CN1745622A - A kind of breeding method of laying duck - Google Patents
A kind of breeding method of laying duck Download PDFInfo
- Publication number
- CN1745622A CN1745622A CN 200410066344 CN200410066344A CN1745622A CN 1745622 A CN1745622 A CN 1745622A CN 200410066344 CN200410066344 CN 200410066344 CN 200410066344 A CN200410066344 A CN 200410066344A CN 1745622 A CN1745622 A CN 1745622A
- Authority
- CN
- China
- Prior art keywords
- egg
- laying
- breeding
- duck
- ducks
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- 238000009395 breeding Methods 0.000 title claims abstract description 47
- 241000272525 Anas platyrhynchos Species 0.000 title claims abstract description 29
- 230000001488 breeding effect Effects 0.000 claims abstract description 33
- 230000002068 genetic effect Effects 0.000 claims abstract description 33
- 210000004369 blood Anatomy 0.000 claims abstract description 22
- 239000008280 blood Substances 0.000 claims abstract description 22
- 238000004519 manufacturing process Methods 0.000 claims abstract description 22
- 108090000623 proteins and genes Proteins 0.000 claims abstract description 16
- 102000004169 proteins and genes Human genes 0.000 claims abstract description 15
- XUIIKFGFIJCVMT-GFCCVEGCSA-N D-thyroxine Chemical compound IC1=CC(C[C@@H](N)C(O)=O)=CC(I)=C1OC1=CC(I)=C(O)C(I)=C1 XUIIKFGFIJCVMT-GFCCVEGCSA-N 0.000 claims abstract description 13
- 229940034208 thyroxine Drugs 0.000 claims abstract description 13
- XUIIKFGFIJCVMT-UHFFFAOYSA-N thyroxine-binding globulin Natural products IC1=CC(CC([NH3+])C([O-])=O)=CC(I)=C1OC1=CC(I)=C(O)C(I)=C1 XUIIKFGFIJCVMT-UHFFFAOYSA-N 0.000 claims abstract description 13
- 102100036475 Alanine aminotransferase 1 Human genes 0.000 claims abstract description 11
- 108010082126 Alanine transaminase Proteins 0.000 claims abstract description 11
- 102000009027 Albumins Human genes 0.000 claims abstract description 10
- 108010088751 Albumins Proteins 0.000 claims abstract description 10
- AUYYCJSJGJYCDS-LBPRGKRZSA-N Thyrolar Chemical compound IC1=CC(C[C@H](N)C(O)=O)=CC(I)=C1OC1=CC=C(O)C(I)=C1 AUYYCJSJGJYCDS-LBPRGKRZSA-N 0.000 claims abstract description 10
- 239000003550 marker Substances 0.000 claims abstract description 9
- 238000000034 method Methods 0.000 claims abstract description 9
- 210000002966 serum Anatomy 0.000 claims abstract description 9
- 235000013601 eggs Nutrition 0.000 claims description 43
- 235000018102 proteins Nutrition 0.000 claims description 14
- 108010003415 Aspartate Aminotransferases Proteins 0.000 claims description 10
- 102000004625 Aspartate Aminotransferases Human genes 0.000 claims description 10
- 229940035722 triiodothyronine Drugs 0.000 claims description 9
- 238000012937 correction Methods 0.000 claims description 2
- 241000272517 Anseriformes Species 0.000 claims 7
- 244000144977 poultry Species 0.000 abstract description 7
- 230000017448 oviposition Effects 0.000 abstract description 6
- 238000005516 engineering process Methods 0.000 abstract description 5
- 102000004218 Insulin-Like Growth Factor I Human genes 0.000 abstract 1
- 108090000723 Insulin-Like Growth Factor I Proteins 0.000 abstract 1
- 241000272522 Anas Species 0.000 description 37
- 235000013594 poultry meat Nutrition 0.000 description 6
- 230000000694 effects Effects 0.000 description 5
- 102000004190 Enzymes Human genes 0.000 description 4
- 108090000790 Enzymes Proteins 0.000 description 4
- 230000036750 egg laying performance Effects 0.000 description 4
- 238000004458 analytical method Methods 0.000 description 3
- 241000287828 Gallus gallus Species 0.000 description 2
- 241000286209 Phasianidae Species 0.000 description 2
- 235000013330 chicken meat Nutrition 0.000 description 2
- 238000013178 mathematical model Methods 0.000 description 2
- 238000011160 research Methods 0.000 description 2
- 230000007812 deficiency Effects 0.000 description 1
- 230000008030 elimination Effects 0.000 description 1
- 238000003379 elimination reaction Methods 0.000 description 1
- 210000003746 feather Anatomy 0.000 description 1
- 238000012252 genetic analysis Methods 0.000 description 1
- 238000012214 genetic breeding Methods 0.000 description 1
- 238000001727 in vivo Methods 0.000 description 1
- 230000014759 maintenance of location Effects 0.000 description 1
- 238000005259 measurement Methods 0.000 description 1
- 238000012544 monitoring process Methods 0.000 description 1
- 238000009400 out breeding Methods 0.000 description 1
- 238000000611 regression analysis Methods 0.000 description 1
- 238000012360 testing method Methods 0.000 description 1
Landscapes
- Measuring Or Testing Involving Enzymes Or Micro-Organisms (AREA)
Abstract
Description
技术领域Technical field
本发明涉及种家禽育种技术,具体说涉及一种蛋鸭的选育技术。The invention relates to a poultry breeding technology, in particular to a breeding duck breeding technology.
技术背景 technical background
家禽育种工作是一项投入大、时间长、工作难度高而具有重要意义的工作,尤其是蛋鸭的育种,传统的选种工作是以后裔测定法为主,这种方法必须通过每天测定蛋鸭日龄的各种性状,预测其后代的各种生产性能性状后,对蛋鸭进行选育,因此存在着:第一工作量极为巨大,通常需对指定蛋鸭的500天生长期进行每天的生产性状指标测定,花费大量的劳动力;第二,后裔测定需大量的淘汰,经济损失巨大,而且需要大量的育种禽舍,投资较大;第三,育种时间长,大大延长了世代间隔,降低育种效率;第四,通过后裔测定后,优秀后裔的亲代已至2岁以上,已过了最好的留种时期,再进行扩群,影响后代的体质以及各项生产性能的遗传潜力的发挥的问题。为此,许多研究者不断探索新的更为有效的育种方法,以改变上述家禽育种技术的不足。Poultry breeding is a work of great investment, long time, high difficulty and great significance, especially the breeding of laying ducks. The traditional selection work is mainly based on the descendant determination method. According to the various traits of the age of ducks, after predicting the various production performance traits of their offspring, the laying ducks are selected and bred. Therefore, there is: the first workload is extremely huge, and it is usually necessary to carry out daily monitoring of the 500-day growth period of the designated laying ducks. The determination of production traits requires a lot of labor; second, the determination of descendants requires a large number of eliminations, which leads to huge economic losses, and requires a large number of breeding poultry houses, which requires a large investment; third, the long breeding time greatly extends the generation interval and reduces Breeding efficiency; fourth, after passing the offspring test, the parents of the excellent offspring are over 2 years old and have passed the best seed retention period, and then expand the group, which will affect the physique of the offspring and the exertion of the genetic potential of various production performances The problem. For this reason, many researchers continue to explore new and more effective breeding methods to change the above-mentioned deficiencies in poultry breeding techniques.
国际上利用生化遗传标记技术在鸡、火鸡、鹌鹑等家禽的育种上有了一些基本尝试,但是尚未找出有规律性和有代表性的育种方法,在蛋鸭上这种生化育种技术尚为空白。国内在这方面的工作起步很晚,仅在鸡上作些初步的前期研究,而在蛋鸭上未做研究。而我国是蛋鸭第一大国,总饲养量超过其它国家的总和,达3亿多羽,而且蛋鸭品种繁多,有较多的地方良种,具有丰富的优良基因库,蛋鸭育种是我国畜禽育种中的一个重要的组成部分,从中央到地方各级机构立项的较多,因此,蛋鸭生化育种技术的建立具有特别重要的意义。Internationally, some basic attempts have been made to breed poultry such as chickens, turkeys, and quails by using biochemical genetic marker technology, but no regular and representative breeding methods have been found. is blank. Domestic work in this area started very late, and only some preliminary preliminary research was done on chickens, but no research was done on laying ducks. my country is the largest country for laying ducks, and the total number of breeding ducks exceeds the sum of other countries, reaching more than 300 million feathers. Moreover, there are many varieties of laying ducks, more local breeds, and rich and excellent gene pools. An important part of poultry breeding, there are many projects approved by institutions at all levels from the central to local levels. Therefore, the establishment of laying duck biochemical breeding technology is of special significance.
发明内容Contents of Invention
本发明的目的就是在于提供一种能缩短蛋鸭育种世代间隔、加速遗传进展的蛋鸭的选育方法。The object of the present invention is to provide a breeding method for laying ducks that can shorten the breeding generation interval of laying ducks and accelerate genetic progress.
本发明所述的蛋鸭的选育方法是通过对蛋鸭进行个体早期生化指标及产蛋性状测定,并进行产蛋性状的个体和家系分析,建立蛋鸭遗传标记育种方法,其具体发明如下:The breeding method of laying ducks described in the present invention is to establish the genetic marker breeding method of laying ducks by carrying out individual early biochemical indicators and laying traits measurement on laying ducks, and carry out individual and family analysis of laying traits, and its specific invention is as follows :
一种蛋鸭的选育方法,首先根据不同品种的蛋鸭母鸭不同日龄的血清甲状腺素T4、三碘甲腺原氨酸T3、胰岛素样生长因子IGF1、白蛋白BP、总蛋白TP、谷草转氨酶GOT、谷丙转氨酶GPT等7项血液生化遗传标记指标和蛋鸭产蛋性状产蛋量、总蛋重、平均蛋重之间的回归关系,选5项指标建立蛋鸭的产蛋性状与血液中生化遗传标记指标的回归方程,然后再进行选育。A breeding method for laying ducks, firstly according to serum thyroxine T 4 , triiodothyronine T 3 , insulin-like growth factor IGF 1 , albumin BP, total protein The regression relationship between 7 blood biochemical genetic markers such as TP, aspartate aminotransferase GOT, and alanine aminotransferase GPT, and egg production traits of laying ducks, egg production, total egg weight, and average egg weight, and 5 indicators were selected to establish the production of laying ducks. Egg traits and the regression equation of biochemical genetic markers in blood, and then carry out breeding.
其优选的回归方程为Its preferred regression equation is
总产蛋数=a1BP+a2TP+a3T3+a4IGF1+a5T4+k1 Total number of eggs=a 1 BP+a 2 TP+a 3 T 3 +a 4 IGF 1 +a 5 T 4 +k 1
总蛋重=b1BP+b2TP+b3T3+b4IGF1+b5T4+k2 Total Egg Weight=b 1 BP+b 2 TP+b 3 T 3 +b 4 IGF 1 +b 5 T 4 +k 2
平均蛋重=c1BP+c2TP+c3GOT+c4GPT+k3 Average egg weight = c 1 BP + c 2 TP + c 3 GOT + c 4 GPT + k 3
其中的an(n=1~5)表示总产蛋数的回归系数,bn(n=1~5)表示总蛋重的回归系数,cn(n=1~4)表示平均蛋重的回归系数,k1、k2、k3表示校正系数。Among them, a n (n=1~5) represents the regression coefficient of the total number of eggs, b n (n=1~5) represents the regression coefficient of the total egg weight, c n (n=1~4) represents the average egg weight The regression coefficient of , k 1 , k 2 , k 3 represent correction coefficients.
所述的蛋鸭品种为康贝尔鸭或绍兴鸭。The breed of laying duck is Campbell duck or Shaoxing duck.
本发明蛋鸭的选育方法在蛋鸭育种工作中对蛋鸭青龄期生长过程的性状生化标记指标进行遗传分析,根据实际测定的蛋鸭生产性状和生化遗传标记指标数,经过相关回归分析,确定影响蛋鸭生产性状的生化遗传标记指标,利用推导计算的性状系数与影响蛋鸭生产性状的生化遗传标记指标之间的关系,建立预测蛋鸭生产性能的选育方法,这种方法可用于蛋鸭育种的早期或间接选择,以缩短世代间隔,克服限性性状和某些活体难以测定的性状的选择,加速遗传进展,提高育种工作效率。The breeding method of laying ducks of the present invention carries out genetic analysis on the traits and biochemical markers of laying ducks in the growth process of laying ducks in the breeding work of laying ducks, and performs correlation regression analysis according to the actual measured production traits of laying ducks and the number of biochemical genetic markers , to determine the biochemical genetic markers that affect the production traits of laying ducks, and use the relationship between the derived and calculated trait coefficients and the biochemical genetic markers that affect the production traits of laying ducks to establish a breeding method for predicting the production performance of laying ducks. This method can be used It is used in the early or indirect selection of laying duck breeding to shorten the generation interval, overcome the selection of limiting traits and some traits that are difficult to measure in vivo, accelerate genetic progress, and improve breeding efficiency.
具体实施方式 Detailed ways
实施例1:康贝尔鸭的选育Embodiment 1: Breeding of Campbell duck
根据不同日龄的康贝尔蛋鸭血液中生化指标性状的测定,确定康贝尔蛋鸭母鸭不同日龄的血清甲状腺素T4、三碘甲腺原氨酸T3、胰岛素样生长因子IGF1、白蛋白BP、总蛋白TP、谷草转氨酶GOT、谷丙转氨酶GPT等7项影响后期产蛋性能的血液生化遗传标记指标,然后再实际测定不同日龄的血清甲状腺素T4、三碘甲腺原氨酸T3、胰岛素样生长因子IGF1、白蛋白BP、总蛋白TP、谷草转氨酶GOT、谷丙转氨酶GPT等7项血液生化遗传标记指标的产蛋性能的血液生化遗传标记指标数据,在这一过程中同时利用回归统计数学模型确立蛋鸭母鸭不同日龄的血清甲状腺素T4、三碘甲腺原氨酸T3、胰岛素样生长因子IGF1、白蛋白BP、总蛋白TP、谷草转氨酶GOT、谷丙转氨酶GPT等7项影响后期产蛋性能的血液生化遗传标记指标的性状系数,根据性状系数与血液生化遗传标记指标之间的关系,列出回归方程,建立蛋鸭母鸭和蛋鸭产蛋性状间的生化遗传标记育种方法,预测后期的产蛋性状包括:总产蛋数、总蛋重、平均蛋重,对蛋鸭进行选育。According to the determination of biochemical indicators in the blood of Kangbei ducks of different ages, the serum levels of thyroxine T 4 , triiodothyronine T 3 , and insulin-like growth factor IGF 1 in Kangbei ducks of different ages were determined. , albumin BP, total protein TP, aspartate aminotransferase GOT, alanine aminotransferase GPT and other 7 blood biochemical genetic markers that affect egg production performance in the later stage, and then actually measure serum thyroxine T 4 and triiodothyronine at different ages The blood biochemical genetic marker data of seven blood biochemical genetic marker indicators including orthosine T 3 , insulin-like growth factor IGF 1 , albumin BP, total protein TP, aspartate aminotransferase GOT, and glutamic alanine aminotransferase GPT, etc. In this process, the regression statistical mathematical model was used to establish the serum thyroxine T 4 , triiodothyronine T 3 , insulin-like growth factor IGF 1 , albumin BP, total protein TP, The trait coefficients of 7 blood biochemical genetic markers affecting egg production performance, such as aspartate transaminase GOT and alanine aminotransferase GPT, etc., according to the relationship between the trait coefficients and blood biochemical genetic markers, the regression equation is listed to establish the laying duck and female duck The breeding method of biochemical genetic markers between egg-laying ducks and laying ducks, predicting later egg-laying traits include: total number of eggs, total egg weight, average egg weight, and breeding of laying ducks.
测定分析表明,康贝尔鸭中,与总产蛋量相关始终较强的血液生化遗传育种指标中,总蛋白TP居首,其次则为三碘甲腺原氨酸T3;而对于白蛋白BP和甲状腺素T4,则在2月龄以后相关趋强,至于在370日龄测得的两种酶的相关强度也较强;康贝尔鸭中,100天之前的所测前5个血液生化指标与500日龄总蛋重的相关均较强,而370日龄测得的两种酶活性与其的相关为中等强度;与康贝尔蛋鸭500日龄平均蛋重相关较强的生化指标,为30~100天的白蛋白BP、总蛋白TP及胰岛素样生长因子IGF1以及370天的谷草转氨酶GOT活性。得到下面的回归方程:Determination and analysis showed that among the blood biochemical genetic breeding indicators that are always strongly related to the total egg production in Campbell ducks, the total protein TP ranked first, followed by triiodothyronine T 3 ; and for albumin BP and thyroxine T 4 , the correlation tends to be stronger after 2 months of age, and the correlation strength of the two enzymes measured at 370 days of age is also strong; The correlation between the indicators and the total egg weight at 500 days is strong, while the correlation between the two enzyme activities measured at 370 days is moderate; Albumin BP, total protein TP and insulin-like growth factor IGF 1 at 30-100 days and aspartate aminotransferase GOT activity at 370 days. The following regression equation is obtained:
总产蛋数=5.8636BP+2.6104TP+119.229T3-44.7674IGF1-8.12T4+428.483Total egg production=5.8636BP+2.6104TP+119.229T 3 -44.7674IGF 1 -8.12T 4 +428.483
总蛋重=421.0093BP+114.3941TP+5810.858T3-2246.836IGF1-248.4498T4+22327.44Total egg weight = 421.0093BP+114.3941TP+5810.858T 3 -2246.836IGF 1 -248.4498T 4 +22327.44
平均蛋重=0.2776BP-0.1997TP+1.825GOT+0.7626GPT+49.1899Average egg weight = 0.2776BP-0.1997TP+1.825GOT+0.7626GPT+49.1899
根据上述的方程我们就可以通过康贝尔鸭的生化遗传标记指标,预测康贝尔鸭的后期产蛋性能,选择产蛋性能好的康贝尔鸭进行育种,可以缩短育种的世代间隔,加速遗传进展,提高育种工作效率,在30-100天内即可完成对优良品种的选择。According to the above equation, we can predict the later egg-laying performance of the Cambell duck through the biochemical genetic marker indicators of the Campbell duck, and select the Cambell duck with good egg-laying performance for breeding, which can shorten the breeding generation interval and accelerate genetic progress. The efficiency of breeding work is improved, and the selection of fine varieties can be completed within 30-100 days.
实施例2:绍兴鸭的选育Embodiment 2: the breeding of Shaoxing duck
根据不同日龄的绍兴蛋鸭血液中生化指标性状的测定,确定绍兴蛋鸭母鸭不同日龄的血清甲状腺素T4、三碘甲腺原氨酸T3、胰岛素样生长因子IGF1、白蛋白BP、总蛋白TP、谷草转氨酶GOT、谷丙转氨酶GPT等7项影响后期产蛋性能的血液生化遗传标记指标,然后再实际测定不同日龄的血清甲状腺素T4三碘甲腺原氨酸T3、胰岛素样生长因子IGF1、白蛋白BP、总蛋白TP、谷草转氨酶GOT、谷丙转氨酶GPT等7项血液生化遗传标记指标的产蛋性能的血液生化遗传标记指标数据,在这一过程中同时利用回归统计数学模型确立蛋鸭母鸭不同日龄的血清甲状腺素T4、三碘甲腺原氨酸T3、胰岛素样生长因子IGF1、白蛋白BP、总蛋白TP、谷草转氨酶GOT、谷丙转氨酶GPT等7项影响后期产蛋性能的血液生化遗传标记指标的性状系数,根据性状系数与血液生化遗传标记指标之间的关系,列出回归方程,建立蛋鸭母鸭和蛋鸭产蛋性状间的生化遗传标记育种方法,预测后期的产蛋性状包括:总产蛋数、总蛋重、平均蛋重,对蛋鸭进行选育。According to the determination of biochemical indicators in the blood of Shaoxing laying ducks of different ages, the serum thyroxine T 4 , triiodothyronine T 3 , insulin-like growth factor IGF 1 , white Protein BP, total protein TP, aspartate aminotransferase GOT, alanine aminotransferase GPT and other 7 blood biochemical genetic markers that affect egg production performance in the later stage, and then actually measure serum thyroxine T 4 triiodothyronine at different ages T 3 , insulin-like growth factor IGF 1 , albumin BP, total protein TP, aspartate aminotransferase GOT, alanine aminotransferase GPT and other 7 blood biochemical genetic marker indicators of egg production performance blood biochemical genetic marker data, in this process At the same time, the regression statistical mathematical model was used to establish the serum thyroxine T 4 , triiodothyronine T 3 , insulin-like growth factor IGF 1 , albumin BP, total protein TP, and aspartate aminotransferase GOT in laying ducks and ducks at different ages. , alanine aminotransferase, GPT and other 7 blood biochemical genetic markers that affect the egg production performance in the later stage. According to the relationship between the trait coefficient and the blood biochemical genetic markers, the regression equation is listed to establish the laying duck female duck and laying duck The breeding method of biochemical genetic markers among egg-laying traits predicts later egg-laying traits including: total number of eggs, total egg weight, average egg weight, and breeding of laying ducks.
测定分析表明,与总产蛋数相关始终较强的则为总蛋白TP,其次为甲状腺素T4,而酶活性的关系则以谷丙转氨酶GPT较强,用2月龄和100天的总蛋白TP和甲状腺素T4指标,辅之于100天的胰岛腺素IGF1及370日龄的谷丙转氨酶GPT;与500日龄总蛋重相关较强的主要有2月龄和100天的总蛋白TP、胰岛素样生长因子IGF1及甲状腺素T4,而两种酶活性在370日龄也表现出与总蛋重的较强相关;500日龄平均蛋重与30~100天的5个血液生化指标及370天的谷草转氨酶活性GOT均有较强的相关。得到下面的回归方程:The determination and analysis showed that the total protein TP was always stronger in relation to the total egg production, followed by thyroxine T 4 , and the enzyme activity was stronger in alanine aminotransferase GPT. Protein TP and thyroxine T 4 indicators, supplemented by insulin IGF 1 at 100 days and alanine aminotransferase GPT at 370 days; those with a strong correlation with total egg weight at 500 days are mainly 2-month-old and 100-day-old Total protein TP, insulin-like growth factor IGF 1 and thyroxine T 4 , and the activities of the two enzymes also showed a strong correlation with total egg weight at 370 days of age; There is a strong correlation between the two blood biochemical indicators and the aspartate aminotransferase activity GOT at 370 days. The following regression equation is obtained:
总产蛋数=0.6806BP+1.9858TP-97.5917T3+6.8746IGF1-11.2514T4+128.9014Total egg production=0.6806BP+1.9858TP-97.5917T 3 +6.8746IGF 1 -11.2514T 4 +128.9014
总蛋重=-168.1651BP-96.8024TP+2563.052T3-807.2065IGF1+1452.26T4+26608.01Total egg weight = -168.1651BP-96.8024TP+2563.052T 3 -807.2065IGF 1 +1452.26T 4 +26608.01
平均蛋重=0.1826BP-0.2178TP+0.0078GOT-0.0113GPT+57.9482Average egg weight = 0.1826BP-0.2178TP+0.0078GOT-0.0113GPT+57.9482
根据上述的方程我们就可以通过绍兴鸭的生化遗传标记指标,预测绍兴鸭的后期产蛋性能,选择产蛋性能好的绍兴鸭进行育种,可以缩短育种的世代间隔,加速遗传进展,提高育种工作效率,在30-100天内即可完成对优良品种的选择。According to the above equation, we can use the biochemical genetic markers of Shaoxing ducks to predict the later egg-laying performance of Shaoxing ducks. Selecting Shaoxing ducks with good egg-laying performance for breeding can shorten the breeding generation interval, accelerate genetic progress, and improve breeding work. Efficiency, the selection of good varieties can be completed within 30-100 days.
Claims (5)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CNB2004100663449A CN100415084C (en) | 2004-09-09 | 2004-09-09 | A kind of breeding method of laying duck |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CNB2004100663449A CN100415084C (en) | 2004-09-09 | 2004-09-09 | A kind of breeding method of laying duck |
Publications (2)
Publication Number | Publication Date |
---|---|
CN1745622A true CN1745622A (en) | 2006-03-15 |
CN100415084C CN100415084C (en) | 2008-09-03 |
Family
ID=36165471
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CNB2004100663449A Expired - Fee Related CN100415084C (en) | 2004-09-09 | 2004-09-09 | A kind of breeding method of laying duck |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN100415084C (en) |
Cited By (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN101892316A (en) * | 2010-07-23 | 2010-11-24 | 李宁 | Method and kit for testing carcass trait of duck flock |
CN102524167A (en) * | 2011-12-15 | 2012-07-04 | 浙江省农业科学院 | Method for indirect breeding of goose egg yield |
CN103497886A (en) * | 2013-09-13 | 2014-01-08 | 江苏省家禽科学研究所 | Kit for joint detection on mRNA (messenger Ribose Nucleic Acid) expression quantity of IGF-I (Insulin-like Growth Factor) and IGF-IR (Insulin-like Growth Factor I Receptor) genes of ducks and using method of kit |
CN109169502A (en) * | 2018-08-29 | 2019-01-11 | 扬州大学 | A kind of method of indirect breeding high yield East Zhejiang province female goose |
CN109496987A (en) * | 2018-12-30 | 2019-03-22 | 江苏省家禽科学研究所 | A kind of selection improving local egg articles system egg number |
CN113403202A (en) * | 2021-05-28 | 2021-09-17 | 重庆市中药研究院 | Method for rapidly breeding gastrodia elata armillaria mellea |
CN113564265A (en) * | 2021-08-27 | 2021-10-29 | 浙江省农业科学院 | Method for identifying age of duck based on quantitative PCR |
CN114414750A (en) * | 2022-01-21 | 2022-04-29 | 江苏省家禽科学研究所 | A method to improve poultry production efficiency by rapidly assessing egg freshness |
-
2004
- 2004-09-09 CN CNB2004100663449A patent/CN100415084C/en not_active Expired - Fee Related
Cited By (12)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN101892316A (en) * | 2010-07-23 | 2010-11-24 | 李宁 | Method and kit for testing carcass trait of duck flock |
CN101892316B (en) * | 2010-07-23 | 2012-11-14 | 李宁 | Method and kit for testing carcass trait of duck flock |
CN102524167A (en) * | 2011-12-15 | 2012-07-04 | 浙江省农业科学院 | Method for indirect breeding of goose egg yield |
CN103497886A (en) * | 2013-09-13 | 2014-01-08 | 江苏省家禽科学研究所 | Kit for joint detection on mRNA (messenger Ribose Nucleic Acid) expression quantity of IGF-I (Insulin-like Growth Factor) and IGF-IR (Insulin-like Growth Factor I Receptor) genes of ducks and using method of kit |
CN103497886B (en) * | 2013-09-13 | 2015-08-19 | 江苏省家禽科学研究所 | The test kit of duck IGF-I and IGF-I R gene mRNA expression amount joint-detection and using method |
CN109169502A (en) * | 2018-08-29 | 2019-01-11 | 扬州大学 | A kind of method of indirect breeding high yield East Zhejiang province female goose |
CN109169502B (en) * | 2018-08-29 | 2021-04-27 | 扬州大学 | Method for indirectly breeding high-yield Zhedong female goose |
CN109496987A (en) * | 2018-12-30 | 2019-03-22 | 江苏省家禽科学研究所 | A kind of selection improving local egg articles system egg number |
CN113403202A (en) * | 2021-05-28 | 2021-09-17 | 重庆市中药研究院 | Method for rapidly breeding gastrodia elata armillaria mellea |
CN113564265A (en) * | 2021-08-27 | 2021-10-29 | 浙江省农业科学院 | Method for identifying age of duck based on quantitative PCR |
CN114414750A (en) * | 2022-01-21 | 2022-04-29 | 江苏省家禽科学研究所 | A method to improve poultry production efficiency by rapidly assessing egg freshness |
CN114414750B (en) * | 2022-01-21 | 2024-09-10 | 江苏省家禽科学研究所 | A method to improve poultry production efficiency by quickly assessing egg freshness |
Also Published As
Publication number | Publication date |
---|---|
CN100415084C (en) | 2008-09-03 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN106480189B (en) | A kind of disease-resistant prevalent variety cultivation method of fish based on full-length genome selection | |
CN1745622A (en) | A kind of breeding method of laying duck | |
CN108949907A (en) | One kind SNP marker primer pair relevant to Suhuai pig intramuscular fat content and its application | |
CN106408114A (en) | Application of multivariate linear regression model to predicting chicken abdominal fat quantity or breeding low fat chicken | |
CN112725462B (en) | The combination and application of SNP molecular markers associated with body weight and body size of Longshengfeng chicken based on whole genome sequencing | |
CN112746110B (en) | SNP molecular marker combination related to Guangxi hemp chicken body size based on whole genome sequencing screening and application | |
CN103563849B (en) | A kind of breeding method of high-yield black-skin chicken strain | |
TW200925274A (en) | Method for selecting the egg production rate of the poultry | |
CN108998541A (en) | One kind SNP marker primer pair relevant to Suhuai pig leg hip circumference character and its application | |
CN110214753B (en) | Method for breeding tetraploid golden crown fish and establishment method and application of strain | |
CN105028260A (en) | Breeding method for shellfish meat trait new strain | |
CN113846172B (en) | SNP Molecular Markers Related to Nitrite Tolerance Traits of Litopenaeus vannamei and Its Application | |
CN115896298A (en) | Molecular Marker Primers for X Chromosome of Siniperca sinensis and Its Application | |
CN108165639B (en) | One kind molecular labeling relevant to fleshy duck fodder transformation efficiency character and its application | |
CN100340164C (en) | Chicken breeding method | |
CN117322372A (en) | A molecular-assisted breeding method for aquatic animals based on group matching | |
CN109943639B (en) | SNP molecular markers for selecting sperm storage ability of hens and their applications | |
CN116356043A (en) | Molecular marker and kit for breeding macrobrachium rosenbergii with cold resistance and application of molecular marker and kit | |
CN111631174B (en) | Breeding method of Cyprinus carpiod | |
CN114717331A (en) | Poultry SNP molecular marker selection and application thereof | |
CN110551824B (en) | SNP molecular marker related to sperm storage capacity of hen and application thereof | |
CN105219771A (en) | The molecule marker that chicken frizzled feather proterties is relevant and application thereof | |
CN106701935B (en) | A Rapid Aggregation Breeding Method for Multi-target Traits of High-quality Broilers | |
CN101743930A (en) | A high-quality broiler breeding method with high inosinic acid content | |
CN100338993C (en) | Spring pakchoi bolting resistant property identification method |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
C06 | Publication | ||
PB01 | Publication | ||
C10 | Entry into substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
C14 | Grant of patent or utility model | ||
GR01 | Patent grant | ||
C17 | Cessation of patent right | ||
CF01 | Termination of patent right due to non-payment of annual fee |
Granted publication date: 20080903 Termination date: 20110909 |