200510010556 CN200510010556 CN 200510010556 CN 200510010556 A CN200510010556 A CN 200510010556A CN 1785831 A CN1785831 A CN 1785831A
Authority
CN
China
Prior art keywords
water
electrodialysis
ammonia nitrogen
adopt
adopts
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN 200510010556
Other languages
English (en)
Other versions
CN100336737C (zh
Inventor
马军
秦文跃
张佳发
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Harbin Institute of Technology
Original Assignee
Harbin Institute of Technology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Harbin Institute of Technology filed Critical Harbin Institute of Technology
Priority to CNB200510010556XA priority Critical patent/CN100336737C/zh
Publication of CN1785831A publication Critical patent/CN1785831A/zh
Application granted granted Critical
Publication of CN100336737C publication Critical patent/CN100336737C/zh
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Water Treatment By Electricity Or Magnetism (AREA)
  • Separation Using Semi-Permeable Membranes (AREA)

Abstract

一种采用电渗析去除水中氨氮的方法,它涉及水中氨氮的去除方法。它解决了现有去除水中氨氮方法易污染空气、消毒副产物多、去除率低、成本高的问题。该方法的步骤为:一、对原水采用混凝、沉淀或过滤进行处理;二、将经步骤一的水进行氧化处理;三、将经步骤二的水输入给电渗析装置进行去氨氮处理,电渗析装置的电流为0.1~5A,电压为5~240V,采用倒极的方法,pH值控制在5~11的范围,控制水的流速。本发明的方法对水中氨氮浓度含量低时(氨氮浓度在3~50mg/L)的氨氮去除率>90%,还对亚硝酸盐、硝酸盐有去除作用,影响因素少、操作简单、减轻污染,降低成本的特点,NH4 +可回收,经处理后的水可分别进行回用和回收。

Description

一种采用电渗析去除水中氨氮的方法
技术领域
本发明涉及水中氨氮的去除方法。
背景技术
给水和废水中氨氮的处理技术一直是各国学者研究的重点。去除水中氨氮的方法有很多,目前在工业上应用的方法主要有生物脱氮法、吹脱法、折点加氯法、离子交换法等。生物脱氮法适用于处理含有机物的低氨氮浓度废水,但要求水中有足够的碳源以及其它适于微生物生存的环境和条件,而上述环境难于维持,条件很难达到,运行维护管理复杂。对于高浓度无机氨氮废水,如化肥废水、催化剂废水,目前,工业应用较多采用吹脱法,但易于造成空气污染,在含有挥发性污染物污水的应用上受到限制。折点加氯法和离子交换法适用于不含有机物的低浓度氨氮的废水处理,前者的投氯量要大,因此会产生大量的消毒副产物,后者一般是采用沸石进行离子交换,需用食盐水再生,成本高。
发明内容
本发明为了解决现有去除水中氨氮的方法易污染空气、消毒副产物多、去除率低、成本高的问题及生物法在低温条件下生化除氨效果差的问题,提供了一种采用电渗析去除水中氨氮的方法,解决该技术问题所采用的技术方案如下:
本发明采用电渗析去除水中氨氮的方法包括下列步骤:
步骤一、对原水采用混凝、沉淀或过滤进行处理;
步骤二、将经步骤一的水进行氧化处理;
步骤三、将经步骤二的水输入给电渗析装置7进行去除氨氮处理,电渗析装置7的流通电流为0.1~5A,施加的电压为5~240V,采用频繁倒极的方法(EDR),倒极的间隔时间为30~80min,pH值控制在5~11的范围,水的流速控制在2~18cm/s之间。
当含NH3-N的水通过电渗析装置7时,在直流电场作用下,产生NH4 +和OH-的定向迁移,离子迁移的结果使水中的氨得到净化,NH3得到浓缩,所以从出水管8中流出的水即是已经除氨氮的水。
本发明的方法对水中氨氮浓度含量低时(氨氮浓度在3~50mg/L)氨氮的去除率>90%,该方法对亚硝酸盐、硝酸盐有显著的去除作用,该方法还具有影响因素少、操作简单、运行稳定、维护方便、减轻污染,降低成本的特点,同时可对给水或废水中氨氮进行回收;适宜进行低温水和主要污染物为氨氮的原水或废水的处理,经处理后的出水可分别进行回用和回收。
附图说明
图1是本方法采用的装置的整体结构示意图,图2是具体实施方式二的水前置处理流程图。
图中1是进水管,2是水箱,3是泵,4是阀门,5是转子流量计,6是水处理装置,7是电渗析装置,8是出水管。
具体实施方式
具体实施方式一:本实施方式采用电渗析去除水中氨氮的方法包括下列步骤:
步骤一、对经转子流量计5输出的给水或废水进行混凝、沉淀或过滤处理;该处理的作用是为了去除水中悬浮性成分,可添加硫酸铝、聚合铝、聚合铝铁或聚合硅铝(5~40mg/L)混凝剂,同时还可添加1.5~5.0mg/L的助凝剂,助凝剂采用活化硅酸或聚丙烯酰胺,强化去除水中的悬浮物;沉淀采用沉淀池;过滤措施采用超滤膜,超滤膜的孔径为0.45μm,也可采用石英砂、陶粒、无烟煤、石榴石、铁矿石或活性炭进行过滤;
步骤二、将经步骤一的水进行氧化处理;使水中的有机氮和共存的有机物氧化;氧化方法可采用臭氧氧化、臭氧/过氧化氢联用氧化、臭氧/过渡金属氧化物催化氧化、高锰酸钾及其复合药剂氧化、过氧化氢氧化、高铁酸钾及复合药剂氧化、二氧化氯氧化或氯氧化技术;
步骤三、将经步骤二处理后的水进入电渗析装置7进行去除氨氮处理,当含NH3-N的水通过电渗析装置时,在直流电场作用下,产生NH4 +和OH-的定向迁移,离子迁移的结果使水中的氨得到净化,NH3得到浓缩。电渗析装置7中流通的电流为0.1~5A,施加的电压为220V,采用频繁倒极的方法(EDR),倒极的间隔时间为30~80min,pH值控制在5~11的范围(原水的pH最佳值为7.5),从出水管8中流出的水即是已经除氨氮的水,氨氮的去除率在80%以上。(如果原水3<pH<5,氨氮去除率将降低;如果pH<3,氨氮的去除率低<50%,而且对设备腐蚀严重,此时必须中和原水。);处理水中含有的钙镁离子等阳离子,由于同离子效应和竞争迁移的结果,使电渗析对氨氮的去除率下降,所以钙离子浓度(以钙离子计)和镁离子浓度(以镁离子计)之和控制在90mg/L以下;为保证氨氮的去除率>80%;流速的选择既要保证一定去除率,又要能提高处理效率,淡水流速控制在2~18cm/s范围内,氨氮浓度较大时应选用较小流速;为提高处理效率,应尽量提高原水或废水的温度。对水中NH3-N浓度高的经一级处理的出水达不到标准要求的可采用二级处理,经一级后的出水再进入二级电渗析装置继续分离和浓缩,使二级出水的氨氮去除量占总氨氮的99%以上;同时本方法还具有对亚硝酸盐、硝酸盐的明显去除作用;定时监测出水管8的水质,出水水质反映了设备的运行状态,以便及时进行参数调整和对超滤膜的清洗与更换;NH3-N在直流电场作用下,电解产生的NH4 +和OH-可以回收利用,回收率在99%,同时控制了环境的污染。
本发明打破了电渗析对弱电解质(如氨氮)的脱除率不高的传统观念。
具体实施方式二:结合图2,本实施方式与具体实施方式一的不同点在于该方法还包括:对经具体实施方式一步骤二处理后的水质经a步骤进行检测水质,然后进入b步骤进行判断,当判断结果水中溶解物在2000~5000mg/L范围内时,进行c步骤吸附和离子交换处理,吸附剂处理采用活性炭,离子交换剂处理采用沸石或阴离子交换树脂,处理后的水去d步骤进行检测水质;当b步骤判断结果为否时,直接去步骤d进行检测水质,然后进入e步骤进行判断,当水中的COD在5~50mg/L范围内时,则进行f步骤再次进行活性炭或生物活性炭和氧化与吸附处理,处理后的水直接进入电渗析装置7进行电渗析处理;采用氧化与吸附的方法对含氨氮的水和废水进行处理,是为了降低水中氨氮的浓度;活性炭或生物活性炭和氧化与吸附联用进行处理,是为了保持水中具有充足的溶解氧;当e步骤判断结果为否时,则直接进入电渗析装置7进行电渗析处理。
具体实施方式三:本实施方式与具体实施方式一、二的不同点在于待需处理给水中NH3-N浓度为9.86mg/L,pH为7.86,钙离子34.43mg/L,镁离子7.61mg/L,电导率430mS/m,水温为17.8℃时,水的流量控制在58.85mL/s、水的流速为10cm/s,电渗析装置7中的电流为0.40A,施加的电压为220V。经电渗析装置7处理后出水管8的出水经检测出水氨氮含量为0.86mg/L,氨氮去除率为91.28%。其它步骤与具体实施方式一相同。
具体实施方式四:本实施方式与具体实施方式一、二的不同点在于待需处理给水中NH3-N浓度含量为21.10mg/L,pH为8,钙离子30.43mg/L,镁离子5.61mg/L,水温为20℃时,水的流量控制在40.85mL/s、水的流速控制在7cm/s,电渗析装置7中的电流为1A,施加的电压为220V。经电渗析装置7处理后出水管8的出水浓缩系数为2.14,NH4 +的回收率为99.2%。其它步骤与具体实施方式一、二相同。
具体实施方式五:本实施方式与具体实施方式一、二的不同点在于待需处理给水中NH3-N浓度为100mg/L,pH为9.35,钙离子29.51mg/L,镁离子6.89mg/L,SS1.20mg/L,水温为22℃时,首先投加24.7mg/L的聚合硅铝进行混凝预处理,混合反应沉淀后,清水进入超滤膜和电渗析装置7,电渗析装置(7)中的电流为2A,施加的电压为240V,水的流量控制在21.19mL/s,水的流速控制在3.47cm/s。经电渗析装置7处理后的出水,经检测水中NH3-N含量为296mg/L,去除率85.2%,NH4 +的回收率87.33%。其它步骤与具体实施方式一、二相同。
具体实施方式六:本实施方式与具体实施方式五的不同点在于对经具体实施方式五处理后的出水的水质如达不到指标要求,可再进行二级电渗析处理,使经二级电渗析处理后的出水中的氨氮去除量占水中总的NH3-N含量的99.64%,NH4 +的回收率99.2%。其它步骤与具体实施方式五相同。

Claims (10)

1、一种采用电渗析去除水中氨氮的方法,其特征在于该方法包括下列步骤:
步骤一、对原水采用混凝、沉淀或过滤进行处理;
步骤二、将经步骤一的水进行氧化处理;
步骤三、将经步骤二的水输入给电渗析装置(7)进行去氨氮处理,电渗析装置的流通电流为0.1~5A,施加的电压为5~240V,采用频繁倒极的方法,倒极的间隔时间为30~80min,pH值控制在5~11的范围,水的流速控制在2~18cm/s之间,从出水管(8)中流出的水即是已经除氨氮的水。
2、根据权利要求1所述的一种采用电渗析去除水中氨氮的方法,其特征在于该方法还包括对经步骤二处理后的水质经(a)步骤进行检测水质,然后进入(b)步骤进行判断,当判断结果水中溶解物在2000~5000mg/L范围内时,进行(c)步骤吸附和离子交换处理,然后去(d)步骤进行检测水质;当(b)步骤判断结果为否时,直接去步骤(d)进行检测水质,然后进入(e)步骤进行判断,当判断结果水中的COD在5~50mg/L范围内时,则进行(f)步骤再次进行活性炭或生物活性炭和氧化与吸附处理,处理后的水直接进入电渗析装置(7)进行电渗析处理;当(e)步骤判断结果为否时,则直接进入电渗析装置(7)进行电渗析处理。
3、根据权利要求2所述的一种采用电渗析去除水中氨氮的方法,其特征在于(c)步骤的吸附处理是采用活性炭,离子交换处理是采用沸石或阴离子交换树脂。
4、根据权利要求1所述的一种采用电渗析去除水中氨氮的方法,其特征在于步骤一中的混凝是采用添加硫酸铝、聚合铝、聚合铝铁或聚合硅铝5~40mg/L混凝剂,同时还添加1.5~5.0mg/L的助凝剂,助凝剂采用活化硅酸或聚丙烯酰胺。
5、根据权利要求1所述的一种采用电渗析去除水中氨氮的方法,其特征在于步骤一中的沉淀是采用沉淀池沉淀。
6、根据权利要求1所述的一种采用电渗析去除水中氨氮的方法,其特征在于步骤一中的过滤是采用超滤膜,超滤膜的孔径为0.45μm,或采用石英砂、陶粒、无烟煤、石榴石、铁矿石或活性炭进行过滤。
7、根据权利要求1所述的一种采用电渗析去除水中氨氮的方法,其特征在于步骤二的氧化处理是采用臭氧氧化、臭氧/过氧化氢联用氧化、臭氧/过渡金属氧化物催化氧化、高锰酸钾及其复合药剂氧化、过氧化氢氧化、高铁酸钾及复合药剂氧化、二氧化氯氧化或氯氧化技术。
8、根据权利要求1、2、3、4、5、6或7所述的一种采用电渗析去除水中氨氮的方法,其特征在于水中NH3-N浓度为9.86mg/L,pH为7.86,钙离子34.43mg/L,镁离子7.61mg/L,电导率430mS/m,水温为17.8℃时,水的流量控制在58.85mL/s、水的流速控制在10cm/s,电渗析装置(7)中的电流为0.40A,施加的电压为220V。
9、根据权利要求1、2、3、4、5、6或7所述的一种采用电渗析去除水中氨氮的方法,其特征在于水中NH3-N浓度含量为21.10mg/L,pH为8,钙离子30.43mg/L,镁离子5.61mg/L,水温为20℃时,水的流量控制在40.85mL/s、水的流速控制在7cm/s,电渗析装置(7)中的电流为1A,施加的电压为220V。
10、根据权利要求1、2、3、4、5、6或7所述的一种采用电渗析去除水中氨氮的方法,其特征在于水中NH3-N浓度为100mg/L,pH为9.35,钙离子29.51mg/L,镁离子6.89mg/L,SS1.20mg/L,水温为22℃时,首先投加24.7mg/L的聚合硅铝进行混凝预处理,混合反应沉淀后,水进入电渗析装置(7),电渗析装置(7)中的电流为2A,施加的电压为240V,水的流量控制在21.19mL/s、水的流速控制在3.47cm/s。
CNB200510010556XA 2005-11-18 2005-11-18 一种采用电渗析去除水中氨氮的方法 Expired - Fee Related CN100336737C (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CNB200510010556XA CN100336737C (zh) 2005-11-18 2005-11-18 一种采用电渗析去除水中氨氮的方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CNB200510010556XA CN100336737C (zh) 2005-11-18 2005-11-18 一种采用电渗析去除水中氨氮的方法

Publications (2)

Publication Number Publication Date
CN1785831A true CN1785831A (zh) 2006-06-14
CN100336737C CN100336737C (zh) 2007-09-12

Family

ID=36783452

Family Applications (1)

Application Number Title Priority Date Filing Date
CNB200510010556XA Expired - Fee Related CN100336737C (zh) 2005-11-18 2005-11-18 一种采用电渗析去除水中氨氮的方法

Country Status (1)

Country Link
CN (1) CN100336737C (zh)

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102531253A (zh) * 2012-03-06 2012-07-04 中国海洋大学 一种实现硝酸盐污染地下水资源化的方法和工艺
CN103102049A (zh) * 2013-03-07 2013-05-15 苏州苏净环保工程有限公司 一种高含氮有机废水的处理方法
CN104310723A (zh) * 2014-11-19 2015-01-28 内蒙古众谊环保科技有限责任公司 一种高盐废水资源化处理方法
CN104671569A (zh) * 2013-12-02 2015-06-03 财团法人工业技术研究院 废水处理系统与废水处理方法
CN105152419A (zh) * 2015-08-28 2015-12-16 浙江奇彩环境科技有限公司 一种高浓度含酸或含碱有机废水的处理方法及其应用
CN105174563A (zh) * 2015-09-22 2015-12-23 青岛琅琊台集团股份有限公司 一种叶酸废水的处理方法
CN108593403A (zh) * 2018-06-07 2018-09-28 江西怡杉科技有限公司 一种高氯高钙废水化学需氧量测定系统及其使用方法
CN113200634A (zh) * 2021-05-28 2021-08-03 中南林业科技大学 一种沼液共沉淀-电渗析净化工艺
CN114835313A (zh) * 2022-05-05 2022-08-02 中海油天津化工研究设计院有限公司 一种高硬水的软化方法

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3385388B2 (ja) * 1993-09-20 2003-03-10 東芝プラント建設株式会社 アンモニア性窒素含有排水の処理方法
JP3519112B2 (ja) * 1994-02-01 2004-04-12 株式会社神鋼環境ソリューション アンモニア化合物を含有する廃液等の被処理液の処理方法とその装置
CN1169729C (zh) * 2001-11-30 2004-10-06 财团法人工业技术研究院 电渗析膜生物反应槽及含硝酸盐原水或废水的脱氮方法
CN100336749C (zh) * 2004-09-14 2007-09-12 北京大学 垃圾渗滤液处理系统及方法

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102531253A (zh) * 2012-03-06 2012-07-04 中国海洋大学 一种实现硝酸盐污染地下水资源化的方法和工艺
CN103102049A (zh) * 2013-03-07 2013-05-15 苏州苏净环保工程有限公司 一种高含氮有机废水的处理方法
CN104671569A (zh) * 2013-12-02 2015-06-03 财团法人工业技术研究院 废水处理系统与废水处理方法
CN104310723A (zh) * 2014-11-19 2015-01-28 内蒙古众谊环保科技有限责任公司 一种高盐废水资源化处理方法
CN105152419A (zh) * 2015-08-28 2015-12-16 浙江奇彩环境科技有限公司 一种高浓度含酸或含碱有机废水的处理方法及其应用
CN105152419B (zh) * 2015-08-28 2017-10-13 浙江奇彩环境科技股份有限公司 一种高浓度含酸或含碱有机废水的处理方法及其应用
CN105174563A (zh) * 2015-09-22 2015-12-23 青岛琅琊台集团股份有限公司 一种叶酸废水的处理方法
CN108593403A (zh) * 2018-06-07 2018-09-28 江西怡杉科技有限公司 一种高氯高钙废水化学需氧量测定系统及其使用方法
CN113200634A (zh) * 2021-05-28 2021-08-03 中南林业科技大学 一种沼液共沉淀-电渗析净化工艺
CN113200634B (zh) * 2021-05-28 2022-04-19 中南林业科技大学 一种沼液共沉淀-电渗析净化工艺
CN114835313A (zh) * 2022-05-05 2022-08-02 中海油天津化工研究设计院有限公司 一种高硬水的软化方法

Also Published As

Publication number Publication date
CN100336737C (zh) 2007-09-12

Similar Documents

Publication Publication Date Title
CN100336737C (zh) 一种采用电渗析去除水中氨氮的方法
CN105541017B (zh) 一种浓盐水零排放的方法与装置
CN103288309B (zh) 一种煤气化废水零排放的处理方法及其应用
US8679349B2 (en) Heavy metal removal from waste streams
CN105347574B (zh) 一种石墨提纯废水的除氟方法及处理系统
CN113003846B (zh) 高含盐量和高cod的污水的零排放处理工艺和系统
CN107857438B (zh) 一种化工企业及园区废水处理零排放工艺
CN111268830A (zh) 一种电子行业含氟废水深度处理及回用系统和工艺
CN104108813A (zh) 炼化污水脱盐一体化处理工艺及装置
RU2589139C2 (ru) Способ очистки дренажных вод полигонов твердых бытовых отходов
CN111115661B (zh) 硝酸废水的处理系统和处理方法
CN1232455C (zh) 一种适合假定净水回用于循环水系统的处理方法
CN1206170C (zh) 一种循环冷却水的处理方法
CN112390446A (zh) 焦化废水零排放处理方法
CN107226572A (zh) 含汞废水深度处理零排系统和方法
EP2297050A1 (en) Apparatus for treating wastewater, particularly wastewater originating from a process for the production of photovoltaic cells
CN113003845A (zh) 高硫酸盐含量和高cod的污水的零排放处理工艺和系统
CN207108721U (zh) 含汞废水深度处理零排系统
CN216236502U (zh) 一种垃圾填埋场渗滤液处理系统
JP2017109162A (ja) 水処理方法
CN211198890U (zh) 一种工业废水的处理系统
CN210367111U (zh) 一种混凝深度除砷系统
CN109607945B (zh) 一种提高光伏、电子行业废水生化效率的方法
CN111925051A (zh) 一种mbr和臭氧组合污水深度处理工艺
CN219010073U (zh) 一种废水的软化除硅系统

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C14 Grant of patent or utility model
GR01 Patent grant
C17 Cessation of patent right
CF01 Termination of patent right due to non-payment of annual fee

Granted publication date: 20070912

Termination date: 20121118