CN1756845A - 腺病毒载体疫苗 - Google Patents

腺病毒载体疫苗 Download PDF

Info

Publication number
CN1756845A
CN1756845A CNA200380107269XA CN200380107269A CN1756845A CN 1756845 A CN1756845 A CN 1756845A CN A200380107269X A CNA200380107269X A CN A200380107269XA CN 200380107269 A CN200380107269 A CN 200380107269A CN 1756845 A CN1756845 A CN 1756845A
Authority
CN
China
Prior art keywords
cell
carrier
antigen
cd40l
described method
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CNA200380107269XA
Other languages
English (en)
Inventor
A·B·德塞罗斯
L·张
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Yale University
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Individual filed Critical Individual
Publication of CN1756845A publication Critical patent/CN1756845A/zh
Pending legal-status Critical Current

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K39/00Medicinal preparations containing antigens or antibodies
    • A61K39/12Viral antigens
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N15/00Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
    • C12N15/09Recombinant DNA-technology
    • C12N15/63Introduction of foreign genetic material using vectors; Vectors; Use of hosts therefor; Regulation of expression
    • C12N15/79Vectors or expression systems specially adapted for eukaryotic hosts
    • C12N15/85Vectors or expression systems specially adapted for eukaryotic hosts for animal cells
    • C12N15/86Viral vectors
    • C12N15/861Adenoviral vectors
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P35/00Antineoplastic agents
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P37/00Drugs for immunological or allergic disorders
    • A61P37/02Immunomodulators
    • A61P37/04Immunostimulants
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K14/00Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof
    • C07K14/005Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from viruses
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K14/00Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof
    • C07K14/435Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from animals; from humans
    • C07K14/705Receptors; Cell surface antigens; Cell surface determinants
    • C07K14/70575NGF/TNF-superfamily, e.g. CD70, CD95L, CD153, CD154
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K14/00Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof
    • C07K14/435Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from animals; from humans
    • C07K14/705Receptors; Cell surface antigens; Cell surface determinants
    • C07K14/70578NGF-receptor/TNF-receptor superfamily, e.g. CD27, CD30, CD40, CD95
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N15/00Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
    • C12N15/09Recombinant DNA-technology
    • C12N15/63Introduction of foreign genetic material using vectors; Vectors; Use of hosts therefor; Regulation of expression
    • C12N15/64General methods for preparing the vector, for introducing it into the cell or for selecting the vector-containing host
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N15/00Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
    • C12N15/09Recombinant DNA-technology
    • C12N15/63Introduction of foreign genetic material using vectors; Vectors; Use of hosts therefor; Regulation of expression
    • C12N15/79Vectors or expression systems specially adapted for eukaryotic hosts
    • C12N15/85Vectors or expression systems specially adapted for eukaryotic hosts for animal cells
    • C12N15/86Viral vectors
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K39/00Medicinal preparations containing antigens or antibodies
    • A61K2039/51Medicinal preparations containing antigens or antibodies comprising whole cells, viruses or DNA/RNA
    • A61K2039/525Virus
    • A61K2039/5256Virus expressing foreign proteins
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K39/00Medicinal preparations containing antigens or antibodies
    • A61K2039/51Medicinal preparations containing antigens or antibodies comprising whole cells, viruses or DNA/RNA
    • A61K2039/53DNA (RNA) vaccination
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K39/00Medicinal preparations containing antigens or antibodies
    • A61K2039/545Medicinal preparations containing antigens or antibodies characterised by the dose, timing or administration schedule
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K39/00Medicinal preparations containing antigens or antibodies
    • A61K2039/57Medicinal preparations containing antigens or antibodies characterised by the type of response, e.g. Th1, Th2
    • A61K2039/575Medicinal preparations containing antigens or antibodies characterised by the type of response, e.g. Th1, Th2 humoral response
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K2319/00Fusion polypeptide
    • C07K2319/01Fusion polypeptide containing a localisation/targetting motif
    • C07K2319/02Fusion polypeptide containing a localisation/targetting motif containing a signal sequence
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K2319/00Fusion polypeptide
    • C07K2319/40Fusion polypeptide containing a tag for immunodetection, or an epitope for immunisation
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K2319/00Fusion polypeptide
    • C07K2319/70Fusion polypeptide containing domain for protein-protein interaction
    • C07K2319/74Fusion polypeptide containing domain for protein-protein interaction containing a fusion for binding to a cell surface receptor
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N2710/00MICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA dsDNA viruses
    • C12N2710/00011Details
    • C12N2710/10011Adenoviridae
    • C12N2710/10311Mastadenovirus, e.g. human or simian adenoviruses
    • C12N2710/10341Use of virus, viral particle or viral elements as a vector
    • C12N2710/10343Use of virus, viral particle or viral elements as a vector viral genome or elements thereof as genetic vector
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N2710/00MICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA dsDNA viruses
    • C12N2710/00011Details
    • C12N2710/10011Adenoviridae
    • C12N2710/10311Mastadenovirus, e.g. human or simian adenoviruses
    • C12N2710/10371Demonstrated in vivo effect
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N2710/00MICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA dsDNA viruses
    • C12N2710/00011Details
    • C12N2710/20011Papillomaviridae
    • C12N2710/20022New viral proteins or individual genes, new structural or functional aspects of known viral proteins or genes
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N2710/00MICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA dsDNA viruses
    • C12N2710/00011Details
    • C12N2710/20011Papillomaviridae
    • C12N2710/20034Use of virus or viral component as vaccine, e.g. live-attenuated or inactivated virus, VLP, viral protein
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N2710/00MICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA dsDNA viruses
    • C12N2710/00011Details
    • C12N2710/20011Papillomaviridae
    • C12N2710/20071Demonstrated in vivo effect

Landscapes

  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Genetics & Genomics (AREA)
  • General Health & Medical Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Zoology (AREA)
  • Molecular Biology (AREA)
  • Medicinal Chemistry (AREA)
  • Biophysics (AREA)
  • Biochemistry (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Immunology (AREA)
  • Wood Science & Technology (AREA)
  • Biomedical Technology (AREA)
  • Biotechnology (AREA)
  • General Engineering & Computer Science (AREA)
  • Virology (AREA)
  • Proteomics, Peptides & Aminoacids (AREA)
  • Gastroenterology & Hepatology (AREA)
  • Microbiology (AREA)
  • Cell Biology (AREA)
  • Pharmacology & Pharmacy (AREA)
  • Plant Pathology (AREA)
  • Veterinary Medicine (AREA)
  • Physics & Mathematics (AREA)
  • Public Health (AREA)
  • Animal Behavior & Ethology (AREA)
  • Toxicology (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Mycology (AREA)
  • Epidemiology (AREA)
  • Medicines Containing Material From Animals Or Micro-Organisms (AREA)
  • Medicines That Contain Protein Lipid Enzymes And Other Medicines (AREA)
  • Medicines Containing Antibodies Or Antigens For Use As Internal Diagnostic Agents (AREA)
  • Peptides Or Proteins (AREA)
  • Micro-Organisms Or Cultivation Processes Thereof (AREA)

Abstract

本发明提供了针对抗原产生免疫反应的腺病毒载体。载体含有编码分泌型多肽的转录单位,该多肽包含分泌信号序列,位于肿瘤抗原的上游,而肿瘤抗原位于CD40配体的上游,其中CD40配体缺少了全部或几乎全部的跨膜结构域而导致CD40L是可分泌的。也提供了通过给予有效量的本发明载体而对表达肿瘤抗原的细胞产生免疫反应的方法。进一步提供了在个体中通过给予有效量本发明载体而对表达肿瘤抗原的癌症产生免疫反应的方法。更进一步提供了通过给予有效量的编码人乳头瘤病毒(HPV)E6或E7蛋白的本发明载体而对HPV感染产生免疫的方法。所产生的免疫是长期的。

Description

腺病毒载体疫苗
技术领域
[0001]本发明涉及应用腺病毒载体对抗原表达细胞产生免疫,所述腺病毒载体表达与CD40配体的分泌形式融合的抗原。
背景技术
[0002]提供关于本发明背景的下述讨论,仅仅是为了帮助读者理解本发明,而不是承认描述或构成本发明的现有技术。
[0003]抗原呈递细胞(antigen presenting cells,APCs)的活化,包括树突状细胞(dendritic cells,DCs)的活化,其后将相关抗原负载在抗原呈递细胞上,是在针对癌细胞产生T细胞依赖性免疫反应中的一个必要的步骤。一旦被活化并负载了肿瘤抗原之后,树突状细胞(DCs)迁移至局部淋巴结(lymph nodes,LNs),将抗原(antigens,ags)呈递给T细胞。极为常见地,这些APCs表达不足量的表面激活分子(surfaceactivation molecules)(1),而这些表面激活分子对可识别肿瘤抗原的T细胞克隆的最佳活化和增殖而言是必需的。在缺乏表达于APC表面的协同刺激分子(costimulatory molecule)的情况下,抗原(antigen,ag)呈递给原初T细胞( T cells),导致T细胞无反应性(2)。而且,在无CD4+T细胞辅助下,DCs的交叉呈递(cross-presentation),也导致抗原特异T细胞在局部淋巴结处的外周剔除(peripheral deletion)(3)。与之相对照,在存在CD4+T细胞辅助下,DCs改变了它们的功能性能力,交叉致敏T细胞,导致效应T细胞的克隆增殖(clonalexpansion)(4)。此CD4+T细胞辅助,可以被CD40-CD40配体(CD40L)的相互作用所替代(5)。CD40L是一种33-kD的II型膜蛋白,为TNF基因家族的成员,其在TCR接合(TCR engagement)后暂时表达于CD4+T细胞上(6)。
[0004]DCs产生体内抗肿瘤免疫反应的能力,已经在许多动物肿瘤模型中得以证实(7,8)。然而,免疫性的DC介导的诱导(DC-mediatedinduction)代表一个重要的治疗学难题。目前用于分离并活化DCs的方法是资源密集型的,难于应用于常规临床实践中。此外,难于确保抗原呈递细胞表达适当的粘附分子及化学因子受体,以便吸引这些DCs到达二级淋巴器官,从而致敏T细胞(9-14)。
发明概述
[0005]一方面,本发明提供了对抗原产生免疫的腺病毒表达载体(adenoviral expression vector)。载体含有编码多肽的转录单位,从氨基末端起,多肽包括一个分泌信号序列,是在肿瘤抗原的上游,肿瘤抗原又在CD40配体的上游,其中CD40配体缺少跨膜结构域的全部或几乎全部,导致CD40配体成为可分泌的。分泌信号序列的功能在于指引肿瘤抗原-CD40配体融合蛋白到达细胞的区室,这使得融合蛋白由细胞被分泌出来。
[0006]在一个实施方案中,肿瘤抗原(tumor antigen)是人肿瘤抗原。在另一实施方案中,人肿瘤抗原是人乳头瘤病毒(human papilloma virus,HPV)的E7蛋白。
[0007]在一些实施方案中,转录单位(transcription unit)含有编码位于肿瘤抗原和CD40之间的接头的序列。适合的接头在长度和组成上可以不同。
[0008]在另一实施方案中,腺病毒表达载体包含人巨细胞病毒启动子/增强子,以便控制转录单位的转录。
[0009]在又一个实施方案中,CD40配体(CD40 ligand)是人CD40配体。
[0010]在又一个实施方案中,缺乏功能性跨膜结构域的CD40配体,是含有少于10%的跨膜结构域或不含有跨膜结构域的。
[0011]另一方面,本发明提供了在个体中、对表达肿瘤抗原的细胞产生免疫反应的方法,这是通过给予有效量的编码肿瘤抗原的本发明载体来实现的。
[0012]在一个实施方案中,肿瘤抗原是人肿瘤抗原。在另一实施方案中,人肿瘤抗原是人乳头瘤病毒的E7蛋白质。
[0013]在又一实施方案中,细胞是癌细胞。在另一实施方案中,癌细胞为宫颈癌细胞。
[0014]在又一实施方案中,本方法导致了针对所述肿瘤相关抗原的细胞毒性CD8+T细胞的产生。在另一实施方案中,载体,在给予之后,被细胞吸收,这些细胞随后分泌由转录单位编码的融合蛋白。
[0015]在又一方面,本发明提供了用于治疗患有表达肿瘤抗原的癌症的个体的方法。此方法包括给予个体有效量的本发明表达载体,其编码肿瘤抗原。
[0016]在一个实施方案中,肿瘤抗原为人肿瘤抗原。在另一实施方案中,人肿瘤抗原为人乳头瘤病毒E7蛋白。
[0017]在又一实施方案中,细胞为癌细胞。在另一实施方案中,癌细胞为宫颈癌细胞。
[0018]仍在又一实施方案中,本方法导致了抵抗所述肿瘤相关抗原的细胞毒性CD8+T细胞的产生。在另一实施方案中,给予后的载体被细胞吸收,随之这些细胞分泌由转录单位编码的融合蛋白。
[0019]在再一方面,本发明提供了在对象中产生针对人乳头瘤病毒的感染的免疫性的方法,包括给予个体有效量的本发明腺病毒表达载体,其中的肿瘤抗原是人乳头瘤病毒的E6或E7蛋白。
[0020]在上述方法中,载体经皮下方便给予,并可在随后时间给予以增加免疫反应。对肿瘤抗原表达细胞的免疫性是长期持续的。
附图简述
[0021]图1显示皮下注射分泌型肿瘤抗原/CD40L载体之后所发生事件的模式。此图提议了皮下空间注射后发生的进程,是关于活化,肿瘤抗原负载,迁移至局部淋巴结,活化针对携带肿瘤抗原的细胞具有特异性的CD8细胞毒性T细胞,以及诱导系统性T细胞依赖的Th1类似免疫反应。
[0022]图2显示构建编码E7-ΔCtΔTmCD40L的腺病毒表达载体的流程图。
发明详述
[0023]为了改善DC活化和肿瘤抗原负载,开发了应用重组腺病毒的免疫接种策略,此重组腺病毒编码源自于高风险人乳头瘤病毒(humanpapilloma viruses,HPV)的原癌蛋白E7的分泌形式,是与删除了跨膜结构域的CD40配体相融合。通过删除CD40配体的胞浆和跨膜结构域,将此构建体设计为可分泌型,其中CD40配体被置于E7编码DNA和编码信号序列的DNA的下游。
[0024]术语“腺病毒表达载体(adenoviral expression vector)”,在此所用,是指含有插入到它的基因组中的、编码多肽的外源DNA的任意腺病毒载体。在反式提供任意的缺失必需基因时,载体必须是可以复制并可以被包装的。腺病毒载体,理想地,包含每一末端重复的至少一部分,这对支持病毒DNA复制而言是必需的,优选是全长反向末端重复序列(full ITR sequence)的至少约90%,并包含将基因组包裹入病毒衣壳所需的DNA。在此领域内,已描述了许多合适的腺病毒载体,如美国专利6,440,944号;参见6,040,174(复制缺陷型E1删除载体和特异化包装细胞系)。优选的腺病毒表达载体,是在正常细胞中表现复制缺陷的腺病毒表达载体。
[0025]术语“转录单位(transcription unit)”,正如它在此处与腺病毒表达载体相关应用,意指一段DNA,它由RNA聚合酶转录为一个单一的、连续的mRNA,并且它包括转录的起始信号和终止信号。例如,本发明的转录单位是核酸,从5’到3’,其编码一个分泌信号序列,HPV来源的E7蛋白和无跨膜结构域的CD40配体。转录单位,与转录和/或翻译表达控制元件例如启动子和任选的任何上游或下游增强子元件,是存在于可操纵联系中。一种有用的启动/增强子是巨细胞病毒(CMV)介导的早期启动/增强子。(见美国专利号5,849,522和6,218,140)。
[0026]术语“分泌信号序列(secretory signal sequence)”(也叫做“信号序列”,“信号肽”,“前导序列”或“前导肽”),用于此处,是指一个短的肽序列,特征通常为疏水的,包含大约20到30个氨基酸,该序列是在多肽的N-末端被合成的,指引多肽到达内质网。分泌信号序列通常在多肽转运到内质网后被切除。真核生物的分泌信号序列是优选的,用于指导腺病毒表达载体的外源基因产物的分泌。在此领域,有多种合适的此类序列是熟知的,包括人生长激素、免疫球蛋白κ链、和类似基因的分泌信号序列。
[0027]术语“肿瘤相关抗原(tumor associated antigen)”(TAA),正如它在此处所用,是指一种蛋白质,其存在于肿瘤细胞上,并存在于胎儿期(癌胚抗原)及出生后的选择器官中的正常细胞上,或存在于许多正常细胞上,但是以比在肿瘤细胞上低得多的浓度存在。多种TAA已被描述。与之相对照,肿瘤特异抗原(tumor specific antigen)(TSA)(也叫做“肿瘤特异移植抗原(tumor-specific transplantation antigen)或TSTA)是指在非肿瘤细胞上不存在的蛋白质。在感染病毒引起细胞无限增殖并表达病毒抗原时,TSA常常出现。非病毒诱导的TSAs可以是B细胞淋巴瘤中的免疫球蛋白的独特型(idiotypes),或T细胞淋巴瘤中的T细胞受体(T cell receptor,TCR)。肿瘤相关抗原(TAA)远较TSA普遍。
[0028]TAA和TSA均可以是本发明的腺病毒表达载体疫苗的免疫学靶。如无另外指明,术语“肿瘤抗原(tumor antigen)”,在此所用,是集体地指TAA和TSA。优选的肿瘤抗原是HPV的E6或E7蛋白。这些抗原优选来自HPV 16型(HPV type 16)。
[0029]术语“接头(linker)”,正如它相关于腺病毒载体的转录单位用于此处,是指位于肿瘤抗原羧基末端和CD40配体(缺少功能性跨膜结构域)的氨基末端之间的一个或多个氨基酸残基。接头的组成和长度可由本领域熟知的方法而决定,并可检验其效能。接头通常是从约3到约15个氨基酸长,更优选地是从约5到约10个氨基酸长。然而,更长或更短的接头也可以被使用,或者接头可以全部地被省却。
[0030]术语“CD40配体(CD40 ligand)”,用于此处,是指II型膜多肽(type II membrane polypeptide),具有一个位于其N-末端的胞外或胞浆结构域,一个跨膜区,和一个位于其C-末端的胞外结构域。CD40L是肿瘤坏死因子超家族分子的一个成员,带有标志TNF5。如果没有其它说明,全长CD40L在此处被指定为“CD40L”“wtCD40L”或“wtTmCD40L”。胞浆结构域已经被删除的CD40L形式,在此处被指定为“ΔCt CD40L”。跨膜结构域已经被删除的CD40L形式,在此处被指定为“ΔTmCD40L”。胞浆和跨膜结构域均被删除的CD40L形式,在此处被指定为“ΔCtΔTmCD40L”。来自小鼠和人的CD40L的核苷酸和氨基酸序列,已经在此领域是已知的,并可以找到,例如在美国专利5,962,406(Armitage等)中。
[0031]鼠CD40L(mCD40L)的长度是260个氨基酸。mCD40L的胞浆(Ct)结构域大约在1-22位,跨膜结构域大约在23-46位,而细胞外结构域大约在47-260位。
[0032]人CD40L(hCD40L)的长度是261个氨基酸。hCD40L的胞浆结构域约延伸在1-22位,跨膜结构域约在23-46位,而细胞外结构域约在47-261位。
[0033]短语“CD40配体缺少了全部或几乎全部的跨膜结构域,使CD40配体成为可分泌的”,正如它用于此处,是指可以从细胞被分泌出来的CD40配体的重组形式。CD40L的跨膜区在长度上包括约24个氨基酸,功能上是将CD40配体瞄定在细胞膜上。从其上删除了全部跨膜结构域的CD40L,是缺少残基23-46的CD40配体。丢失基本全部的跨膜区的CD40配体,是在跨膜结构域的一个末端含有序列的6个或更少残基的CD40配体,优选地是在跨膜结构域的一个末端含有序列的少于约4个残基,更优选地是在跨膜结构域的一个末端含有序列的少于约2个残基,最优选地是在跨膜结构域的一个末端含有1个或更少的残基。因此,缺乏几乎全部跨膜结构域从而使CD40L成为可分泌型的CD40L,是在该结构域的一个末端含有序列的不多于6个氨基酸残基的CD40L。这样,除细胞外结构域和任选地胞浆结构域以外,CD40L包含位于CD40L跨膜结构域中的不超过41-46或23-28位的氨基酸。
[0034]应该理解到,缺少功能性跨膜结构域的CD40L,仍可包含全部或一部分的胞浆结构域。同样地,缺少功能性跨膜结构域的CD40L,可以包含细胞外结构域的全部或实质性部分。
[0035]如用于此处,本发明的腺病毒载体可以作为疫苗投与,以便诱导对肿瘤相关抗原的免疫性。如果适当,该病毒载体可以与药学上可接受的载体配制成制剂。因此,该病毒载体可以被用在药物或药物组合物的生产中。本发明的病毒载体可以被配制为溶液或冻干粉末,以便用于肠道外施用。在应用前,可以通过加入合适的稀释剂或其它药学上可接受的载体,对粉末进行重制(reconstituted)。液体制剂可以是缓冲的,等渗的,含水溶液。粉末也可以以干燥形式喷雾应用。合适的稀释液的例子为标准等渗盐溶液,标准的5%葡萄糖水溶液,或缓冲的乙酸钠或乙酸铵溶液。此类制剂特别适于肠道外投与,但也可用于口腔投与或包含在计量剂量吸入器或喷雾器中,用于吸入法。理想的是,加入赋形剂,例如聚乙烯吡咯烷酮,明胶,羟基纤维素,阿拉伯树胶,聚乙二醇,甘露醇,氯化钠,柠檬酸钠,和类似物质。
[0036]替代地,病毒载体可以被配制,用于口服。可以加入药学上可接受的固体或液体载体,以便增强或稳定该组合物,或协助病毒载体的配制。固体载体包括淀粉,乳糖,二水合硫酸钙,石膏粉,硬脂酸镁或镁的硬脂酸盐,云母,果胶,阿拉伯树胶,琼脂或明胶。液体载体包括糖浆,花生油,橄榄油,生理盐水和水。载体也包括持续释放物如单硬脂酸甘油酯或二硬脂酸甘油酯,其可单独应用或与蜡共同应用。固体载体的量可以变化,但优选地,每剂量单位是在约20mg到约1g之间。应用液体载体时,制备物可为糖浆,酏剂,乳剂,或含水或者不含水悬浮剂。
[0037]本发明的病毒载体可以被配制,以便包含其它医疗上有用的药物或生物制剂。本病毒载体,也可以与对本发明化合物所针对的疾病或情况有益的其它药物或生物制剂联合给予。
[0038]正如应用于此处,短语“有效量(effective amount)”是指可以充分提供足够高的浓度以使其接受者产生免疫反应的剂量。对任何一个特定对象而言,特定的有效剂量水平将取决于多种因素,包括所治疗的病症,病症的严重程度,特定化合物的活性,给药途径,病毒载体的清除率,治疗的持续时间,与病毒载体联合或巧合使用的药物,对象的年龄、体重、性别、饮食和一般健康状况,以及在医学领域和科学中知道的类似因素。在确定“治疗有效量”中所考虑的各种普遍考量因素,对本领域的技术人员而言是已知的,并在下述文件中有描述,例如Gilman等编辑,Goodman And Gilman’s:The PharmacologicalBases of Therapeutics,8th ed.,Pergamon Press,1990;和Remington’sPharmaceutical Sciences,17th ed,Mack Publishing Co,Easton,Pa,1990中。对于腺病毒载体的投与,每次投与的颗粒范围典型地是从约1×107到1×1011,更优选地为1×108到5×1010,进一步优选为5×108到2×1010。病毒载体可由肠道外投与,如血管内,静脉内,动脉内,肌肉内,皮下或类似方式。也可经口腔,经鼻,经皮或以气溶胶吸入。病毒载体可以大丸药(bolus)投与,或缓慢输注。优选地,载体的投与方法是皮下投与。
[0039]来自人乳头瘤病毒(HPVs)的E7蛋白,被选为代表性的TAA,原因在于它已显示出是一个细胞免疫反应的强刺激物,并可在由HPV转化组织所产生的肿瘤细胞群中的每个细胞上被表达。HPV可引起皮肤和生殖道的多种上皮损伤。生殖道的HPV相关疾病,构成了世界上妇女癌症死亡的第二大主要原因。这包括生殖器疣,宫颈上皮内瘤变(cervical intraepithelial neoplasia,CIN)和宫颈癌。与高度CIN和宫颈癌最常见相关的HPV型是HPV 16型。绝大多数宫颈癌,表达非结构性的HPV16衍生基因产物,E6和E7原癌蛋白。在HPV诱导的宫颈癌模型中,E6/E7原癌蛋白为维持恶性表现型所必需,它们的表达与HPV16的转化潜能相关联(15-16)。因此,E6和E7代表了一个用于治疗性疫苗接种的特别好的靶。
[0040]此处的结果显示了皮下注射此载体导致:1)针道周围细胞的局部感染;2)嵌合的E7/CD40L跨膜区减少融合蛋白的分泌,是在载体注射细胞起的10天期间上;3)融合蛋白结合到APCs上,致使APCs活化和E7呈递;4)负载并活化的APCs向局灶淋巴结的迁移;和5)演化出对带有肿瘤相关抗原的细胞系的T细胞依赖性系统性免疫,此免疫延续一年以上。
[0041]经抗原呈递细胞(树突状细胞)、针对肿瘤细胞的个体群具有特异性的细胞毒性T淋巴细胞的产生,依赖于激活协同刺激分子的表达。发生的机制之一,是位于CD4辅助T淋巴细胞膜上的CD4配体与位于树突状细胞上的CD4受体之间的结合。随此激活,树突状细胞迁移至局灶淋巴结或到达脾,在此处,呈递源于肿瘤相关抗原的肽段,从而诱导CD8细胞毒性T淋巴细胞克隆的活化和增殖,其中CD8细胞毒性T淋巴细胞克隆有能力识别肿瘤相关抗原。
[0042]此类CD8细胞毒性T淋巴细胞的发展受多种因素的限制,其中CD8细胞毒性T淋巴细胞能够识别肿瘤细胞上的肿瘤相关抗原,这会导致携带此类抗原的肿瘤细胞的杀死效应。一个因素在于:肿瘤相关抗原从肿瘤细胞转移到抗原呈递细胞的低水平。另一因素是未能在抗原呈递细胞上诱导出协同刺激分子(co-stimulatory molecules),其中协同刺激分子对持续活化和增殖具有肿瘤抗原特异性的CD8细胞毒性T淋巴细胞是必需的,CD8细胞毒性T淋巴细胞具有识别和杀死肿瘤细胞的能力。
[0043]能结合抗原呈递细胞上的CD40受体的抗体,可以激活抗原呈递细胞中的协同刺激分子的表达。以携带CD40配体转录单位的腺病毒载体(Ad-wtTmCD40L)体外感染抗原呈递细胞(或者是树突状细胞,或者是肿瘤细胞本身),也被用于激活抗原呈递细胞或肿瘤细胞(晶体)上的协同刺激分子表达。将这些树突状细胞注射入肿瘤结节,或者将照射的Ad-wtTmCD40L感染肿瘤细胞注射入带有肿瘤结节的有免疫能力的小鼠宿主中,可导致肿瘤结节的消退,和生存率的提高。
[0044]此外,肿瘤抗原特异性CD8细胞毒T淋巴细胞的在体生成,可以源于以肿瘤相关抗原体外“负载”抗原呈递细胞,是通过用肿瘤抗原肽片段孵育、或与肿瘤细胞本身孵育、或与携带编码肿瘤相关抗原的转录单位的腺病毒载体孵育而进行体外“负载”,随后注射负载抗原的抗原呈递细胞。
[0045]为开发出针对肿瘤相关抗原的能产生肿瘤抗原CD8细胞毒性T淋巴细胞依赖的系统性免疫反应的更有效的方式,提出下述假设:在具有免疫能力的动物的皮下空间中的蛋白质的持续释放,可以导致抵抗携带有肿瘤相关抗原的肿瘤细胞的一个非常强的CD8细胞毒T淋巴细胞反应,其中此释放不仅可以激活协同刺激分子在抗原呈递细胞中的表达,同时还可以在一个为期10天的时间区间上将肿瘤相关抗原传送到抗原呈递细胞的胞内空间(intracellular space)中。
[0046]被选择用以验证此假设的融合蛋白转录单位,包括一个肿瘤相关抗原(人乳头瘤病毒E7转化蛋白),该肿瘤相关抗原连接于CD40配体的氨基末端。此蛋白被基因工程为由细胞分泌,在其中,这是通过删去CD40配体的跨膜结构域和胞浆结构域、并在融合蛋白基因的E7肿瘤抗原部分的氨基末端上附加人生长激素信号结构域而实现的。选用皮下注射腺病毒载体,其中含有携带编码此肿瘤相关抗原/CD40配体融合蛋白(Ad E7-ΔCtΔTmCD40L)的分泌形式的转录单位,用以在受试对象的皮下空间中产生腺病毒感染细胞。
[0047]作出如下推论,细胞在载体的皮下注射部位的附近被感染,这些细胞将释放肿瘤抗原/CD40配体分泌型蛋白,达10-14天之久(此为大多数腺病毒载体感染细胞产生转基因的蛋白产物的时间区段)。位于注射位点的受感染细胞附近的抗原呈递细胞(如DC),将吸收E7肿瘤相关抗原,而后在蛋白酶体中被消化,所形成的E7肽段被运输至内质网,在此处,与I类MHC分子结合。最终,树突状细胞(DCs)在表面上呈递E7肿瘤相关抗原,是在I类MHC中。激活的、负载肿瘤抗原的抗原呈递细胞,将迁移至携带淋巴细胞的二级器官中,例如局部淋巴结或脾中。在肿瘤抗原/CD40配体融合分泌蛋白的为期两周的持续释放期间,CD8细胞毒性T淋巴细胞将在淋巴结和脾中增殖,它们能够识别和杀死携带着肿瘤相关抗原的细胞,其中增殖的条件是活化并加载抗原的树突状细胞的存在。据信:来自本载体感染细胞的持续释放,引起了针对肿瘤抗原特异性的细胞毒性T细胞的刺激和增殖的持续特性,产生了免疫反应,此反应的级别大于应用携带非分泌型肿瘤相关抗原/CD40配体的载体所产生的可能反应。在分泌形式的E7/CD40L释放期间所发生事件的概要,被图示在图1中。融合蛋白的恒定释放和其所致的携带有E7肽的活化DCs不断进入局部淋巴结,被认为提供了一个在体产生针对E7阳性肿瘤细胞的强而持久的T细胞依赖性系统免疫反应的更有效方法,此方法较注射仅表达E7或仅表达CD40的,或者表达非分泌型E7/CD40配体转录的载体更有效。
[0048]此处描述的实验结果,是设计来检验这些假设,并证实所有这些预言。皮下注射不能复制的腺病毒载体,其携带有E7肿瘤相关抗原/CD40配体蛋白的分泌形式,可以诱导非常强的长时间持续的、针对癌细胞的CD8细胞毒T淋巴细胞依赖的系统免疫反应,其中癌细胞带有E7肿瘤相关抗原。实际上,实验结果显示载体表达了肿瘤相关抗原/CD40配体融合蛋白的分泌形式,产生了免疫反应,此反应远较皮下注射表达E7肿瘤相关抗原/CD40配体融合蛋白非分泌形式的载体所产生的反应强烈。由实验结果清楚地得知,皮下注射编码肿瘤相关抗原/CD40配体分泌性融合蛋白的载体,产生的免疫反应远较皮下注射载有仅编码E7肿瘤相关抗原或CD40配体(分泌的或非分泌的)的转录单位的载体所产生的免疫反应强烈。
[0049]另外,显示出:融合蛋白的局部释放引起抗原呈递细胞的激活以及它们向含有淋巴的二级器官的迁移。最终,在此证明:由皮下注射携带E7肿瘤相关抗原/CD40配体分泌型转录单位的腺病毒载体所产生的免疫学抗性,是对携带肿瘤相关抗原的细胞具有特异性的,并且在载体注射后持续达一年。尽管不希望受约束于任何理论,但是认为连接肿瘤相关抗原至分泌形式的CD40配体的本发明方法,创制了一个蛋白质,此蛋白质可在体内同时激活抗原呈递细胞并使抗原呈递细胞负载抗原,这避免了与抗原呈递细胞或细胞毒性T淋巴细胞的体外生成相关的花费和后勤学问题。
[0050]第二优点在于:分泌的肿瘤相关抗原/CD40配体融合蛋白在激活和抗原负载中的应用,可以导致与抗原呈递细胞的选择性结合及将抗原运输至抗原呈递细胞的胞内空间中。这将解决传送足够肿瘤抗原入受试对象的胞内空间的问题,抗原呈递细胞经常出入此空间,于是在抗原呈递细胞的质膜上有足够密度的肿瘤相关肽,以产生强细胞毒性T淋巴细胞反应,对抗表达肿瘤相关抗原的肿瘤细胞。
[0051]第三个优点在于:分泌蛋白中的CD40配体的存在,可以激活协同刺激抗原表达在抗原呈递细胞上,因而使活化不依赖于最初CD4T细胞淋巴细胞辅助。
[0052]病毒融合蛋白转录单位的分泌性质的第四个优点在于:在抗原呈递细胞聚集的空间中,激活和抗原负载融合蛋白的持续释放达10天期间。这可能部分解释了观察到的免疫反应的强度和它的持续性。
[0053]决定应用HPV E7蛋白作为融合蛋白的肿瘤相关抗原,是由几个因素激发的。首先是E7蛋白已显示是转化的,并且是HPV转化细胞的持续增殖所必需的。E7的这一特性决定了此细胞群中的大多数细胞携带此抗原,如果不是所有细胞携带此抗原的话。另外,将DNA病毒转化蛋白选作肿瘤相关抗原的设计在于:是实验明确针对分泌性融合转录单位的价值测试。选择HPV E7作为本发明载体的肿瘤相关抗原的一个单独的、但是是重要的原因,是评价E7防止HPV感染宫颈上皮的感染和增殖的能力。如果这种载体可以产生针对HPV感染细胞的免疫反应,则在其体内将要产生这种作用(reaction)的个体,将会对人乳头瘤病毒的感染具有免疫和抗性。
[0054]人乳头瘤病毒(HPV)感染诱导天然的宿主免疫反应,此反应不足以清除感染。其原因之一在于:存在多于100种基因型的HPV,每一基因型具有唯一的氨基酸序列,因而具有唯一的抗原决定簇,使病毒逃脱了暴露过给其它HPV基因型的个体的检测。第二个原因在于:存在有一小部分个体,它们不能发动针对HPV感染细胞的细胞免疫反应。此类个体可为慢性HPV感染导致宫颈结构异常和扩散宫颈癌的个体。另外,60%的人宫颈癌与HPV 16基因型的感染相关。高达95%的宫颈癌病例是可以归因于HPV感染的。世界上妇女癌症死亡的第二大主要原因是HPV相关的恶性肿瘤。在世界上的新兴国家,HPV相关恶性肿瘤代表了年龄在25和35岁之间的女性死亡的首要原因。
[0055]为增强对HPV感染细胞的免疫反应从而发展针对HPV感染的免疫性,已经尝试了几种方法。治疗性肽和基于蛋白的疫苗(15),DNA(16)和基于病毒载体的疫苗(17),修饰的肿瘤细胞(18)和基于树突状细胞的疫苗(19)均已被在前研究过,并报道在动物模型中产生了对HPV相关瘤的免疫反应。前述的研究已显示出多种DCs的制备物能够刺激有效的抗肿瘤免疫,包括负载蛋白质的DCs,与肿瘤细胞融合的DCs,以肿瘤衍生RNA或病毒载体转导的DCs(20,21,22)。目前,MART-1基因修饰的DC的体外CD40配体活化,可以促进CD8T淋巴细胞介导的对黑素瘤细胞的免疫性(23)。CD40配体转导肿瘤的注射,显示了对建系的MCA205脑肿瘤细胞系的治疗学效应(24)。这些研究表明,加载抗原并同时被活化的DCs可提供强的保护性免疫。
[0056]重组的腺病毒载体提供了潜在的优越方法,此方法所允许的基因转移效率较DNA疫苗的基因转移效率更高。编码肿瘤相关抗原的腺病毒载体也可以诱导针对这些抗原的保护性细胞免疫和体液免疫,包括已经对其产生耐受性的抗原。
[0057]复制缺陷的腺病毒载体,在此被用于形成包括连接到分泌形式CD40配体上的肿瘤抗原(E7)的融合蛋白的连续局部释放,促进了DCs成熟,这促进了有效的抗原特异性免疫的发展。已证明:分泌型E7-ΔCtΔTmCD40L构建显著增加了对E7阳性肿瘤细胞的细胞免疫反应的效力。皮下注射Ad E7-ΔCtΔTmCD40L载体引发了强E7特异性CD8+T细胞介导的免疫,这可防止表达E7肿瘤相关抗原的肿瘤细胞的移入。
[0058]尽管不希望受限于任何理论,在注射编码肿瘤抗原/分泌型CD40L的载体之后,观察到的E7-特异性CD8+T-细胞活性增加的一个潜在机制是皮肤专职APCs的活化和迁移的增加,其中的专职APCs是由皮下释放来自载体感染细胞的融合蛋白而产生的。与通过施用抗原而将抗原负载于DCs上的策略形成对照,E7-ΔCtΔTmCD40L蛋白质的分泌,由皮肤成纤维细胞或皮下空间中的其它细胞分泌,可以更有效地活化并负载局部APCs,这在激活系统T-细胞免疫性中可能是有效的。
[0059]另一个潜在影响由Ad E7-ΔCtΔTmCD40L载体增加抗原特异性CD8+细胞活性的因素,是应用全长E7蛋白作为肿瘤相关抗原。一些人员已经比较了用疫苗获得的免疫反应,其中的疫苗或者基于HPV溶细胞性T淋巴细胞(CTL)加辅助T淋巴细胞抗原决定簇,或者仅基于源于HPV16病毒株的E7肽的CTL抗原决定簇。结果显示:E7特异性CD8+反应在针对基于HPV抗原决定簇加辅助Th抗原决定簇的疫苗时,较针对仅基于CTL抗原决定簇的疫苗时表现显著增加。
[0060]总之,这些研究结果举例说明了将ΔTmCD40L,其为CD40L的分泌形式,连接至肿瘤相关抗原上,能导致体内抗原特异性CD8+T-细胞活性的增强。
[0061]下面的实施例的作用在于例示性阐释本发明。这些实施例决非意在限制本发明的范围。
实施例
1.病毒表达载体的构建
[0062]腺病毒载体的转录单位,E7-ΔCtΔTmCD40L,编码一个信号分泌序列,接下来是HPV 16型E7基因,HPV 16型E7基因通过接头与CD40配体的片段相连接,其中CD40配体的片段含有胞外结构域、而不含有跨膜结构域或胞浆结构域。E7是足够小的,以致它没有破坏天然野生型CD40配体自然组装为同源三聚体排列的三聚体特性。融合蛋白被工程设计为由载体感染细胞分泌,是通过在E7蛋白质的氨基末端加入信号序列、以及通过删除CD40配体的跨膜和胞浆结构域实现。
[0063]转录单位(transcription unit)被导入进腺病毒载体骨架的E1基因区(E1 gene region)。在腺病毒载体颗粒在HEK293细胞中被产生之后,通过氯化铯密度梯度离心纯化载体DNA。由限制性内切酶分析和由DNA测序,证实腺病毒载体中的信号肽的存在。
[0064]构建带有包括Ad-E7-ΔTmCD40L,Ad-E7-wtTmCD40L,Ad-ΔTmCD40L,Ad-wtTmCD40L和Ad-GFP-ΔTmCD40L在内的不同转录单位的腺病毒载体(见材料和方法)(GFP是指绿色荧光蛋白)。
2.无细胞表达腺病毒载体转录单位
[0065]采用体外无细胞转录/翻译系统,以便证实:含有转录单位的腺病毒载体编码正确分子量的蛋白质。表1中所总结的结果显示:以PCR-生成的cDNA作为模板,通过体外转录/翻译反应所生成的蛋白质,如预想那样迁移,具有下列分子量:E7-ΔCtΔTmCD40L是32kDa,E7-wtCD40L是39kDa,和,ΔCtΔTmCD40L是22kDa。
3.对重组腺病毒感染细胞293中蛋白的Western blot分析
[0066]应用Western blot分析,评估以不同腺病毒载体所感染的细胞中所表达的蛋白质。表1中总结的结果显示:源自Ad-E7-ΔCtΔTmCD40L载体、Ad-wtTmCD40L载体、Ad-GFP-ΔCtΔTmCD40L载体、Ad-wtTmCD40L和Ad-ΔCtΔTmCD40L载体的载体感染细胞中所产生的蛋白质的分子量分别是32kDa,35kDa,50kDa,39kDa和22kDa。这些数据证实转录单位在结构上是正确的,且在每一种情形中的载体DNA可以转录并被翻译为蛋白质,蛋白质的水平足以在Western blot中被检测到。
        表I:病毒载体翻译产物的分子量
载体                         分子量           分子量
                             无细胞转录翻译   由Western分析
Ad-E7-ΔCtΔTmCD40L          32kDa            32kDa
Ad-E7-CD40L                  39kDa            32kDa
Ad-ΔCtΔTmCD40L             22kDa            22kDa
Ad-CD40L                     37kDa            37kDa
Ad-GFP-ΔCtΔTmCD40L         未做             50kDa
4.腺病毒表达载体对DCs活化效率的比较
[0067]比较不同腺病毒载体对DC细胞活化的效率。为此,将骨髓来源的DCs在体外暴露于每一载体,条件是导致测试细胞(293细胞)的接近100%的感染率。48小时后,将细胞与抗体反应,以便活化标记物CD80和CD54,并在荧光激活细胞分选仪中评估。在暴露给携带分泌型CD40L转录单位(或者E7/CD40L或者CD40L)的载体的DCs上,对CD80和CD54活化标记物为阳性的细胞百分数,远高于DCs暴露给携带任意一个的非分泌型CD40L转录单位(wtTmCD40L或E7/wtTMCD40L)的载体、或Ad-GFP载体所看到的数值,如下表II所示。
               表II:DC上活化标记物的表达
                        CD80+百分数     CD54+百分数
AdE7-wtCD40L            15.27%         17.66%
Ad-E7-ΔTmCD40L         40.4%          38.6%
Ad GFP                  4.63%          3.87%
这些结果提示:带有分泌型CD40L转录单位的腺病毒载体,与带有非分泌型CD40L转录单位的载体相比,在体外活化DCs中,是更有效的。
5.病毒表达载体感染的DCs的IL-12和IFN-γ细胞因子释放的比较
[0068]对不同的腺病毒转录单位而言,确定了对DCs的活化作用,是以细胞因子IL-12和IFN-γ的释放进行测量的。观察到,在DCs暴露给Ad-E7-ΔCtΔTmCD40L和Ad-E7-CD40L载体之后,在IL-12形成的诱导水平上,存在统计学上的显著性差异(P<0.0001)。具体地,通过DCs暴露给Ad-E7-ΔCtΔTmCD40L载体,产生的IL-12是18±4pg/2×105细胞/ml/24h和88±29pg/2×105细胞/ml/48h,而DCs暴露给Ad-E7-CD40L载体,产生的IL-12是0pg/2×105细胞/ml/24h和7pg/2×105细胞/ml/48h。
[0069]类似地,在起始的24小时中,暴露于Ad-E7-ΔCtΔTmCD40L载体的DCs所产生的IFN-γ量(335±29pg)与暴露于Ad-E7-CD40L载体DCs所产生的IFN-γ量(189±9pg)相比,具有统计学上的显著性差异(P<0.0001=。然而,在48小时的时候,在暴露给含有分泌型vs(对)非分泌型E7/CD40L转录单位的载体的DCs中,在所产生的IL-12水平之间,没有显著性差异。
[0070]这些数据表明:Ad-E7-ΔCtΔTmCD40L载体,在诱导DCs释放细胞因子方面,较Ad-E7-CD40L载体或其它对照载体是更有效的。另外,由于分泌的肿瘤相关抗原/CD40配体复合体,应该可以接合树突状细胞上的CD40受体,从而影响细胞因子的释放,这些结果提示:E7-ΔCtΔTmCD40L融合蛋白,在其羧基末端,形成了一个功能性的三聚体分子,以便接合CD40受体。
6.腺病毒表达载体产生的肿瘤免疫的评价
[0071]为评价Ad-E7-ΔCtΔTmCD40L载体在阻止E7阳性TC-1细胞系在C57BL/6小鼠中的移入上的功效,将1×108pfu的每种载体皮下注入小鼠。7天后,给予相同载体的重复(加强)剂量。末次疫苗接种后1周,在C57BL/6小鼠的背部,经皮下注射入5×105的TC-1细胞,是在一个与载体注射点相分离的位点进行注射。在Ad-E7-ΔCtΔTmCD40L载体注射之后,所有的小鼠,在肿瘤激发之后的第108天,表现为无肿瘤的。与之相反,在注射Ad-ΔCtΔTmCD40L;Ad-CD40L;Ad-E7-CD40L之后,所有(5/5)小鼠,在肿瘤激发之后的15天以内,发生肿瘤,并且截至第42天全部死亡。
[0072]为了表征参与肿瘤生长抑制的效应细胞类型,在用Ad-E7-ΔCtΔTmCD40L接种之前,通过抗体处理,使小鼠缺乏CD4或CD8细胞。甚至在TC-1激发之后,仍然继续抗体处理,以确保彻底耗尽T细胞亚群。观察到TC-1肿瘤在或者缺乏CD4T细胞或者缺乏CD8T细胞的小鼠中生长。这提示:CD4和CD8T细胞的存在,对由Ad-E7-ΔCtΔTmCD40L诱导的抗肿瘤效应而言,均是重要的。
7.腺病毒表达载体所表达的融合蛋白的DC结合作用
[0073]为检验分泌型E7-ΔCtΔTmCD40L蛋白与DC的结合是否是在靠近载体注射位点的区域,如同图1中的模型所图示那样,取Ad-E7-ΔCtΔTmCD40L载体皮内注射位点的皮肤,切片,并用针对CD40L和DC标志物CD80及MHC-II的抗体对这些切片进行双染色。观察到,在采用Ad-E7-ΔCtΔTmCD40L和Ad-ΔCtΔTmCD40L载体进行接种的小鼠的表皮中,存在广泛分布的双染色。这些结果显示:在注射Ad-E7-ΔCtΔTmCD40L后,可溶性E7-ΔCtΔTmCD40L蛋白结合在DC的表面。与之对照,在注射Ad-E7-CD40L和Ad-E7-CD40L载体而接种的小鼠中,在载体注射3天后,仅观察到表皮有少数的阳性细胞。这些结果表明:注射带有分泌形式的E7/CD40的载体,与注射不含有信号肽及含有跨膜结构域的E7/CD40蛋白载体相比,在生成与DCs结合的蛋白质发明是更有效的。应用携带编码分泌形式蛋白质的E7/ΔTmCD40L转录单位的载体,似乎可以扩大从感染DCs而来的载体效应至DCs的一个更大的群体。这些结果提示:注射载有分泌形式的E7/CD40的载体,与注射载有该蛋白质的非分泌形式的载体相比,可产生更高水平的、负载有E7的活化DCs。在下一部分中,此预测被直接予以验证。
8.腺病毒表达载体接种诱导的DCs体内外迁移的评价
[0074]在CD40配体与CD40受体结合、肿瘤抗原/CD40配体-CD40受体复合物内化、和随后的对肿瘤抗原肽的消化并加工之后,DCs迁移至二级淋巴器官——局部淋巴结,变成成熟的DCs。在该位置,活化的/负载抗原的DCs,能够呈递肿瘤相关抗原性肽,并刺激原初CD4辅助T细胞(
Figure A20038010726900211
CD4 helper T cells),并扩增CD8细胞毒性T淋巴细胞(cytotoxic T cell lymphocytes,CTL),此CTL对携带肿瘤相关抗原的癌细胞具有选择毒性。
[0075]为验证是否注射Ad-E7-ΔCtΔTmCD40L载体诱导了DCs在体内向局部淋巴结的此种迁移,将体外源白骨髓细胞的DCs,用体外活体染料CFSA标记之后,然后将DCs暴露给Ad-E7-CtΔTmCD40L,Ad-E7-CD40L,Ad-ΔCtΔTmCD40L和Ad-CD40L,条件(100MOI(感染复数))被设计为可以产生100%的感染性。感染的负载染料的DCs,被注射入C57BL/6小鼠的左侧腹部。在这些注射后三天,处死小鼠,并取两侧中任意一个上的腋淋巴结,研究染料负载DCs的存在情况。在局部淋巴结中,观察到携带分泌型E7/CD40L转录单位的、经CFDASE染色的DCs,而在局部淋巴结中未观察到携带E7/CD40L转录单位的、CFDA SE染色的DCs。
9.腺病毒表达载体投与之后激发的免疫反应的评价
[0076]CD8+T淋巴细胞,参与了针对感染的或肿瘤细胞的保护性免疫反应。检验了:是否应用Ad-E7-ΔCtΔTmCD40L载体对C57BL/6小鼠进行皮下注射能够诱导E7特异性CD8+T细胞。用细胞毒性分析,评定CD8+T细胞反应;用酶联免疫斑点分析(enzyme-linkedimmunospot,ELISPOT),检测抗原特异性细胞毒性T细胞(CTLs)。
[0077]以下列载体皮下注射小鼠两次:(1)Ad-E7-ΔCtΔTmCD40L;(2)Ad-CD40L;(3)Ad-E7-CD40L;(4)Ad-ΔCtΔTmCD40L;和(5)阴性对照。刺激来自载体注射小鼠的脾细胞,通过将其暴露于TC-1细胞48小时,比率是25个TC-1细胞比一个脾细胞。重刺激的脾细胞,被铺板于已经用针对IFN-γ或IL-4抗体包被了的96孔硝酸纤维素滤膜平板上。用生理盐水洗孔后,进行ELISPOT分析。ELISPOT分析结果表明:皮下注射携带分泌型E7/CD40L蛋白的载体,显著增加了MHCI类-限制CTLs,在脾内采用IFN-γ是可以检测得到的;所增加的程度,较注射带有非分泌型E7/CD40L转录单位的载体或其它对照载体之后所看到的更高。而且,产生T1型细胞因子IFN-γ的细胞频率(117±10.61),也显著高于可分泌Th2细胞因子例如IL-4的脾细胞的频率(22.3±3.68)。这些数据表明:E7-ΔCtΔTmCD40L载体疫苗接种刺激Th1免疫反应,而不是Th2免疫反应。
[0078]为了确定,在注射带有分泌型E7/CD40L载体后,在对C57BL/6小鼠进行注射之后,是否产生对承载E7抗原的癌细胞具有特异毒性的CD8T细胞淋巴细胞的效应细胞,将得自给予两次皮下载体注射动物的脾细胞,在体外与丝裂霉素C-处理的TC-1细胞孵育5天,进行重刺激。经重刺激的效应细胞与TC-1或对照靶细胞混合4小时,并测量所释放的LDH。观察到:来源于注射了Ad-E7-ΔTmCD40L载体的小鼠的脾细胞,裂解了90%的TC-1靶细胞。针对无关但同源的EL-4细胞,未观察到明显的裂解,其中EL-4细胞不携带E7抗原。来源于Ad-E7-ΔCtΔTmCD40L载体注射小鼠的脾细胞,与源于提前进行Ad-E7-CD40L载体注射小鼠的脾细胞相比,针对TC-1细胞的细胞毒性水平更高。
9.材料和方法
a).小鼠
[0079]6-8周龄的C57BL/6小鼠,购自Harlan。
b).细胞系
[0080]用HPV-16E6和E7基因永生化C57BL/6同源TC-1肿瘤,并用c-Ha-ras原癌基因转化(25)。TC-1表达低水平的E6和E7,并是高度致瘤的。TC-1,在RPMI 1640、10%FSC、2mM L-谷氨酰胺、100U/ml青霉素、100μg/ml链霉素、100μM非必需氨基酸、1mM丙酮酸钠、50μM 2-ME中生长,在37℃下、10%CO2中。
c).重组腺病毒的生成
[0081]生成下列转录单位,它包含编码源自HGH基因的信号肽的DNA、位于编码全长HPV 16型E7蛋白的DNA的上游,编码全长HPV 16型E7蛋白的DNA又位于ΔCtΔTmCD40L的上游。通过退火磷酸化的寡核苷酸(SEQ ID NOs:2和3)以制备编码人生长激素信号序列MATGSRTSLLLAFGLLCLPWLQEGSA(单字母氨基酸密码)(SEQ ID NO:1)的DNA,生成带有Bgl II和Not I突出端的全长26个氨基酸的HGH序列。
生长激素信号上游链(编码序列以斜体表示):
5’-GATCT CCACC ATG GCT ACA GGC TCC CGG ACG TCC CTG CTCCTG GCT TTT GGC CTG CTC TGC CTG CCC TGG CTT CAA GAG GGCAGT GCC GGC-3’(SEQ ID NO:2)
生长激素信号下游链:
3’-A GGTGG TAC CGA TGT CCG AGG GCC TGC AGG GAC GAGGAC CGA AAA CCG GAC GAG ACG GAC GGG ACC GAA GTT CTCCCG TCA CGG CCGCCGG-5’(SEQ ID NO:3)
[0082]通过退火上述的上游和下游寡核苷酸,来制备合成的HGH信号序列。将寡核苷酸溶解于50μl H2O(约3mg/ml)中。取每种寡核苷酸(上游和下游链)1μl,加入到48μl退火缓冲液(100mM醋酸钾,30mM HEPES-KOH pH7.4,和2mM醋酸镁),孵育在95℃4分钟,70℃10分钟,并缓慢冷却至约4℃。在标准条件下,将退火后的DNA用T4 PNK(多核苷酸激酶)磷酸化。
[0083]带有Bgl II和Not I突出端的HGH信号序列,被经由Bgl II和Not I插入进p穿梭-E7-ΔCtΔTmCD40L(pShuttle-E7-ΔCtΔTmCD40L)(无信号序列),以便产生pshuttle-HGH/E7-ΔCtΔTmCD40L。
[0084]pShuttle-E7-ΔCtΔTmCD40L(无信号序列)是如下制备的:质粒pDC406-mCD40L购自美国模式菌种收集中心(American TypeCulture Collection)。设计一对PCR引物(SEQ ID NOs:4和5),用于扩增小鼠CD40配体,从52位到260位(即,无胞浆结构域和跨膜结构域),并包括位于扩增子(amplicon)的5’末端的编码接头(以“+间隔物”表示)的序列。
小鼠ΔCtΔTmCD40L+间隔物正向引物(MCD40LSPF)(CD40L序列以斜体表示)
5’-CCG  CTCGAG AACGACGCACAAGCACCAAAATCAAAGGTCGAAGAGGAAGTA-3’(SEQ ID NO:4)
小鼠CD40L反向引物(MCD40LR)
5’-CCC  AAGCTT ATCAGAGTTTCACTAAGCCAA-3’(SEQ ID NO:5)
[0085]正向引物MCD40LSPF编码一个由10个残基组成的间隔物(FENDAQAPKS;单字母氨基酸密码;SEQ ID NO:6),被置于转录单位的肿瘤抗原和CD40配体(mCD40L)之间。以质粒pDC406-mCD40L为模板、用正向和反向引物(SEQ ID NOs 4和5)进行PCR,形成PCR片段“间隔物+ΔCtΔTmCD40L”;在以Hind III(AAGCTI)和Xho I(CTCGAG)进行限制性内切酶消化后,其被插入到质粒pShuttle-CMV(13)中。此载体指名为pShuttleΔCtΔTmCD40L。也生成了另一种载体,它与前述载体的不同之处,在于它编码全长CD40L,而不是编码截短形式CD40L。此载体是以CD40正向引物结合于鼠CD40L的起始密码子得到的。此载体被指名为pShuttleCD40L(无信号序列)。
[0086]对pShuttleΔCtΔTmCD40L(无信号序列)进行修饰、使之含有位于CD40配体序列上游的HPV-16E7,是按照如下所述完成的:由HPV病毒基因组经PCR扩增,得到编码全长HPV-16E7蛋白的序列,应用的引物如下:
HPV16 E7正向引物(SEQ ID NO:7)
5’-ATTT  GCGGCCGC TGTAATCATGCATGGAGA-3’
HPV16 E7反向引物(SEQ ID NO:8)
5’-CC  CTCGAG TTATGGTTTCTGAGAACAGAT-3’
所得到的扩增子为HPV16 E7编码DNA,它带有5’末端的Not I和3’末端的Xho I限制性位点。使用Not I(GCGGCCGC)和Xho I(CTCGAG),将E7DNA插入pShuttleΔCtΔTmCD40L,在CMV启动子和朝向ΔCtΔTmCD40L的间隔物的5’之间。此质粒指名为pShuttle-E7-ΔCtΔTmCD40L(无信号序列),并用于插入位于E7上游的HGH信号序列,以便产生已描述过的HGH/E7-ΔCtΔTmCD40L。因此,转录单位HGH/E7-ΔCtΔTmCD40L编码了HGH分泌信号,接下来是全长HPV16型E7,再接下来是由10个氨基酸组成的接头(FENDAQAPKS;SEQ ID NO:9),再是鼠CD40配体残基52-260位。
[0087]应用与上述相似的步骤,将E7编码DNA插入pShuttleCD40L(无信号序列)中,在全长CD40的上游。
[0088]以相似方式,将绿色荧光蛋白(green fluorescent protein,GFP)基因插入到CMV启动子的下游、和mΔCtΔTmCD40L或mCD40L(野生型CD40L)的上游,并位于不能复制的腺病毒载体中。这些载体作为对照被应用。其它的腺病毒载体是如下创制的,通过将编码HGH信号序列的DNA,插入到CMV启动子和载体pShuttle-ΔCtΔTmCD40L的编码ΔCtΔTmCD40L或载体pShuttle-CD40L的编码CD40L的DNA的5’端之间,分别创制载体pShuttle-HGHΔCtΔTmCD40L和pShuttle-HGHCD40L。
[0089]应用HPV16质粒和如下引物,进行PCR,生成一个转录单位,其中含有编码小鼠IgGκ链基因的信号序列的DNA,位于编码全长HPV16型E7蛋白(“K/E7)DNA的上游,引物是:
5’-ACG ATG GAG ACA GAC ACA CTC CTG CTA TGG GTA CTG CTG-3’(SEQ ID NO:10)
5’-TC CTG CTA TGG GTA CTG CTG CTC TGG GTT CCA GGT TC-3’(SEQ ID NO:11)
5’-TG CTC TGG GTT CCA GGT TCC ACT GGT GAC ATG CAT G-3’(SEQ ID NO:12);
5’-TGG GTT CCA GGT TCC ACT GGT GAC ATG CAT GGA GAT ACA CCT AC-3’(SEQ ID NO:13);和
5’-CCG  CTC GAG TGG TTT CTG AGA ACA GAT GGG GCA C-3’(SEQ ID NO:14)
经四轮PCR扩增,生成带有上游κ信号序列的K/E7(第1轮:引物4+5;第2轮:加入引物3;第3轮:加入引物2;第4轮:加入引物1)。编码K/E7的DNA,被克隆入pcDNATM 3.1 TOPO载体(Invitrogen,San Diego,CA)中,生成pcDNA-K/E7。
[0090]应用下列PCR引物,从小鼠CD40配体cDNA质粒(pDC406-mCD40L;ATCC)生成一个DNA片段,其含有小鼠CD40配体,从该CD40配体上已经删除了跨膜和胞浆结构域(ΔCtΔTmCD40L),PCR引物是:
5’-CCG  CTCGAG AAC GAC GCA CAA GCA CCA AAA AGC AAG GTC GAA GAGGAA GTA AAC CTT C-3’(SEQ ID NO:15);和
5’-CGCGCCGCGCGCTAG  TCTAGA GAGTTTGAGTAAGCCAAAAGATGAG-3’(SEQ ID NO:16)(高保真PCR试剂盒,Roche)。
用Xba I和Xho I限制性内切酶消化ΔCtΔTmCD40L片段,之后连接入pcDNA-E7中。利用Hind III和Xba I位点,从pcDNA载体切割K/E7-ΔCtΔTmCD40L片段,并插入到p穿梭质粒中(pShuttle K/E7-ΔCtΔTmCD40L)。因此,K/E7-ΔCtΔTmCD40L片段包含了κ链分泌信号,接下来是全长度HPV16型E7,再接下来是10个氨基酸的接头(LQNDAQAPKS;SEQ ID NO:17),再下来是鼠CD40配体的残基52-260位。
[0091]用引物扩增全长度的小鼠CD40L,制得编码含有位于全长小鼠CD40L上游的E7的融合蛋白的腺病毒载体。应用如下引物:
5’-GAGAC  CTC GAG CAGTCA GC ATGATAGAAACATACAGCCAACCTTCCC-3’(SEQ ID NO:18):
5’-CCGCGC CCC AAGCTTA TCAGAGTTTGAGTAAGCCAAAAG-3’(SEQ ID NO:19)
首先,应用Xba I和Xho I限制性内切酶,将扩增的DNA亚克隆入pCDNA3中。全长CD40L基因或ΔCtΔTmCD40L,被直接克隆入带有Xba I和Xho I位点的p穿梭质粒中(pShuttle plasmid)。用于构建编码E7-ΔCtΔTmCD40L的腺病毒表达载体的方案的图解总揽,显示在表2中。
[0092]应用AdEvasy载体系统(AdEvasy vector system,Stratagege,SanDiego,CA),产生重组腺病毒载体。简要地说,将得到的质粒pShuttle-HGH/E7-ΔCtΔTm CD40L,pShuttle-HGH/CD40L,pShuttle-HGH/E7-CD40L,pShuttle-HGH/GFP,pShuttle-HGH/GFP-CD40L和pShuttle-HGH/E7,用Pme I线性化,并和病毒DNA质粒pAdEvasy-1共转化入E.coli菌株BJ5183中。用卡那霉素选择重组体,并用限制性内切酶筛选。之后,用Pac I切割重组腺病毒构建物,以便暴露其反向末端重复序列(Inverted Terminal Repeats,ITR),并转染入293A细胞,从而产生病毒颗粒。重组腺病毒的滴度,是用组织培养感染剂量(TCID50)方法确定的。
[0093]用人CD40配体cDNA作为模板,用于扩增人ΔCtΔTm CD40L+间隔物的如下所述:
人ΔCtΔTm CD40L+间隔物正向引物(HCD40LSPF)(CD40L序列以斜体表示):
5’-CCG
CTCGAGAACGACGCACAAGCACCAAAATCACATAGAAGGTTGGACAAG-3’(SEQ ID NO:20)
人CD40L反向引物(HCD40LR)
5’-CCC  AAGCTT TCAGAGTTTGAGTAAGCCAAAGGAC-3’(SEQ ID NO:21)
这些引物将扩增ΔCtΔTm CD40L+间隔物,其编码人CD40L的47-261位。正向引物HCD40LSPF编码一个由10个残基组成的间隔物(FENDAQAPKS;单字母密码;SEQ ID NO:9),其被置于该转录单位的肿瘤抗原和CD40配体(hCD40L)之间。以质粒pDC406-hCD40L作为模板,使用正向引物和反向引物(SEQ ID NOs 20和21)进行PCR,生成PCR片段“间隔物+ΔCtΔTm CD40L(人)”,此片段经采用HindIII(AAGCTT)和Xho I(CTCGAG)的限制性内切酶消化后,被插入到质粒pShuttle-CMV中(13)。此载体指名为pShuttleΔCtΔTmCD40L(人)。对pShuttleΔCtΔTm CD40L(人)进行修饰,使其包含HPV-16E7,处于人CD40配体序列的上游,这是基本上按照如上述对鼠的CD40配体编码载体那样而被实现的。得到的质粒指名为pShuttle-E7-ΔCtΔTm CD40L(人)(无信号序列),并用于在E7的上游插入HGH信号序列,以生成HGH/E7-ΔCtΔTm CD40L(人)。因此,转录单位HGH/E7-ΔCtΔTm CD40L(人)编码HGH分泌信号,下来是全长HPV16型E7,再下来是由10个氨基酸组成的接头(FENDAQAPKS;SEQ ID NO:9),更下来是人CD40配体的残基47-261。
d)腺病毒载体转录单位的体外表达
[0094]应用偶联体外转录-翻译系统RILL(TNT试剂盒,来自ProtégéCorp.(Protégé公司)),合成下列载体:Ad-E7-CtΔTmCD40L,Ad-E7-wtTmCD40L,Ad-ΔCtΔTmCD40L,Ad-wtTmCD40L和Ad-E7。将2μg的每种质粒或PCR生成的模板DNA,加入至50μl反应混合物中,其中反应混合物含有25μl的RRL,2μl的TNT反应缓冲液,1μl的T7 RNA聚合酶,1μl的不含甲硫氨酸的氨基酸混合物(1mM),4μl的[35S]-甲硫氨酸,和1μl的核糖核酸酶抑制剂RNAsin(40U/μl)。在30℃下孵育1小时,完成反应。将15μl的各[35S]-标记产物在10%SDS-PAGE凝胶上跑胶,并暴露于X-光片过夜。
e)Western blot分析
[0095]在10%还原性SDS-PAGE凝胶上,分离源自由腺病毒载体以MOI 40所感染的293个细胞的细胞裂解物,并转移至IMMOBILON-P膜(Millipore,Bedford,MA)上。以5%脱脂奶粉室温封闭2小时;之后,用抗特异的小鼠CD40配体(mCD40)的抗体,在TBS-T缓冲液(20mM Tris-HCL[pH7.6],137mM NaCl,和0.5%Tween 20)中,在2%BSA存在下,探测该膜过夜。用TBS-T缓冲液洗涤4次之后,将印迹与山羊抗仓鼠碱性磷酸酶偶联抗体(goat anti-hamster alkalinephosphatase conjugated antibody,Jackson Immunoresearch)孵育1小时。通过使用ProtoBlot IIAP系统(Promega公司(Promega Corp.)),可视觉观察到膜上的免疫反应性条带。
f)DC的流式细胞分析
[0096]为定量分析APCs或DCs的表面分子的表达水平,用FITC-或PE-偶联的抗小鼠单克隆抗体(mAbs),针对CD80、CD54和CD11c(Pharmingen),染色被测试细胞,在与标记抗体(Abs)免疫染色前,冰浴30分钟。APCs首先与Fc-γ封闭抗体(抗小鼠CD16/CD32抗体)孵育,以避免mAbs与Fc-γ的非特异性结合。然后洗涤细胞两次,在4%多聚甲醛中固定,并使用Becton Dickinson流式细胞仪(FACSCalipur)分析。
g)Ad-mCD40L-修饰的DCs的细胞因子生成
[0097]用下列腺病毒载体感染DCs:Ad-E7-ΔCtΔTmCD40L,AdmCD40L,Ad-E7-CD40L,AdGFP,AdGFP-mCD40L,AdE7或磷酸盐缓冲液(PBS),在MOI 100下,以2×105细胞/ml在24孔平板上铺板。在37℃下培养24小时后,收集上清液体(1ml),离心去除残渣。用酶联免疫吸附分析(enzyme-linked immunosorbent assay,ELISA)检测释放入培养基中的鼠IL-12或IFN-γ的水平,是分别应用小鼠IL-12p70或IFN-γR & D系统进行的。
h)DC迁移分析
[0098]用于研究DCs体外迁移的方案,与Romani等所应用的方法(21)是相同的。简言之,小鼠耳部的皮肤被分离为背面半部分和腹面半部分,在六孔双腔培养板(transwell no 3414,Costar)的内腔的底膜上,培养背面半部分。在外腔中,加载1×108载体颗粒。然后用培养液填满,这样使载体颗粒能够从下部浸润皮肤。从而,皮肤的表皮部分暴露给空气。培养物在37℃下培养3天。在血细胞计数器下,计数由皮肤迁移至培养基中的DCs的数目。
[0099]DC体内迁移实验,是如下所述进行的。在骨髓来源的DCs被与IL-3、GM-CSF培养6天之后,对它们加载CFDA SE体外活体染料。简言之,DCs与10μl的CFDA SE,在37℃下孵育15分钟。之后,沉淀树突状细胞,并重悬于新鲜的预热介质中达30分钟。将细胞与每种重组腺病毒载体混合,在MOI 200下。然后将载体注射入被检测小鼠的左侧腹。三天后,取出引流DCs注射点区的腋窝淋巴结,制成冰冻组织切片,并在免疫荧光显微镜下观察。
i)免疫组织化学染色
Ad-E7-ΔCtΔTmCD40L,Ad-ΔCtΔTmCD40L,AdE7-CD40L,AdE7-CD40L载体疫苗接种后3天,处死免疫接种的小鼠。对位于载体皮下注射部位的皮肤进行组织活检,在Oct溶液中包埋,切成5-μm的切片。将载玻片与大鼠抗MHC-II抗体,大鼠抗CD-40L抗体,和大鼠抗CD80多克隆抗体(Bioscience)进行孵育。之后,暴露于生物素化的山羊抗大鼠IgG抗体(1∶200稀释)和亲和素-生物素复合物(1∶100稀释;Vector,Burlingame,CA)中。然后将染色载玻片封固,并在荧光显微镜下予以研究。
j)ELISPOT分析细胞因子分布图
[00100]在ELISPOT分析中,也评价了免疫小鼠中的E7-特异性效应T细胞的存在,如以前所描述(26,27)。简要地,体外重刺激取自用各不同载体免疫接种的小鼠的脾细胞,是通过与TC-1细胞系(反应物与刺激物之比为25∶1),在10U/ml IL-2存在下,培养48小时而实施的。之后,将重刺激的脾细胞铺板在96-孔硝酸纤维素过滤平板中(在100毫升中有5×104个细胞)。将孔预先用大鼠抗小鼠抗-IFN-抗体或抗-IL-4抗体包被。在37℃/5%CO2中孵育24小时之后,然后用PBS洗板,检测生成细胞因子的脾细胞的存在情况,是通过在4℃下与生物素化的山羊抗大鼠二抗孵育后、与100ml/孔的辣根过氧化物酶亲和素D和150ml/孔的新鲜制备的底物缓冲液(0.4mg/ml 3-氨基-9-乙基-咔唑,溶解于总体积为50ml的0.05mol/L乙酸钠缓冲液中)以及20ml 30%H2O2孵育而进行检测。在解剖显微镜下,计数与产IFN细胞或产IL-4细胞相对应的染色点。
k)细胞毒性分析
[00101]为了这些研究,对小鼠皮下注射下列载体而进行免疫接种:Ad-E7-ΔCtΔTmCD40L(分泌型CD40配体),Ad-ΔCtΔTmCD40L(分泌型CD40配体),Ad-E7-CD40L(非分泌型CD40配体),Ad-CD40L(非分泌型CD40配体)和Ad-E7。载体在第0天和第7天皮下注射。作为对照,PBS在第0天和第7天皮下注射(对照小鼠)。来自于这些小鼠(注射载体或注射PBS)的脾的单核细胞,被用作细胞毒性研究的效应细胞来源。然后,将脾细胞悬液的等分部分与丝裂霉素C处理的TC-1细胞,在RPMI 1640培养基中共孵育,并补加10%FBS,50M2-巯基乙醇,2mM谷氨酰胺,1mM丙酮酸盐,和非必需氨基酸,在细胞培养条件下培养5天。为了进行细胞毒性分析,在含有5%FBS的培养基中,将5×103TC-1肿瘤细胞(靶细胞)与刺激的脾单核细胞(效应细胞),以效应细胞/靶细胞的比例100∶1,在37℃下孵育4小时。在孵育结束时,应用非放射细胞毒性分析试剂盒,检测单核细胞介导的细胞毒性。在培养上清中所释放的LDH,由ELISA板读出器测量。数据计算如下:
%细胞毒性=(EXR ESR TSR+CMB/TMR TSR VC+CMB)100,其中EXR为实验的LDH释放,ESR为效应细胞自发的LDH释放,TSR为靶细胞自发的LDH释放,TMR为靶细胞最大LDH释放,VC为体积校正,CMB为培养基LDH背景。统计:应用“学生”非配对t检验确定各组间在增殖和细胞毒性分析上的差异。统计学显著性的决定水平为0.01。
i)在小鼠模型中的体内效能实验
[00102]小鼠(每组5只或10只)皮下注射1×108PFU Ad-E7-ΔCtΔTmCD40L,Ad-E7,Ad-E7-CD40L,Ad-ΔCtΔTmCD40L或Ad-CD40L载体而免疫接种。一周后,用相同的腺病毒载体加强小鼠,方法如第一次接种。末次接种后一周,通过右腿部皮下注射5×105 TC-1细胞/小鼠来攻击(challeged)小鼠,而后每周监测2次。
[00103]从无肿瘤的供体C57BL/6小鼠上获取供体脾细胞,并经过磁性柱以富集总的T细胞。肿瘤生长如以前所述进行测量。
m)统计
[00104]所有参数使用“学生”检验分析,或者,使用AVONA、其后进行Scheffe程序以用于多重比较,象post-hoc分析(假性因果分析);所有显示的数据是以均数±均数标准误(S.E.)表示。
11.参考文献
1.Shortman K,and Caux C.Dendritic cell development:multiplepathways to nature’s adjuvants.Stem Cells 15:409-419,1997.
2.Steinbrink K,Graulich E,Kubsch S,Knop J,Enk AH.CD4(+)andCD8(+)anergic T cells induced by interleukin-10-treated humandendritic cells display antigen-specific suppressor activity.Blood99:2468-2476,2002.
3.Kusuhara M,Matsue K,Edelbaum D,Lofus J,Takashima A,Matsue H.Killing of 
Figure A20038010726900331
T cells by CD95L-transfected dendritic cells(DC):invivo study using killer DC-DC hybrids and CD4(+)T cells fromDO11.10 mice.Eur J Immunol 32:1035-1043,2002.
4.Gunzer M,Janich S,Varga G,Grabbe S.Dendritic cells and tumorimmunity.Semin Immunol 13:291-302,2001.
5.Luft T,Luetjens P,Hochrein H,Toy T,Masterman KA,Rizkalla M,Maliszewski C,Shortman K,Cebon J,and Maraskovsky E.IFN-alphaenhances CD40 ligand-mediated activation of immaturemonocyte-derived dendritic cells.Int Immunol 14:367-380.2002.
6.Skov S,Bonyhadi M,Odum N,and Ledbetter JA.IL-2 and IL-5regulate CD154 expression on activated CD4 T cells.JImmunol.164:3500-3505,2000.
7.Paglia P,et al.Murine dendritic cells loaded in vitro with solubleprotein prime cytotoxic T lymphocytes against tumor antigen in vivo(see comments).J Exp Med 183:317-322,1996.
8.Zitvogel L,et al.Therapy of murine tumots with tumot peptide-pulseddendritic cells:dependence on T cells,B7 co-stimulation,and T helpercell 1-associated cytokines.J Exp Med.183:87-97,1996.
9.Fong L,et al.Dendritic cells injected via difierent routes induceimmunity in cancer patients.J Immunol.166:4254-4259,2001.
10.Markowicz S,Engleman EG Granulocyte-macrophagecolony-stimulating factor promotes difierentiation and survival ofhuman peripheral blood dendritic cells in vitro.J Clin Invest.85:955-961,1990.
11.Hsu FJ,et al.Vaccination of patients with B-cell lymphoma usingautologous antigen-pulsed dendritic cells.Nat Med.2:52-58,1996.
12.Nestle FO,et al.Vaccination of melanoma patients with peptide-ortumor lysate-pulsed dendritic cells.Nat Med.4:328-332,1998.
13.Murphy GP,et al.Infusion of dendritic cells pulsed withHLA-A2-specific prostate-specific membrane antigen peptides:a phaseII prostate cancer vaccine trial involving patients withhormone-refractory metastatic disease.Prostate 38:73-78,1999.
14.Dhodapkar MV,et al.Rapid generation of broad T-cell immunity inhumans after a single injection of mature dendritic cells.J ClinInvest.104:173-180,1999.
15.Zwaveling S,Ferreira Mota SC,Nouta J,Johnson M,Lipford GB,Offringa R,van der Burg SH,and Melief CJ.Established humanpapillomavirus type 16-expressing tumors are effectively eradicatedfollowing vaccination with long peptides.J Immunol:350-358,2002.
16.Liu W,Gao F,Zhao K,Zhao W,Femando G,Thomas R,and Frazer I.Codon Modified Human Papillomavirus Type 16 E7 DNA VaccineEnhances Cytotoxic T-Lymphocyte Induction and Anti-tumor Activity.Virology 15:301-343,2002.
17.Lamikanra A,Pan ZK,Isaacs SN,Wu TC,and Paterson Y.Regressionof established human papillomavirus type 16(HPV-16)immortalizedtumors in vivo  by vaccinia viruses expression different forms ofHPV-16 E7 correlates with enhanced CD8(+)T-cell responses that hometo the tumor site.J Virol:9654-9664,2001.
18.Stanley MA.Human papillomavirus vaccines.Curr Opin Mol
Ther.4:15-22,2002.
19.Rudolf MP,Fausch SC,Da Silva DM,Kast WM.Human dendritic cellsare activated by chimeric human papillomavirus type-16 virus-likeparticles and induce epitope-specific human T cell responses in vitro.JImmunol.166:5917-5924,2001.
20.Bell D,Young JW,Banchereau J.Dendritic cells.AdvImmunol.72:255-324,1999.
21.Timmerman JM,Levy R.Dendritic cells vaccines for cancerimmunotherapy.Annual Rev Med.50:507-529,1999.
22.Palucka K,Banchereau J.Dendritic cells:a link between innate andadaptive immunity.J Clin Immunol.19:12-25,1999.
23.Ribas A,Butterfield LH,Amarnani SN,Dissette VB,Kim D,Meng WS,Miranda GA,Wang HJ,McBride WH,Glaspy JA,and Economou JS.CD40 cross-linking bypasses the absolute requirement for CD4 T cellsduring immunization with melanoma antigen gene-modified dendriticcells.Cancer Res.61:8787-8793,2001.
24.Border H,Anderson A,Odesa SK,Kermen T,and Liau LM.Recombinant adenovirus-transduced dendritic cell immunization in amurine model of central nervous system tumor.Neurosurg Focus9:1-8,2000.
25.Crook T,Morgenstem JP,Crawford L and Banks L.Continuedexpression of HPV-16 E7 protein is required for maintenance of thetransformed phenotype of cells co-transformed by HPV-16 plusEJ-ras.EMBO J.8:513-519,1989.
26.Larsson M,Jin X,Ramratnam B,Ogg GS,Engelmayer J,Demoitie MA,McMichael AJ,Cox WI,Steinman RM,Nixon D,and Bhardwaj N.Arecombinant vaccinia virus based ELISPOT assay detects highfrequencies of Pol-specific CD8 T cells in HIV-1-positive individuals.AIDS.13:767-777,1999.
27.Rininsland FH,Helms T,Asaad RJ,Boehm BO,and Tary-Lehmann M.Granzyme B ELISPOT assay for ex vivo measurements of T cellimmunity.J Immunol Methods.240:143-155,2000.
[00105]在说明书中,所提到的所有专利和出版物,是对本发明所属领域的普通技术人员的技术水平的指示。所有专利和出版物在此被并入,作为参考文献;这与每个个别出版物被特定地并单独地指出,作为参考文献而被并入的程度是相同的。
[00106]在此,例证性描述适用于本发明,本发明可以在以下情况下实施,当此处未具体公开的任一要素或多个要素,一个限制或多个限制不存在时。因此,例如,在此处的每个示例中,术语“含有(comprising)”“基本上由…组成(consisting essentially of)”“由…组成(consisting of)”中的任一一个可以由另两个词中的任一一个代替。所应用的术语和表达是作为描述的词语,而不是限制性词语来应用的;并且应用此类术语和表达,无意排除所显示和所描述特征的任意等价物或其部分;而是承认,在所要求保护的发明的范围内,可能有各种修饰。因此,应该理解,尽管已通过优选的实施方案和可选的特征揭示了本发明,本领域的技术人员可借助此处所揭示概念的修饰和变化,并且如所附权利要求所定义的,认为此类修饰和变化在本发明的范围之内。
[00107]其它的实施方式在下列权利要求中予以阐述。

Claims (34)

1.一种对肿瘤抗原产生免疫的腺病毒表达载体,所述载体含有编码多肽的转录单位,所述多肽,从氨基末端起,包括分泌信号序列、肿瘤抗原和CD40配体,其中所述肿瘤抗原与CD40配体不同,并且其中所述CD40配体缺少了全部或基本全部的跨膜结构域,从而使CD40L成为可分泌的。
2.权利要求1所述的腺病毒表达载体,其中所述肿瘤抗原是人肿瘤抗原。
3.权利要求2所述的腺病毒表达载体,其中所述肿瘤抗原是人乳头瘤病毒E7蛋白。
4.权利要求1所述的腺病毒表达载体,其中所述转录单位编码了处于所述肿瘤抗原和所述CD40配体之间的接头。
5.权利要求1所述的腺病毒表达载体,其中所述载体包含人巨细胞病毒启动子/增强子,以便控制转录单位的转录。
6.权利要求1所述的腺病毒表达载体,其中所述CD40配体是人CD40配体。
7.权利要求1所述的腺病毒表达载体,其中所述CD40配体缺少胞浆结构域。
8.权利要求1所述的腺病毒表达载体,其中该载体编码了包括从跨膜结构域的任意一端起始的不多于6个残基的CD40L。
9.权利要求1所述的腺病毒表达载体,其中所述载体不编码CD40配体的跨膜结构域。
10.权利要求6所述的腺病毒表达载体,其中所述CD40配体含有残基47-261。
11.权利要求6所述的腺病毒表达载体,其中所述CD40配体含有残基1-23和47-261。
12.权利要求1所述的腺病毒表达载体,其中所述载体在正常的人细胞中被呈现为非复制型的。
13.一种在个体中、对表达肿瘤抗原的细胞产生免疫反应的方法,包含向个体投与有效量的权利要求1所述腺病毒表达载体。
14.权利要求13所述的方法,其中所述肿瘤抗原是人乳头瘤病毒的E7蛋白。
15.权利要求13所述的方法,其中所述CD40配体是人CD40配体。
16.权利要求13所述的方法,其中所述癌细胞是宫颈癌细胞。
17.权利要求16所述的方法,其中所述肿瘤抗原是人乳头瘤病毒的E7蛋白。
18.权利要求13所述的方法,其中所述投与被重复。
19.权利要求13所述的方法,其中所述免疫反应包括产生对抗所述肿瘤相关抗原的细胞毒性CD8+T细胞。
20.权利要求13所述的方法,其中在投与之后,所述载体被细胞吸收,随后这些细胞分泌由转录单位编码的融合蛋白。
21.权利要求20所述的方法,其中所述融合蛋白通过CD40配体胞外结构域的相互作用形成同源三聚体。
22.一种治疗患有表达肿瘤抗原的癌症的个体的方法,包含向个体投与有效量的权利要求1所述腺病毒表达载体。
23.权利要求22所述的方法,其中所述肿瘤抗原是人乳头瘤病毒的E7蛋白。
24.权利要求22所述的方法,其中所述CD40配体是人CD40配体。
25.权利要求22所述的方法,其中所述癌症是宫颈癌。
26.权利要求25所述的方法,其中所述肿瘤抗原是人乳头瘤病毒的E7蛋白。
27.权利要求22所述的方法,其中所述投与被重复。
28.权利要求22所述的方法,其中所述免疫反应包括产生对抗所述肿瘤相关抗原的细胞毒性CD8+T细胞。
29.权利要求22所述的方法,其中在投与之后,所述载体被细胞吸收,随后分泌由转录单位编码的融合蛋白。
30.权利要求29所述的方法,其中所述融合蛋白,通过CD40配体胞外结构域的相互作用,形成同源三聚体。
31.一种在感染人乳头瘤病毒的对象中产生免疫的方法,包括向个体投与有效量的权利要求1所述腺病毒表达载体,其中所述肿瘤抗原是人乳头瘤病毒的E6或E7蛋白。
32.权利要求31所述的方法,其中所述CD40配体是人CD40配体。
33.权利要求31所述的方法,其中所述投与被重复。
34.权利要求31所述的方法,其中所述免疫反应包括产生对抗所述肿瘤相关抗原的细胞毒性CD8+T细胞。
CNA200380107269XA 2002-11-12 2003-11-12 腺病毒载体疫苗 Pending CN1756845A (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US42528602P 2002-11-12 2002-11-12
US60/425,286 2002-11-12

Publications (1)

Publication Number Publication Date
CN1756845A true CN1756845A (zh) 2006-04-05

Family

ID=32312964

Family Applications (1)

Application Number Title Priority Date Filing Date
CNA200380107269XA Pending CN1756845A (zh) 2002-11-12 2003-11-12 腺病毒载体疫苗

Country Status (10)

Country Link
US (5) US8119117B2 (zh)
EP (1) EP1563074B1 (zh)
JP (1) JP2006506072A (zh)
KR (1) KR101114784B1 (zh)
CN (1) CN1756845A (zh)
AU (1) AU2003295502A1 (zh)
BR (1) BR0316158A (zh)
CA (1) CA2509980C (zh)
MX (1) MXPA05005051A (zh)
WO (1) WO2004044176A2 (zh)

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101550181B (zh) * 2008-04-03 2011-08-03 清华大学深圳研究生院 人乳头瘤病毒16型e7蛋白功能拮抗肽及其编码基因与应用
CN101696231B (zh) * 2009-09-29 2012-09-05 刘日廷 人乳头瘤病毒58型e6蛋白的抗原表位最小基序肽
CN107530450A (zh) * 2015-03-20 2018-01-02 宾夕法尼亚大学理事会 具有作为佐剂的cd40配体的疫苗
CN108701172A (zh) * 2016-02-12 2018-10-23 南托米克斯有限责任公司 高通量识别患者特异性新表位作为癌症免疫疗法的治疗靶点
CN109069598A (zh) * 2016-02-11 2018-12-21 河谷控股Ip有限责任公司 双靶向腺病毒皮下递送
CN109890408A (zh) * 2016-05-27 2019-06-14 埃特彼塞斯公司 新表位疫苗组合物及其使用方法
CN109906086A (zh) * 2016-08-02 2019-06-18 河谷细胞有限公司 树突细胞的转染及其方法
CN112135902A (zh) * 2018-03-21 2020-12-25 瓦洛治疗公司 癌症疗法
TWI817113B (zh) * 2020-05-06 2023-10-01 薩摩亞商柏沛生醫股份有限公司 用於針對癌症及傳染病之免疫療法之融合蛋白

Families Citing this family (22)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
AU2003295502A1 (en) * 2002-11-12 2004-06-03 Yucheng Chang Adenoviral vector vaccine
JP2007535304A (ja) 2003-11-24 2007-12-06 シドニー キンメル キャンサー センター ムチン抗原ワクチン
US8828957B2 (en) * 2003-12-11 2014-09-09 Microvax, Llc Methods for generating immunity to antigen
US20060286074A1 (en) * 2005-05-31 2006-12-21 Yucheng Tang Methods for immunotherapy of cancer
CA2628837C (en) 2005-11-07 2018-11-27 Sidney Kimmel Cancer Center Cd40 ligand fusion protein vaccine
WO2007119896A1 (en) * 2006-04-19 2007-10-25 Postech Foundation Compositions comprising hpv polypeptides and immunoenhancement peptides for the treatment and prevention of cervical cancer
US10293040B1 (en) * 2006-11-06 2019-05-21 Microvax, Llc Pharmaceutical compositions and methods of blocking Bacillus anthracis
CN106377767A (zh) 2008-05-26 2017-02-08 卡迪拉保健有限公司 麻疹‑人乳头瘤组合疫苗
US20150231215A1 (en) 2012-06-22 2015-08-20 Randolph J. Noelle VISTA Antagonist and Methods of Use
AU2011230537C1 (en) * 2010-03-26 2018-08-02 Trustees Of Dartmouth College Vista regulatory T cell mediator protein, vista binding agents and use thereof
CN105246507B (zh) 2012-09-07 2019-01-25 达特茅斯大学理事会 用于诊断和治疗癌症的vista调节剂
DK3087098T3 (da) 2013-12-24 2020-06-08 Janssen Pharmaceutica Nv Anti-Vista-antistoffer og -fragmenter
EP3992210A1 (en) 2014-01-13 2022-05-04 Baylor Research Institute Novel vaccines against hpv and hpv-related diseases
US11154603B1 (en) 2015-11-10 2021-10-26 Microvax, Llc Burkholderia pseudomallei composition
US10149899B1 (en) 2015-12-11 2018-12-11 Microvax, Llc Composition and method against C-difficile
WO2017137830A1 (en) 2016-02-12 2017-08-17 Janssen Pharmaceutica Nv Anti-vista (b7h5) antibodies
WO2017181139A2 (en) 2016-04-15 2017-10-19 Michael Molloy Anti-human vista antibodies and use thereof
WO2017192924A1 (en) * 2016-05-04 2017-11-09 Fred Hutchinson Cancer Research Center Cell-based neoantigen vaccines and uses thereof
US11839655B2 (en) 2017-09-01 2023-12-12 Microvax, Llc Combination cancer therapy
CN113573729A (zh) 2019-01-10 2021-10-29 詹森生物科技公司 前列腺新抗原及其用途
IL293051A (en) 2019-11-18 2022-07-01 Janssen Biotech Inc calr and jak2 mutant-based vaccines and their uses
US20230241193A1 (en) * 2022-02-03 2023-08-03 Microvax, Llc mRNA VACCINE DESIGN USING MULTIPLE INTERACTING IMMUNO-STIMULATORY PATHWAYS, FOR CANCER AND INFECTIOUS DISEASES

Family Cites Families (36)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CA1054937A (en) 1975-01-28 1979-05-22 Gursaran P. Talwar Antipregnancy vaccine
DE3431140A1 (de) 1984-08-24 1986-03-06 Behringwerke Ag, 3550 Marburg Enhancer fuer eukaryotische expressionssysteme
US4608251A (en) 1984-11-09 1986-08-26 Pitman-Moore, Inc. LHRH analogues useful in stimulating anti-LHRH antibodies and vaccines containing such analogues
AU613590B2 (en) 1986-11-19 1991-08-08 Bristol-Myers Squibb Company Hybridomas producing monoclonal antibodies to new mucin epitopes
US6133029A (en) 1988-03-21 2000-10-17 Chiron Corporation Replication defective viral vectors for infecting human cells
US5962406A (en) 1991-10-25 1999-10-05 Immunex Corporation Recombinant soluble CD40 ligand polypeptide and pharmaceutical composition containing the same
US5981724A (en) 1991-10-25 1999-11-09 Immunex Corporation DNA encoding CD40 ligand, a cytokine that binds CD40
FR2705686B1 (fr) 1993-05-28 1995-08-18 Transgene Sa Nouveaux adénovirus défectifs et lignées de complémentation correspondantes.
US6080569A (en) 1993-06-24 2000-06-27 Merck & Co., Inc. Adenovirus vectors generated from helper viruses and helper-dependent vectors
US5874085A (en) 1993-11-10 1999-02-23 Henry M. Jackson Foundation For The Advancement Of Military Medicine Vaccine for enhanced production of IgA antibodies
US5658785A (en) 1994-06-06 1997-08-19 Children's Hospital, Inc. Adeno-associated virus materials and methods
WO1996011279A2 (en) 1994-10-03 1996-04-18 The Government Of The United States Of America, Represented By The Secretary, Department Of Health And Human Services Enhanced immune response by introduction of cytokine gene and/or costimulatory molecule b7 gene in a recombinant virus expressing system
US5641665A (en) 1994-11-28 1997-06-24 Vical Incorporated Plasmids suitable for IL-2 expression
GB9501079D0 (en) 1995-01-19 1995-03-08 Bioinvent Int Ab Activation of T-cells
ES2264136T3 (es) 1995-02-21 2006-12-16 Cantab Pharmaceuticals Research Limited Preparaciones virales, vectores, inmunogenos y sus vacunas.
JPH11502222A (ja) 1995-03-23 1999-02-23 キャンタブ ファーマシューティカルズ リサーチ リミティド 遺伝子供給用ベクター
US6096534A (en) 1995-05-22 2000-08-01 The United States Of America As Represented By The Department Of Health And Human Services Retrovirus vectors derived from avian sarcoma leukosis viruses permitting transfer of genes into mammalian cells
US6224870B1 (en) 1997-01-24 2001-05-01 Genitrix, Ltd. Vaccine compositions and methods of modulating immune responses
US6017527A (en) 1996-07-10 2000-01-25 Immunex Corporation Activated dendritic cells and methods for their activation
CA2259140C (en) 1996-07-10 2008-09-30 Immunex Corporation Method of activating dendritic cells
KR100780158B1 (ko) 1996-10-23 2007-11-27 더 트러스티스 오브 더 유니버시티 오브 펜실바니아 면역 치료법 및 개량 백신
AU5253998A (en) 1996-11-13 1998-06-03 Board Of Regents, The University Of Texas System Diminishing viral gene expression by promoter replacement
US5891432A (en) 1997-07-29 1999-04-06 The Immune Response Corporation Membrane-bound cytokine compositions comprising GM=CSF and methods of modulating an immune response using same
US20020068048A1 (en) * 1997-09-05 2002-06-06 Patrick A. Dreyfus Method for the treatment or diagnosis of human pathologies with disseminated or difficult to access cells or tissues
DE69928556T2 (de) * 1998-09-29 2006-08-10 The Uab Research Foundation, Birmingham Immunmodulation mittels genetischer modifikation von dendritischen zellen und b-zellen
US6440944B2 (en) 1998-10-16 2002-08-27 Genvec, Inc. Methods of administering adenoviral vectors
KR100922809B1 (ko) 1999-05-06 2009-10-21 웨이크 포리스트 유니버시티 면역 반응을 유발하는 항원을 동정하기 위한 조성물과 방법
AU1084901A (en) * 1999-10-14 2001-04-23 Martha S. Hayden-Ledbetter Dna vaccines encoding antigen linked to a domain that binds cd40
US20030202963A1 (en) * 2000-10-12 2003-10-30 Cornell Research Foundation, Inc. Method of treating cancer
WO2002066053A2 (en) * 2001-01-04 2002-08-29 Immunex Corporation Method of treating or preventing disease characterized by cryptococcus neoformans infection
US6923958B2 (en) 2002-03-02 2005-08-02 The Scripps Research Institute DNA vaccines encoding CEA and a CD40 ligand and methods of use thereof
WO2003093295A2 (en) * 2002-04-30 2003-11-13 University Of North Carolina At Chapel Hill Secretion signal vectors
EP1542731A4 (en) * 2002-07-22 2006-03-01 Vectorlogics Inc TARGETED ADENOVIRAL VECTOR HAVING AN IMMUNOGLOBULIN FIXATION DOMAIN AND ITS APPLICATIONS
AU2003295502A1 (en) * 2002-11-12 2004-06-03 Yucheng Chang Adenoviral vector vaccine
JP2007535304A (ja) * 2003-11-24 2007-12-06 シドニー キンメル キャンサー センター ムチン抗原ワクチン
US8828957B2 (en) * 2003-12-11 2014-09-09 Microvax, Llc Methods for generating immunity to antigen

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101550181B (zh) * 2008-04-03 2011-08-03 清华大学深圳研究生院 人乳头瘤病毒16型e7蛋白功能拮抗肽及其编码基因与应用
CN101696231B (zh) * 2009-09-29 2012-09-05 刘日廷 人乳头瘤病毒58型e6蛋白的抗原表位最小基序肽
CN107530450A (zh) * 2015-03-20 2018-01-02 宾夕法尼亚大学理事会 具有作为佐剂的cd40配体的疫苗
CN109069598A (zh) * 2016-02-11 2018-12-21 河谷控股Ip有限责任公司 双靶向腺病毒皮下递送
CN108701172A (zh) * 2016-02-12 2018-10-23 南托米克斯有限责任公司 高通量识别患者特异性新表位作为癌症免疫疗法的治疗靶点
CN109890408A (zh) * 2016-05-27 2019-06-14 埃特彼塞斯公司 新表位疫苗组合物及其使用方法
CN109906086A (zh) * 2016-08-02 2019-06-18 河谷细胞有限公司 树突细胞的转染及其方法
CN112135902A (zh) * 2018-03-21 2020-12-25 瓦洛治疗公司 癌症疗法
TWI817113B (zh) * 2020-05-06 2023-10-01 薩摩亞商柏沛生醫股份有限公司 用於針對癌症及傳染病之免疫療法之融合蛋白

Also Published As

Publication number Publication date
US8119117B2 (en) 2012-02-21
CA2509980C (en) 2012-12-18
CA2509980A1 (en) 2004-05-27
US20120276148A1 (en) 2012-11-01
US20070269409A1 (en) 2007-11-22
BR0316158A (pt) 2005-09-27
US20120195924A1 (en) 2012-08-02
KR20060010711A (ko) 2006-02-02
KR101114784B1 (ko) 2012-02-27
WO2004044176A2 (en) 2004-05-27
US20140080208A1 (en) 2014-03-20
AU2003295502A8 (en) 2004-06-03
AU2003295502A1 (en) 2004-06-03
WO2004044176A3 (en) 2004-08-26
WO2004044176A8 (en) 2005-09-09
US8540979B2 (en) 2013-09-24
US11027006B2 (en) 2021-06-08
JP2006506072A (ja) 2006-02-23
EP1563074A2 (en) 2005-08-17
EP1563074B1 (en) 2018-01-10
US9458221B2 (en) 2016-10-04
US8236295B1 (en) 2012-08-07
US20170065705A1 (en) 2017-03-09
MXPA05005051A (es) 2006-03-10
EP1563074A4 (en) 2006-04-19

Similar Documents

Publication Publication Date Title
CN1756845A (zh) 腺病毒载体疫苗
US11732017B2 (en) HLA-A24 agonist epitopes of MUC1-C oncoprotein and compositions and methods of use
EP2968493B1 (en) Improved poxviral vaccines
TWI555531B (zh) 用以治療b型肝炎病毒(hbv)感染之組成物
KR20180082485A (ko) B형 간염 바이러스에 대한 백신
Liu et al. Induction of CD8 T cells by vaccination with recombinant adenovirus expressing human papillomavirus type 16 E5 gene reduces tumor growth
WO2018237115A2 (en) CHIMERIC VIRUS-LIKE PARTICLES AND THEIR USES AS SPECIFIC REDIRECTORS OF ANTIGENS OF IMMUNE RESPONSES
CA3073310A1 (en) Combination therapy for treating cancer with an intravenous administration of a recombinant mva and an antibody
Wu et al. Enhanced anti-tumor therapeutic efficacy of DNA vaccine by fusing the E7 gene to BAFF in treating human papillomavirus-associated cancer
JP2023503857A (ja) がんを治療するための腫瘍内及び/または静脈内投与用組み換えmvaウイルス
HU227667B1 (en) Novel expression vectors and uses thereof
CN117203342A (zh) 人乳头瘤病毒疫苗及其用于hpv相关疾病的用途
CN1634978A (zh) Sars病毒hla-a2限制性表位多肽及其应用

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
ASS Succession or assignment of patent right

Owner name: YELU UNIVERSITY

Free format text: FORMER OWNER: DEISSEROTH ALBERT B.

Effective date: 20060512

C10 Entry into substantive examination
C41 Transfer of patent application or patent right or utility model
SE01 Entry into force of request for substantive examination
TA01 Transfer of patent application right

Effective date of registration: 20060512

Address after: American Connecticut

Applicant after: YALE University

Address before: California, USA

Applicant before: Deisseroth Albert B.

C02 Deemed withdrawal of patent application after publication (patent law 2001)
WD01 Invention patent application deemed withdrawn after publication

Open date: 20060405