CN1721999B - 辐射产生器件、光刻装置、器件制造方法及由此制造的器件 - Google Patents

辐射产生器件、光刻装置、器件制造方法及由此制造的器件 Download PDF

Info

Publication number
CN1721999B
CN1721999B CN2005100848191A CN200510084819A CN1721999B CN 1721999 B CN1721999 B CN 1721999B CN 2005100848191 A CN2005100848191 A CN 2005100848191A CN 200510084819 A CN200510084819 A CN 200510084819A CN 1721999 B CN1721999 B CN 1721999B
Authority
CN
China
Prior art keywords
injection stream
nozzle
electrode
radiation
discharge
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
CN2005100848191A
Other languages
English (en)
Other versions
CN1721999A (zh
Inventor
K·N·科舍勒夫
V·V·伊瓦诺夫
E·D·科罗布
G·G·祖卡维斯维里
R·R·加亚佐夫
V·M·克里特森
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
ASML Netherlands BV
Original Assignee
ASML Netherlands BV
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by ASML Netherlands BV filed Critical ASML Netherlands BV
Publication of CN1721999A publication Critical patent/CN1721999A/zh
Application granted granted Critical
Publication of CN1721999B publication Critical patent/CN1721999B/zh
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05GX-RAY TECHNIQUE
    • H05G2/00Apparatus or processes specially adapted for producing X-rays, not involving X-ray tubes, e.g. involving generation of a plasma
    • H05G2/001X-ray radiation generated from plasma
    • H05G2/003X-ray radiation generated from plasma being produced from a liquid or gas
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/70Microphotolithographic exposure; Apparatus therefor
    • G03F7/70008Production of exposure light, i.e. light sources
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05GX-RAY TECHNIQUE
    • H05G2/00Apparatus or processes specially adapted for producing X-rays, not involving X-ray tubes, e.g. involving generation of a plasma
    • H05G2/001X-ray radiation generated from plasma
    • H05G2/003X-ray radiation generated from plasma being produced from a liquid or gas
    • H05G2/005X-ray radiation generated from plasma being produced from a liquid or gas containing a metal as principal radiation generating component

Landscapes

  • Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Optics & Photonics (AREA)
  • Plasma & Fusion (AREA)
  • General Physics & Mathematics (AREA)
  • Exposure And Positioning Against Photoresist Photosensitive Materials (AREA)
  • X-Ray Techniques (AREA)
  • Exposure Of Semiconductors, Excluding Electron Or Ion Beam Exposure (AREA)
  • Plasma Technology (AREA)
  • Bakery Products And Manufacturing Methods Therefor (AREA)

Abstract

一种用于基于放电产生辐射源的装置,包括阴极和阳极。该阴极和阳极材料以流态提供。当装置在使用中时,材料形成等离子体箍缩。任选的是,可以使用喷嘴来提供该材料。阴极和/或阳极可形成平坦表面。可以延长材料的轨道。可以使用激光更容易地引起放电。可将激光引导到阳极或阴极或位于阳极和阴极之间的单独材料上。

Description

辐射产生器件、光刻装置、器件制造方法及由此制造的器件
技术领域
本发明涉及一种辐射源、一种光刻装置,一种器件制造方法及由此制造的器件。
背景技术
光刻装置是一种将所需图案作用于基底的目标部分上的机器。光刻装置可以用于例如集成电路(IC)的制造。在这种情况下,构图部件,如掩模,可用于产生对应于IC一个单独层的电路图案,该图案可以成像在具有辐射敏感材料(抗蚀剂)层的基底(例如硅晶片)的目标部分上(例如包括部分或者多个管芯)。一般地,单个基底将包含依次曝光的相邻目标部分的网格。已知的光刻装置包括步进器,其中通过将全部图案一次曝光在目标部分上而辐射每一目标部分,还包括扫描器,其中通过投射光束沿给定方向(“扫描”方向)扫描图案、并同时沿与该方向平行或者反平行的方向同步扫描基底来辐射每一目标部分。在如上所述的光刻装置中,存在用于产生辐射的器件或辐射源。
在光刻装置中,能够成像到基底上的特征的尺寸受投射辐射的波长限制。为了产生具有较高器件密度的集成电路,并因此获得较高的工作速度,希望能够对较小的特征成像。而目前最通用的光刻投影装置采用由汞灯或受激准分子激光器产生的紫外光,已经提出使用大约13nm的较短波长的辐射。这种辐射称为远紫外,也称作XUV或EUV辐射。缩写“XUV”一般指的是十分之几纳米到几十纳米的波长范围,结合软x射线和真空UV范围,而术语“EUV”通常连同光刻(EUVL)一起使用,指的是从大约5至20nm的辐射带,即XUV范围的一部分。
目前,两种主要类型的XUV辐射产生器件或源是脉冲激光产生的等离子体(LPP)和放电产生的等离子体(DPP)。在LPP源中,通常将一个或多个脉冲激光束聚焦在液体或固体喷射流上以产生发射所需辐射的等离子体。通常通过迫使适当材料以高速通过喷嘴来产生这种喷射流。这种装置在美国专利US6002744中描述,该专利公开了包括真空室的LPP EUV源,利用喷嘴将液体喷射流注入该真空室中。
一般来说,LPP源与DPP源相比具有几个优点。在LPP源中,热等离子体与源表面之间的距离相对较大,降低了对源的各部件的损坏,由此减少了碎片的产生。热等离子体与源表面之间的距离相对较大,减少了这些表面的发热,则又降低了对于冷却的要求,并减少了由该源发射的红外辐射的量。这种结构的相对敞开的几何形状允许在很大的角度范围内收集辐射,提高了源的效率。
相反,DPP源通过阳极和阴极之间的物质,例如气体或蒸气的放电产生等离子体,并且然后可通过脉冲电流流过等离子体引起的欧姆加热而产生高温放电等离子体。在这种情况下,通过高温放电等离子体发射所需的辐射。这种装置在2003年9月17日以本申请的申请人的名字提交的欧洲专利申请03255825.6中描述。所述申请描述了一种辐射源,该辐射源提供在电磁波谱的EUV范围内的辐射(即具有5-20nm的波长)。该辐射源包括几个等离子体放电元件,每个元件包括阴极和阳极。在操作中,通过形成如EP03255825.6的图5A至5E中描述的箍缩来产生EUV辐射。该申请公开了利用电势和/或将激光束照射到适当表面上来触发箍缩。所用的激光通常具有比LPP源中的激光更低的功率。
但是一般来说,DPP源与LPP源相比具有几个优点。在DPP源中,源相对于输入电功率的效率较高,与LPP的0.05%相比,DPP大约为0.5%。DPP源也具有较低的成本,并需要较少的,不太昂贵的零件更换。
发明内容
在本发明的一个方面中,提供一种DPP辐射产生器件或源,其将DPP辐射产生器件或源的优点和LPP源的许多优点结合起来。这种源特别适合于产生EUV辐射,但也可以用于产生EUV范围之外的辐射,例如X射线。
根据本发明的一个实施例,辐射产生器件包括第一喷嘴,用于提供第一材料的第一喷射流,其中第一材料的第一喷射流用作第一电极;第二电极;和点火源,该点火源用于触发第一电极和第二电极之间的放电。
如这里所用的,“电极”应该指的是阳极和/或阴极。根据本发明的辐射产生器件提供较少的电极侵蚀,表示稳定的恢复电极排列,即稳定连续的辐射源。不需要额外的措施来除去产生的热,因为喷射流可将其处理掉。这将导致更稳定的电极几何形状。该喷射流可包括处于流态的材料或包含相对较少的处于固态的材料的载流流体。使用用于触发放电的激光是所希望,因为按照这种方式可以更准确地限定放电位置,并且与在主要或附加触发电极上的电压脉冲引起的辐射源相比,获得更高的转换效率(CE)。稳定的电极几何形状和放电位置的更准确限定相结合产生发射功率相对恒定且更加均匀的辐射的辐射源。喷嘴很容易得到,可通过电极材料的流动有效地冷却喷嘴。目前可用的原型使用含氟材料。但是,氟不能用于冷却目的,因为与例如Sn、In或Li相比氟的蒸发热很小。本发明中可采用后者。
在另一个实施例中,点火源用于通过第一材料的蒸发来触发放电。在该实施例中,放电材料和电极材料是相同的。因此,不需要附加的材料。
在另一个实施例中,器件包括第二喷嘴,该喷嘴设置为提供第二喷射流,第二喷射流包括第二材料,第二喷射流用作第二电极,点火源用于通过第一材料和第二材料中至少一种的蒸发来触发放电。由于通过喷射流形成阳极和阴极,因此辐射产生器件甚至更有效地处理热量排除,并将具有更稳定的几何形状。该实施例也提供所上面讨论的那些特征。
在另一个实施例中,该器件包括第二喷嘴,该喷嘴用于提供第二喷射流,第二喷射流用作第二电极,该器件进一步包括第三材料的物质,点火源设置为通过第三材料的蒸发来触发放电。这为阳极和/或阴极提供了一种不同于第三(放电)材料的材料选择。
在另一个实施例中,第一喷嘴用于基本上沿着直线轨道提供第一材料。那么由电极产生的可能的碎片粒子将具有沿该直线轨道的冲量(impluse)。但是,产生的辐射或多或少是各向同性的,相当大量的辐射没有沿着该直线轨道引导。因此,大部分辐射包括较少的碎片。在另一个实施例中,该器件包括至少一个另外的喷嘴,其设置为提供至少一个另外的喷射流,第一喷射流和至少一个另外的喷射流用于提供基本上平坦形状的电极。这为有效的激光触发有利地提供了平坦(高度与宽度和长度相比相对较小)电极表面,和电极系统的小电感,这能够使在喷射流材料的容许总消耗下一个脉冲中的少量电能工作。
在另一个实施例中,第一材料包括锡(Sn)、铟(In)、锂(Li)及其任何组合中至少一种。已经证实这些材料在实际中很好地工作。
在本发明的再一个实施例中,光刻装置包括用于产生辐射的器件,该器件包括第一喷嘴,该第一喷嘴用于提供第一材料的第一喷射流,其中第一材料的第一喷射流用作第一电极;第二电极;和点火源,该点火源用于触发第一电极和第二电极之间的放电。光刻装置还包括用于提供辐射束的照射系统,该辐射束来自用于产生辐射的器件所产生的辐射;用于支撑构图部件的支座,该构图部件用于赋予辐射束带图案的横截面;用于保持基底的基底台;和用于将带图案的束投射到基底的目标部分上的投影系统。
在本发明的又一个实施例中,一种器件制造方法包括通过利用包括第一喷嘴的器件产生辐射,第一喷嘴用于提供第一材料的第一喷射流,其中第一材料的第一喷射流用于作为第一电极,第二电极和点火源,该点火源用于触发第一电极和第二电极之间的放电;提供来自产生的辐射的辐射束;赋予辐射束带图案的横截面;以及将带图案的辐射束投射到基底的目标部分上。
在本发明的再一个实施例中,一种由该器件制造方法制造的器件。
在本申请中,本发明的光刻装置具体用于制造IC,但是应该理解这里描述的光刻装置可能具有其它应用,例如,它可用于制造集成光学系统、用于磁畴存储器的引导和检测图案、液晶显示器(LCD)、薄膜磁头等等。应该理解,在这种可替换的用途范围中,这里任何术语“晶片”或者“管芯”的使用可以认为分别与更普通的术语“基底”或者“目标部分”同义。在曝光之前或之后,可以利用例如轨迹器(一种通常将抗蚀剂层作用于基底并将已曝光的抗蚀剂显影的工具)或者计量工具或检验工具对这里提到的基底进行处理。在可应用的地方,这里公开的内容可应用于这种和其他基底处理工具。另外,例如为了形成多层IC,可以对基底进行多次处理,因此这里所用的术语基底也可以指的是已经包含多个已处理层的基底。
这里使用的术语“辐射”和“束”包含所有类型的电磁辐射,包括紫外(UV)辐射(例如具有365,248,193,157或者126nm的波长)和远紫外(EUV)辐射(例如具有5-20nm的波长),以及粒子束,如离子束或者电子束。
这里使用的术语“构图部件”应广义地解释为涉及能够给辐射束赋予带图案的截面的装置,以便在基底的目标部分上形成图案。应该注意,赋予投射光束的图案可以不与在基底的目标部分上的所需图案完全一致。一般地,赋予投射光束的图案与在目标部分中形成的器件如集成电路的特殊功能层相对应。
构图部件可以是透射的或是反射的。构图部件的示例包括掩模,可编程反射镜阵列和可编程LCD控制板。掩模在光刻中是公知的,它包括如二进制型、交替相移型、和衰减相移型的掩模类型,以及各种混合掩模类型。可编程反射镜阵列的一个例子是利用微小反射镜的矩阵排列,每个反射镜能够独立地倾斜,从而沿不同方向反射入射的辐射束;按照这种方式,对反射光束进行构图。
支座支撑例如暴露构图部件的重量。根据构图部件的定位、光刻装置的设计,以及例如构图部件是否保持在真空环境中的其他条件,在某种程度上保持构图部件。该支座可利用机械夹紧、真空或其他夹紧技术,例如在真空条件下的静电夹紧。支座可以是一个框架或工作台,例如,其根据需要可以是固定的或者是可移动的,并且可以确保构图部件位于例如相对于投影系统的所需位置处。这里的任何术语“中间掩模版”或者“掩模”的使用可认为与更普通的术语“构图部件”同义。
这里使用的术语“投影系统”应广义地解释为包含各种类型的投影系统,包括折射光学装置,反射光学装置,和反折射系统,如适合于所用的曝光辐射,或者适合于其他方面,如使用浸液或使用真空。这里任何术语“透镜”的使用可以认为与更普通的术语“投影系统”同义。
照射系统还可以包括各种类型的光学部件,包括用于引导、整形或者控制辐射投射光束的折射,反射和反折射光学部件,这些部件在下文还可共同地或者单独地称作“透镜”。
光刻装置可以具有两个(二级)或者多个基底台(和/或多个掩模台)。在这种“多级式”器件中,可以并行使用这些附加台,或者可以在一个或者多个台上进行准备步骤,而一个或者多个其它台用于曝光。
光刻装置也可以是这样一种类型,其中基底浸入具有相对较高折射率的液体中,如水,以填充投影系统的最后一个元件与基底之间的空间。浸液也可以应用于光刻装置中的其他空间,例如,掩模与投影系统的第一个元件之间。湿浸法在本领域是公知的,用于增大投影系统的数值孔径。
附图说明
现在仅仅通过例子的方式,参照附图描述本发明的各个实施方案,在图中,相应的附图标记表示相应的部件,其中:
图1表示根据本发明一个实施方案的光刻装置;
图2表示根据现有技术的辐射源;
图3a表示根据本发明一个实施方案的辐射源;
图3b示出沿图3a中的喷射流的IIIb-IIIb线的横截面;
图4表示在根据本发明的辐射源的一个实施方案中喷射流几何形状的横截面;
图5a表示根据本发明另一个实施方案的辐射源;以及
图5b表示沿图5a中Vb-Vb线的横截面。
具体实施方式
图1示意性地表示了根据本发明具体实施方案的光刻装置1。该装置1包括:照射系统(照射器)IL,用于提供辐射束PB,例如UV或EUV辐射。支座(例如掩模台)MT支撑构图部件(例如掩模)MA,并与将该构图部件相对于投影系统PL精确定位的第一定位装置PM连接。基底台(例如晶片台)WT保持基底(例如涂敷抗蚀剂的晶片)W,并与将基底相对于投影系统PL精确定位的第二定位装置PW连接。投影系统(例如反射投影透镜)PL通过构图部件MA将赋予束PB的图案成像在基底W的目标部分C(例如包括一个或多个管芯)上。
如这里指出的,该装置属于反射型(例如采用反封掩模或如上面指出的可编程反射镜阵列)。可替换的是,该装置可以是透射型(例如采用透射掩模)。
如本领域已知的照射器IL接收来自辐射产生器件SO的辐射。该辐射产生器件和光刻装置1可以是单独的机构,例如当辐射产生器件是等离子体放电源时。在这种情况下,不认为辐射产生器件是构成光刻装置的一部分,通常借助于例如包括适当的聚光镜和/或光谱纯度滤光器的辐射收集器将辐射从辐射产生器件SO传送到照射器IL。在其他情况下,辐射产生器件可以是装置的组成部分,例如当辐射产生器件是汞灯时。辐射产生器件SO和照射器IL可称作辐射系统。
照射器IL可以包括调节束的角的强度分布的器件。一般地,至少可以调节照射器光瞳平面内强度分布的外和/或内径向量(通常分别称为σ-外和σ-内)。照射器提供辐射的调节束PB,在该光束的横截面具有所需的均匀度和强度分布。
束PB入射到保持在掩模台MT上的掩模MA上。通过掩模MA反射后,束PB通过投影系统PL,该投影系统将束聚焦在基底W的目标部分C上。在第二定位装置PW和位置传感器IF2(例如干涉测量装置)的辅助下,基底台WT可以精确地移动,以在束PB的光路中定位不同的目标部分C。类似地,例如在从掩模库中机械取出掩模MA后或在扫描期间,可以使用第一定位装置PM和位置传感器IF1(例如干涉测量装置)将掩模MA相对束PB的光路进行精确定位。一般地,借助于长行程模块(粗略定位)和短行程模块(精确定位)来实现目标台MT和WT的移动,所述目标台MT和WT构成定位装置PM和PW的一部分。可是,在步进器的情况下(与扫描装置相对),掩模台MT可以只与短行程致动装置连接,或者固定。掩模MA与基底W可以利用掩模对准标记M1,M2和基底对准标记P1,P2进行对准。
所示的装置可以按照下面优选的模式使用:
1.在步进模式中,掩模台MT和基底台WT基本保持不动,赋予束的整个图案被一次投射到目标部分C上(即单次静态曝光)。然后基底台WT沿X和/或Y方向移动,以便能够曝光不同的目标部分C。在步进模式中,曝光场(exposurefield)的最大尺寸限制在单次静态曝光中成像的目标部分C的尺寸。
2.在扫描模式中,同时扫描掩模台MT和基底台WT,并将赋予束的图案投射到目标部分C上(即,单次动态曝光)。基底台WT相对于掩模台MT的速度和方向由投影系统PL的放大(缩小)和图像反转特性来确定。在扫描模式中,曝光场的最大尺寸限制单次动态曝光中目标部分的宽度(沿非扫描方向),而扫描移动的长度确定沿目标部分的扫描方向的高度。
3.在其他模式中,掩模台MT基本上保持静止,并保持可编程构图部件,并且在将赋予束的图案投射到目标部分C上时移动或扫描基底台WT。在这种模式中,一般采用脉冲辐射源,并且在基底台WT的每次移动之后或者在扫描期间连续的两次辐射脉冲之间,根据需要更新可编程的构图部件。这种操作方式可以很容易地应用于无掩模光刻中,所述无掩模光刻利用如上面提到的可编程反射镜阵列型的可编程构图部件。
还可以采用在上述所用模式基础上的组合和/或变化,或者采用与所用的完全不同的模式。
图2示出根据现有技术的辐射源SO′,例如美国专利US6002744中所描述的辐射源。辐射源SO′包括外壳201。喷嘴203、激光器207和容器217位于外壳201中。喷嘴203与软管219或其他供给装置相连。由外壳201中的喷嘴203提供材料的喷射流205。激光器207将辐射束209入射到喷射流205上。在喷射流205更远的下游处,该喷射流205分解为小滴215,容器217收集这些小滴。由产生所需类型辐射213(例如软X射线/EUV)的激光器207产生等离子体211。
参考图3a和3b,根据本发明且与图1的光刻装置一起使用的辐射产生器件SO″包括带两个喷嘴31的外壳32,这两个喷嘴与包括电容器的高电压源41相连。喷嘴31提供小的导电流体喷射流33a、33k,例如包括Sn、In或Li或者其任何组合。这里的流体指的是处于液态的材料,也指的是浸入作为载体的流体中的微小固体粒子。
通过使用如Sn、In或Li或者其组合的导电材料,喷射流33a、33k与电压源41电接触,并由此形成电极。喷射流之一33a具有正电压,用作阳极,而另一个喷射流33k具有负电压,用作阴极。喷射流33a、33k中的每一个都终止于各自的收集流体的容器35a、35k中。喷射流33a、33k的长度选择为足够长,例如对于0.1-1mm的喷射流厚度选择大约3-30cm的长度,从而使喷射流33a、33k在容器35a、35k附近分别分解为独立的小滴48、47。这将避免在容器35a、35k和高电压源41之间的直接电接触。应该理解,可以提供一个公共的容器来代替图3a中所示的两个独立的容器35a、35k。
在外壳32中提供脉冲激光源37。其典型的参数为:对于Sn放电来说每个脉冲的能量Q约为10-100mJ,对于Li放电来说大约为1-10mJ,脉冲持续时间τ=1-200ns,激光波长λ=0.15-10μm,频率为1-100kHz。激光源37产生指向喷射流33k的激光束38,点燃喷射流33k的导电材料。由此,使喷射流33k的材料在适当的规定位置蒸发和预电离,所述规定位置即激光束38照射喷射流33k的位置。从该位置产生朝向喷射流33a的放电40。可通过激光源37控制放电40的准确位置。这对于辐射产生器件的稳定性,即均匀性是所希望的,并且将对辐射产生器件的辐射功率的恒定性有影响。该放电40在喷射流33k和喷射流33a之间产生电流。该电流感生磁场。磁场产生箍缩(pinch)或压缩45,其中通过碰撞产生离子和自由电子。一些电子下降到比箍缩中原子的导带更低的带,并因此产生辐射39。当从Sn、In或Li或其组合中选择喷射流33a、33k的材料时,辐射39包括大量EUV辐射。辐射39向各个方向发射,并可通过图1的照射器IL中的辐射收集器进行收集。激光器37可提供脉冲激光束38。
试验表明,辐射39至少在与Z轴所成的角θ=45-105°时是各向同性的。Z轴指的是与箍缩对准并通过喷射流33a、33k的轴,角θ是相对于Z轴的角。辐射39在其他角度同样可以是各向同性的。喷嘴31提供的压力p从公知的关系p=
Figure 051848191_0
ρv2得出,其中p指的是由喷嘴喷射的材料的密度,v指的是材料的速度。由此得出结论:对于速度v=10-100m/s的Sn或In来说,p=4-400大气压,对于速度v=10-100m/s的Li来说,p=0.2-20大气压。
喷嘴31可具有0.3-3mm直径的圆形横截面。但是,根据喷嘴31的特殊形状,可使喷射流33a、33k具有如图3b中所示的方形横截面,或者其他多边形横截面。此外,可能希望采用具有如图4中所示的平坦形状表面的喷射流33a、33k中的一个或两个。
图4表示在前面观察到的几个喷射流33k。喷射流33k彼此非常接近设置,从而有效产生平坦形状的电极表面。这通过安装彼此靠近的几个喷嘴来实现。可以使用平坦形状的阴极表面,但是平坦形状的阳极表面也是可以的。测试表明,与平坦的阳极表面相比,平坦的阴极表面具有更好的、几乎双倍的转换效率(CE)。另一方面,具有圆形横截面的喷射流33a、33k可使沿辐射方向的液滴(碎片)的数量最小。当光刻装置中的辐射源在电磁波谱的EUV范围内工作时这是所希望的。具有有限碎片或没有碎片的EUV辐射很难得到。平坦形状的电极在其他方面也是所希望的。两个平行的平坦形状且有很大距离的喷射流33a、33k将具有非常小的电感L,所述喷射流33a、33k例如6mm宽、0.1mm厚,两者之间的距离为3mm。这允许在激光器37提供的一个脉冲中使用很少的能量,由Q~L*I2定义,其中Q是例如来自电容器41的每脉冲的能量,I是放电电流,对于具有良好CE的Sn放电来说I约为5-20kA,L是电感。L通常是5-20nH,通常可扩展该间隔的边界。特别是,在Li放电的情况下,大能量的放电脉冲具有很小的CE,这可能是所希望的。
在如图4中所示的平坦形状的电极的情况下,激光束也可以指向喷射流33a、33k中之一的边缘,例如喷射流33k的边缘,由此在该喷射流(阴极)33k的边缘和阳极的边缘之间产生放电40。这在图4中表示为激光束38z。因此,在这种情况下可获得辐射39的几乎2π的收集角(未示出)。
原则上,具有大约3-5mm的相互距离的一毫米圆形喷射流33a、33k可允许几乎4π的收集角。并且,平坦形状且圆形的喷射流33a、33k的任何组合都是可以的。在圆形电极的情况下,喷射流33a、33k的直径接近喷嘴的直径。
可以使用以大约10-100m/s高速的喷射流。这些速度实现0.3-3cm的稳定长度,这足够长了。小滴47、48与喷嘴31相隔例如5-30cm的很大距离,将会产生一系列小滴47、48而不是喷射流。因此,在位于高电压的喷射流33a、33k和在一个公共容器35中聚集的小滴47、48之间不存在电接触。薄的、平坦喷射流比圆形喷射流分解得更快。如果喷射流33a、33k在到达这种公共容器35时不分解,那么必须分别收集喷射流33a、33k,即,如图3a中所示在独立的容器35k、35a中分别收集喷射流33a、33k,以避免短路。可以只是在得到喷射流33a、33k以适当方式分解的状态之后,即在喷射流33a、33k到达公共容器之前,接入电压,例如由于放电作用或者由于喷射流的特殊引起的可控扰动。例如可以通过喷嘴31中的压力调制来产生这种扰动。
尽管图3a中的实施例示出了沿同一方向流动的两个延长的平行喷射流33a、33k,但是本发明同样可应用于不同的几何形状,即在不同角度下的喷射流33a、33k,和/或沿相反方向流动的喷射流33a、33k。但是这种特殊的几何形状可对系统的电感有影响。
在上面的描述中,激光束38也称作“点火激光”,将其引向喷射流的表面,并局部地产生少量电离气体。喷射流33a、33k提供工作材料(等离子体材料),例如Sn、In或Li,以产生辐射39。
参考图5a,可将激光束38引向位于喷射流33k和喷射流33a之间的间隙46的物质44。在激光束38的影响下,该物质44将产生很小的蒸发的、很可能至少部分电离的粒子/小滴。物质44的材料可以选择为与喷射流33a、33k的材料相同或不同。激光束38将有助于基本上在所需位置发生放电40。在放电40的位置,放电电流将流过电极33a、33k之间的间隙46。因此通过感应而产生的磁场导致箍缩45。箍缩45将包括喷射流和/或物质44的材料的粒子/小滴。辐射39从箍缩45发射。
参考图5a,束38将使物质44电离,产生带正电荷的粒子44p和带负电荷的粒子44n。朝喷射流33a、33k的方向吸引这些粒子。放电40将在喷射流33a、33k之间发生,最后导致形成如上所述的箍缩45。物质44位于喷射流附近。喷嘴31保证喷射流材料的连续供应,即稳定的电极几何形状,辐射39在脉冲能量中是高度稳定的。通过喷射流33a、33k的液体流动连续不断地带走在辐射过程中产生的任何热量,如果液体流动的速度例如大于大约10-15m/s。
喷射流33a、33k中的材料可包括小滴型碎片。喷嘴31给这种材料赋予冲量(impluse),并因此赋予其沿特定方向的碎片,例如沿直线轨道。当辐射39或多或少各向同性地发射时,将存在相当大量的辐射39,其基本上无碎片。
小尺寸的喷射流33a、33k规定了具有小尺寸和大收集角的辐射产生器件。辐射产生器件SO″的尺寸主要受喷射流33a、33k的尺寸限制。喷射流33a、33k的典型尺寸为:厚度大约0.1-1mm,宽度大约1-3mm,长度大约1-30cm,间隙大约3-5mm。这些参数导致相对较大的可收集角。
尽管上面已经描述了本发明的特定实施例,但是应该理解,本发明可以按照不同于所述的方式实施。说明书不意味着限制本发明。
例如,在上述实施例中,产生的喷射流33a和33k是导电流体喷射流。但是,阳极可以是固定阳极。那么阳极材料可以进入围绕源的空间中。
上面描述的喷射流33k和33a之间的放电点火为通过激光束38触发。但是,也可以通过任何高能束,如辐射(例如激光)束或粒子(例如电子、离子)束或任何其他适当的点火源来触发这种点火。
尽管所述实施例都涉及利用Sn、In和/或Li的EUV生产,但是本领域的技术人员将明白,可以使用具有适当熔点的其他材料,例如Hg、Bi、Sb&Pb,以产生具有其他波长的辐射。
对于EUV生产来说,向Sn、In或Li添加这些材料中的一些以改进喷射流的特性甚至是很有利的。

Claims (17)

1.一种用于产生辐射的器件,包括:
第一喷嘴,用于提供第一材料的第一喷射流,其中第一材料的第一喷射流用作第一电极;
第二电极;和
点火源,用于触发第一电极和第二电极之间的放电,其中所述点火源配置成通过第一材料的蒸发来触发放电。
2.根据权利要求1的器件,进一步包括:
第二喷嘴,该喷嘴用于提供第二材料的第二喷射流,第二喷射流用作第二电极,其中点火源用于通过第一材料和第二材料中至少一种的蒸发来触发放电。
3.根据权利要求1的器件,进一步包括:
第二喷嘴,该喷嘴用于提供第二材料的第二喷射流,第二喷射流用作第二电极;以及
第三材料的物质,其中点火源设置为通过第三材料的蒸发替换第一材料的蒸发来触发放电。
4.根据权利要求1的器件,其中第一喷射流包括3cm至30cm的长度和0.1mm至1mm的厚度。
5.根据权利要求1的器件,其中点火源用于产生包括辐射束、粒子束及其任何组合中至少一种的束。
6.根据权利要求1的器件,其中第一喷嘴用于在沿着直线轨道的方向上提供第一材料。
7.根据权利要求6的器件,进一步包括:
至少一个另外的喷嘴,用于提供至少一个另外的喷射流,第一喷射流和至少一个另外的喷射流设置为提供基本上平坦形状的电极。
8.根据权利要求1的器件,其中第一材料包括锡、铟、锂、汞、铋、锑、铅及其任何组合中的至少一种。
9.一种光刻装置,包括:
辐射发生器,包括第一喷嘴,该第一喷嘴用于提供第一材料的第一喷射流,其中第一材料的第一喷射流用作第一电极;第二电极;和点火源,该点火源用于触发第一电极和第二电极之间的放电;
用于调节来自辐射发生器的辐射束的照射系统;
用于支撑构图部件的支座,该构图部件用于给辐射束在其横截面赋予图案;
用于保持基底的基底台;以及
用于将带图案的束投射到基底的目标部分上的投影系统,
其中所述点火源配置成通过第一材料的蒸发来触发放电。
10.根据权利要求9的装置,进一步包括:
第二喷嘴,该喷嘴用于提供第二材料的第二喷射流,第二喷射流用作第二电极,其中点火源用于通过第一材料和第二材料中至少一种的蒸发来触发放电。
11.根据权利要求9的装置,进一步包括:
第二喷嘴,该喷嘴用于提供第二材料的第二喷射流,第二喷射流用作第二电极;以及
第三材料的物质,其中点火源设置为通过第三材料的蒸发替换第一材料的蒸发来触发放电。
12.根据权利要求9的装置,其中第一喷射流具有3cm至30cm的长度和0.1mm至1mm的厚度。
13.根据权利要求9的装置,其中点火源用于产生包括辐射束、粒子束及其任何组合中至少一种的束。
14.根据权利要求9的装置,其中第一喷嘴用于在沿着直线轨道的方向上提供第一材料。
15.根据权利要求14的装置,进一步包括:
至少一个另外的喷嘴,用于提供至少一个另外的喷射流,第一喷射流和至少一个另外的喷射流设置为提供基本上平坦形状的电极。
16.根据权利要求9的装置,其中第一材料包括锡、铟、锂、汞、铋、锑、铅及其任何组合中的至少一种。
17.一种器件制造方法,包括:
提供第一材料的第一喷射流,其中第一材料的第一喷射流用作第一电极;
通过第一材料的蒸发而触发第一电极和第二电极之间的放电以产生辐射束;
给辐射束在其横截面赋予图案;以及
将带图案的辐射束投射到基底的目标部分上。
CN2005100848191A 2004-07-14 2005-07-14 辐射产生器件、光刻装置、器件制造方法及由此制造的器件 Expired - Fee Related CN1721999B (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US10/890,381 US7208746B2 (en) 2004-07-14 2004-07-14 Radiation generating device, lithographic apparatus, device manufacturing method and device manufactured thereby
US10/890381 2004-07-14

Publications (2)

Publication Number Publication Date
CN1721999A CN1721999A (zh) 2006-01-18
CN1721999B true CN1721999B (zh) 2011-01-12

Family

ID=34940299

Family Applications (1)

Application Number Title Priority Date Filing Date
CN2005100848191A Expired - Fee Related CN1721999B (zh) 2004-07-14 2005-07-14 辐射产生器件、光刻装置、器件制造方法及由此制造的器件

Country Status (9)

Country Link
US (2) US7208746B2 (zh)
EP (1) EP1633171B1 (zh)
JP (1) JP4351657B2 (zh)
KR (1) KR100777414B1 (zh)
CN (1) CN1721999B (zh)
AT (1) ATE482607T1 (zh)
DE (1) DE602005023696D1 (zh)
SG (1) SG119308A1 (zh)
TW (1) TWI295821B (zh)

Families Citing this family (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4381094B2 (ja) * 2002-09-19 2009-12-09 エーエスエムエル ネザーランズ ビー.ブイ. 放射源、リソグラフィ装置、およびデバイス製造方法
US7208746B2 (en) * 2004-07-14 2007-04-24 Asml Netherlands B.V. Radiation generating device, lithographic apparatus, device manufacturing method and device manufactured thereby
JP4429302B2 (ja) * 2005-09-23 2010-03-10 エーエスエムエル ネザーランズ ビー.ブイ. 電磁放射線源、リソグラフィ装置、デバイス製造方法、および該製造方法によって製造されたデバイス
DE102006015641B4 (de) * 2006-03-31 2017-02-23 Ushio Denki Kabushiki Kaisha Vorrichtung zur Erzeugung von extrem ultravioletter Strahlung mittels einer elektrisch betriebenen Gasentladung
US7557366B2 (en) * 2006-05-04 2009-07-07 Asml Netherlands B.V. Radiation generating device, lithographic apparatus, device manufacturing method and device manufactured thereby
US7696493B2 (en) * 2006-12-13 2010-04-13 Asml Netherlands B.V. Radiation system and lithographic apparatus
US7696492B2 (en) * 2006-12-13 2010-04-13 Asml Netherlands B.V. Radiation system and lithographic apparatus
US7518135B2 (en) * 2006-12-20 2009-04-14 Asml Netherlands B.V. Reducing fast ions in a plasma radiation source
US20080237498A1 (en) * 2007-01-29 2008-10-02 Macfarlane Joseph J High-efficiency, low-debris short-wavelength light sources
WO2009140270A2 (en) * 2008-05-13 2009-11-19 The Regents Of The University Of California System and method for light source employing laser-produced plasma
WO2011082891A1 (en) * 2010-01-07 2011-07-14 Asml Netherlands B.V. Euv radiation source comprising a droplet accelerator and lithographic apparatus
US20110224475A1 (en) * 2010-02-12 2011-09-15 Andries Nicolaas Schreuder Robotic mobile anesthesia system
KR102237264B1 (ko) * 2013-12-09 2021-04-07 하마마츠 포토닉스 가부시키가이샤 이차원 포톤 카운팅 소자
EP3493239A1 (en) * 2017-12-01 2019-06-05 Excillum AB X-ray source and method for generating x-ray radiation
US11550233B2 (en) 2018-08-14 2023-01-10 Taiwan Semiconductor Manufacturing Co., Ltd. Lithography system and operation method thereof

Family Cites Families (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE528473C (de) 1925-11-26 1931-06-29 Hans Richter Dr Ultraviolettstrahler fuer medizinische Zwecke
US4953191A (en) * 1989-07-24 1990-08-28 The United States Of America As Represented By The United States Department Of Energy High intensity x-ray source using liquid gallium target
SE510133C2 (sv) * 1996-04-25 1999-04-19 Jettec Ab Laser-plasma röntgenkälla utnyttjande vätskor som strålmål
TWI246872B (en) * 1999-12-17 2006-01-01 Asml Netherlands Bv Radiation source for use in lithographic projection apparatus
TW518913B (en) 2000-07-03 2003-01-21 Asml Netherlands Bv Radiation source, lithographic apparatus, and semiconductor device manufacturing method
US6711233B2 (en) * 2000-07-28 2004-03-23 Jettec Ab Method and apparatus for generating X-ray or EUV radiation
TW548524B (en) 2000-09-04 2003-08-21 Asm Lithography Bv Lithographic projection apparatus, device manufacturing method and device manufactured thereby
TW591342B (en) 2000-11-30 2004-06-11 Asml Netherlands Bv Lithographic projection apparatus and integrated circuit manufacturing method using a lithographic projection apparatus
JP2002248344A (ja) 2001-02-26 2002-09-03 Nikon Corp 極端紫外光発生装置並びにそれを用いた露光装置及び半導体製造方法
TW589924B (en) * 2001-04-06 2004-06-01 Fraunhofer Ges Forschung Process and device for producing extreme ultraviolet ray/weak x-ray
CN1314300C (zh) 2001-06-07 2007-05-02 普莱克斯有限责任公司 星形箍缩的x射线和远紫外线光子源
US6567499B2 (en) * 2001-06-07 2003-05-20 Plex Llc Star pinch X-ray and extreme ultraviolet photon source
US6714624B2 (en) * 2001-09-18 2004-03-30 Euv Llc Discharge source with gas curtain for protecting optics from particles
EP1345082A1 (en) 2002-03-15 2003-09-17 ASML Netherlands BV Lithographic apparatus and device manufacturing method
EP1401248B1 (en) * 2002-09-19 2012-07-25 ASML Netherlands B.V. Radiation source, lithographic apparatus, and device manufacturing method
US7002168B2 (en) * 2002-10-15 2006-02-21 Cymer, Inc. Dense plasma focus radiation source
US7075096B2 (en) * 2004-02-13 2006-07-11 Plex Llc Injection pinch discharge extreme ultraviolet source
US7208746B2 (en) * 2004-07-14 2007-04-24 Asml Netherlands B.V. Radiation generating device, lithographic apparatus, device manufacturing method and device manufactured thereby

Also Published As

Publication number Publication date
JP2006032340A (ja) 2006-02-02
ATE482607T1 (de) 2010-10-15
EP1633171A2 (en) 2006-03-08
US7208746B2 (en) 2007-04-24
KR100777414B1 (ko) 2007-11-20
TWI295821B (en) 2008-04-11
DE602005023696D1 (de) 2010-11-04
TW200616078A (en) 2006-05-16
US20060011864A1 (en) 2006-01-19
KR20060050155A (ko) 2006-05-19
EP1633171B1 (en) 2010-09-22
JP4351657B2 (ja) 2009-10-28
US7335900B2 (en) 2008-02-26
EP1633171A3 (en) 2008-12-03
SG119308A1 (en) 2006-02-28
CN1721999A (zh) 2006-01-18
US20060071180A1 (en) 2006-04-06

Similar Documents

Publication Publication Date Title
CN1721999B (zh) 辐射产生器件、光刻装置、器件制造方法及由此制造的器件
EP1047288B1 (en) Plasma focus high energy photon source
KR101503897B1 (ko) 극자외선(euv) 포토리소그래피 장치의 챔버간 가스 흐름을 관리하는 시스템
US7180082B1 (en) Method for plasma formation for extreme ultraviolet lithography-theta pinch
CN101584255B (zh) 辐射系统和光刻设备
US7528395B2 (en) Radiation source, lithographic apparatus and device manufacturing method
US9104113B2 (en) Amplification method for photoresist exposure in semiconductor chip manufacturing
JP2004165160A (ja) 放射線源、リソグラフィ装置およびデバイス製造方法
US7193229B2 (en) Lithographic apparatus, illumination system and method for mitigating debris particles
JP4429302B2 (ja) 電磁放射線源、リソグラフィ装置、デバイス製造方法、および該製造方法によって製造されたデバイス
US20150296602A1 (en) Method and Apparatus for Generating Radiation
KR20160146476A (ko) 연료 액적 궤도의 안정화로 euv 파워를 향상시키는 방법
KR101023797B1 (ko) 방사선 생성 디바이스, 리소그래피 장치, 디바이스 제조 방법 및 그에 의해 제조되는 디바이스
US10871647B2 (en) Apparatus and method for prevention of contamination on collector of extreme ultraviolet light source
US20220124901A1 (en) Apparatus and method for generating extreme ultraviolet radiation
CN109799683B (zh) 在微影曝光制程中产生光的方法及光源
TWI358074B (en) Reducing fast ions in a plasma radiation source
US10506698B2 (en) EUV source generation method and related system
Brandt et al. CO2/Sn LPP EUV sources for device development and HVM
CN108170005B (zh) 高亮度光线的产生方法

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C14 Grant of patent or utility model
GR01 Patent grant
CF01 Termination of patent right due to non-payment of annual fee

Granted publication date: 20110112

Termination date: 20180714

CF01 Termination of patent right due to non-payment of annual fee