CN1721576A - 硫酸盐溶液中电弧放电法制备内包金属颗粒洋葱状富勒烯 - Google Patents

硫酸盐溶液中电弧放电法制备内包金属颗粒洋葱状富勒烯 Download PDF

Info

Publication number
CN1721576A
CN1721576A CN 200510012515 CN200510012515A CN1721576A CN 1721576 A CN1721576 A CN 1721576A CN 200510012515 CN200510012515 CN 200510012515 CN 200510012515 A CN200510012515 A CN 200510012515A CN 1721576 A CN1721576 A CN 1721576A
Authority
CN
China
Prior art keywords
onion
metal particle
fullerene
arc discharge
arc
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN 200510012515
Other languages
English (en)
Other versions
CN100404729C (zh
Inventor
许并社
郭俊杰
刘旭光
刘光焕
王晓敏
贾虎生
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Taiyuan University of Technology
Original Assignee
Taiyuan University of Technology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Taiyuan University of Technology filed Critical Taiyuan University of Technology
Priority to CNB2005100125154A priority Critical patent/CN100404729C/zh
Publication of CN1721576A publication Critical patent/CN1721576A/zh
Application granted granted Critical
Publication of CN100404729C publication Critical patent/CN100404729C/zh
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Carbon And Carbon Compounds (AREA)

Abstract

本发明提供了一种硫酸盐溶液中电弧放电法制备内包金属颗粒洋葱状富勒烯,该方法是用光谱石墨棒作电极浸没在硫酸盐溶液的液面下,通过电弧放电使阳极蒸发,碳蒸汽及反应生成的H2和CO将溶液中的金属阳离子还原出来,在金属颗粒的催化作用下生成内包金属颗粒洋葱状富勒烯,经收集、干燥即可。本发明采用硫酸盐溶液为放电介质,提高了产物的冷却速度和石墨化程度,增强了对金属内核的保护作用,省去了抽真空装置和循环水系统,简化了设备,降低了成本。本发明制得的内包金属颗粒洋葱状富勒烯具有优良的电磁和光学性能,适用于电子元器件材料、超导材料、生物医用材料、信息存储材料、催化剂材料等功能材料,应用范围十分广阔。

Description

硫酸盐溶液中电弧放电法制备内包金属颗粒洋葱状富勒烯
技术领域
本发明涉及一种电弧放电法制备洋葱状富勒烯,特别是一种在硫酸盐溶液中采用电弧放电法制备内包金属颗粒洋葱状富勒烯。
背景技术
内包金属颗粒洋葱状富勒烯是以金属纳米颗粒作为核心,金属颗粒外层包覆有石墨壳层的特殊结构的洋葱状富勒烯。这种包裹有第二相物质的洋葱状富勒烯自发现以来就一直是科学界的研究热点。由于石墨壳层在很小的空间禁锢了金属材料,从而对金属材料有保护作用,可以避免环境的影响,在超导、非线性光学和医药科学等领域显示出了巨大的潜在应用价值,引起了研究者的极大兴趣。公开号为1528664的发明专利《纳米微粒催化电弧法制备洋葱状富勒烯的方法》是以光谱石墨为阴极,中孔装有混合物的光谱石墨为阳极,在低电压、大电流的情况下,阳极石墨连同混合物气化,在载气体的保护下形核并转化为洋葱状富勒烯。而该工艺方法中采用气体作为放电介质,冷却效率低;催化剂需要填加在钻有中孔的阳极石墨棒中,工艺复杂;产物分布在整个反应容器的内壁上,不便于收集。在反应过程中需要抽真空装置和循环水系统,设备复杂,成本高。基于上述情况,研究者试图采用硫酸盐溶液中电弧放电法来制备内包金属颗粒洋葱状富勒烯。
发明内容
本发明要解决的问题是在液体介质中用电弧放电法将纳米金属颗粒包裹在石墨壳层内,其目的是提供一种工艺简单,成本低廉,纯度高的在硫酸盐溶液中采用电弧放电法制备内包金属颗粒洋葱状富勒烯的方法。
本发明基于上述问题和目的,提出了在硫酸盐溶液中采用电弧放电法制备内包金属颗粒洋葱状富勒烯的具体工艺步骤如下:
(1)配置硫酸盐溶液4~6L,加入到耐热容器中;
(2)采用光谱纯石墨棒作电极,其中阴极直径为12~20mm,阳极直径为6~8mm,两电极沿水平直线排列,浸没在液面下40~100mm处;
(3)电流和电压分别控制在30~70A和22~28V范围内,起弧后须使两电极之间的间隙为0.8~1mm;
(4)电弧放电使阳极蒸发,碳蒸汽以及反应生成的H2和CO把盐溶液中金属阳离子还原出来;
(5)在金属颗粒的催化作用下生成内包金属颗粒洋葱状富勒烯,产物以薄膜状漂浮在水面上;
(6)10~15分钟后停止放电,待水冷却后收集表面的产物,蒸干水分便得到内包金属颗粒洋葱状富勒烯。
上述工艺步骤中所述的硫酸盐溶液是硫酸亚铁、硫酸钴或者硫酸镍。
按照上述工艺步骤所实现的在硫酸盐溶液中采用电弧放电法制备内包金属颗粒洋葱状富勒烯的方法,其创新之处在于采用硫酸盐溶液作为放电介质,其优点与积极效果在于:(1)在该方法的工艺过程中,由于在硫酸盐溶液中电弧放电,提高了产物的冷却速度,使金属颗粒外层的碳具有更高的石墨化程度,增强了对金属内核的保护作用;(2)在反应过程中由于采用硫酸盐溶液作为放电介质,省去了抽真空装置和循环水系统,简化了设备,降低了成本;(3)用硫酸盐溶液提供催化剂,省去了烦杂的阳极掺金属的过程,而且便于通过改变溶液浓度改变催化剂的含量,使制备的工艺过程得到了简化;(4)制备得到的产物自动漂浮在液面层,便于收集;(5)反应过程中伴随生成的杂质与洋葱状富勒烯自动分离,使杂质自动沉降于容器底部,避免了产物的污染,提高了产物的纯度;(6)阳极棒消耗后可以直接更换石墨棒后继续生产,提高了产量。
上述工艺步骤制备的内包金属颗粒洋葱状富勒烯,将收集到的产物用研钵研磨后,取少许在乙醇中超声分散,将悬浮液滴在微栅铜网上,干燥后用H-800型透射电镜(TEM)及JEM-2010型高分辨透射电镜(HRTEM,加速电压为200kV,点分辨率为0.19nm)对其进行观察表征,发现有内包金属微粒的纳米洋葱状富勒烯形成。经过检测,该结构的洋葱状富勒烯具有优良的电磁性能、光学性能等重要性能,成为能满足特殊性能要求的纳米电子元件等设备器件的材料、超导材料、生物医用材料、信息存储材料、催化剂材料等新型功能材料,应用范围十分广阔,应用前景十分诱人。
附图说明
图1是本发明内包金属颗粒洋葱状富勒烯的低倍形貌图
图2是本发明内包金属颗粒洋葱状富勒烯的高倍形貌图
具体实施方式
实施方式1
配置浓度为0.005M的硫酸亚铁溶液6L,加入到耐热容器中,采用光谱纯石墨棒作电极,其中阴极棒直径为20mm,阳极棒直径为8mm,两电极棒沿水平直线排列,浸没在液面下约100mm处。电流和电压分别控制在70A和28V左右,起弧后须使两电极之间的间隙为1mm。电弧放电使阳极蒸发,具有较高活性的碳蒸汽以及反应生成的具有还原性的H2和CO把盐溶液中Fe2+还原出来。还原出来的铁颗粒在生成内包金属颗粒洋葱状富勒烯的过程中起催化作用,产物以薄膜状漂浮在水面上,10~15分钟后停止放电,待水冷却后收集表面的产物,蒸干水分便得到了内包铁颗粒洋葱状富勒烯。
实施方式2
配置浓度为0.05M的硫酸钴溶液4L,加入到耐热容器中,采用光谱纯石墨棒作电极,其中阴极棒直径为12mm,阳极棒直径为6mm,两电极棒沿水平直线排列,浸没在液面下约40mm处。电流和电压分别控制在30A和22V左右,起弧后须使两电极之间的间隙为0.8mm。电弧放电使阳极蒸发,具有较高活性的碳蒸汽以及反应生成的具有还原性的H2和CO把盐溶液中Co2+还原出来。还原出来的钴颗粒在生成内包金属颗粒洋葱状富勒烯的过程中起催化作用,产物以薄膜状漂浮在水面上,10~15分钟后停止放电,待水冷却后收集表面的产物,蒸干水分便得到了内包钴颗粒洋葱状富勒烯。
实施方式3
配置浓度为0.005M的硫酸镍溶液5L,加入到耐热容器中,采用光谱纯石墨棒作电极,其中阴极棒直径为16mm,阳极棒直径为7mm,两电极棒沿水平直线排列,浸没在液面下约80mm处。电流和电压分别控制在50A和25V左右,起弧后须使两电极之间的间隙为0.9mm,通过调整两电极之间的距离,保持电弧的稳定。电弧放电使阳极蒸发,具有较高活性的碳蒸汽以及反应生成的具有还原性的H2和CO把盐溶液中Ni2+还原出来。还原出来的镍颗粒在生成内包金属颗粒洋葱状富勒烯的过程中起催化作用,产物以薄膜状漂浮在水面上,10~15分钟后停止放电,待水冷却后收集表面的产物,蒸干水分便得到了内包镍颗粒洋葱状富勒烯。

Claims (2)

1.硫酸盐溶液中电弧放电法制备内包金属颗粒洋葱状富勒烯,其具体步骤如下:
(1)配置硫酸盐溶液4~6L,加入到耐热容器中;
(2)采用光谱纯石墨棒作电极,其中阴极直径为12~20mm,阳极直径为6~8mm,两电极沿水平直线排列,浸没在液面下40~100mm处;
(3)电流和电压分别控制在30~70A和22~28V范围内,起弧后须使两电极之间的间隙为0.8~1mm;
(4)电弧放电使阳极蒸发,碳蒸汽以及反应生成的H2和CO把盐溶液中金属阳离子还原出来;
(5)在金属颗粒的催化作用下生成内包金属颗粒洋葱状富勒烯,产物以薄膜状漂浮在水面上;
(6)10~15分钟后停止放电,待水冷却后收集表面的产物,蒸干水分便得到内包金属颗粒洋葱状富勒烯。
2.按权利要求1所述的硫酸盐溶液中电弧放电法制备内包金属颗粒洋葱状富勒烯,其工艺步骤中的硫酸盐溶液是硫酸亚铁、硫酸钴或者硫酸镍。
CNB2005100125154A 2005-05-14 2005-05-14 硫酸盐溶液中电弧放电法制备内包金属颗粒洋葱状富勒烯 Expired - Fee Related CN100404729C (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CNB2005100125154A CN100404729C (zh) 2005-05-14 2005-05-14 硫酸盐溶液中电弧放电法制备内包金属颗粒洋葱状富勒烯

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CNB2005100125154A CN100404729C (zh) 2005-05-14 2005-05-14 硫酸盐溶液中电弧放电法制备内包金属颗粒洋葱状富勒烯

Publications (2)

Publication Number Publication Date
CN1721576A true CN1721576A (zh) 2006-01-18
CN100404729C CN100404729C (zh) 2008-07-23

Family

ID=35912176

Family Applications (1)

Application Number Title Priority Date Filing Date
CNB2005100125154A Expired - Fee Related CN100404729C (zh) 2005-05-14 2005-05-14 硫酸盐溶液中电弧放电法制备内包金属颗粒洋葱状富勒烯

Country Status (1)

Country Link
CN (1) CN100404729C (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105399423A (zh) * 2015-11-30 2016-03-16 太原理工大学 一种电弧放电法制备纳米孔石墨烯过滤膜的方法

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3795244B2 (ja) * 1998-12-28 2006-07-12 独立行政法人科学技術振興機構 層間化合物およびその製造方法
CN1207189C (zh) * 2003-10-10 2005-06-22 太原理工大学 纳米微粒催化电弧法制备洋葱状富勒烯的方法

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105399423A (zh) * 2015-11-30 2016-03-16 太原理工大学 一种电弧放电法制备纳米孔石墨烯过滤膜的方法

Also Published As

Publication number Publication date
CN100404729C (zh) 2008-07-23

Similar Documents

Publication Publication Date Title
Hou et al. Rational design of 1D/2D heterostructured photocatalyst for energy and environmental applications
Cai et al. Graphene nanosheets-tungsten oxides composite for supercapacitor electrode
Zhang et al. Remarkable supercapacitive performance of TiO2 nanotube arrays by introduction of oxygen vacancies
Wei et al. Phase-controlled synthesis of MnO2 nanocrystals by anodic electrodeposition: implications for high-rate capability electrochemical supercapacitors
Yuan et al. Shape-and size-controlled electrochemical synthesis of cupric oxide nanocrystals
Sohail et al. Synthesis of well-dispersed TiO2/CNTs@ CoFe2O4 nanocomposites and their photocatalytic properties
Shinde et al. Morphological enhancement to CuO nanostructures by electron beam irradiation for biocompatibility and electrochemical performance
Lv et al. One-step copper-catalyzed synthesis of porous carbon nanotubes for high-performance supercapacitors
Vigneshwaran et al. A study on the synthesis and characterization of CoMn 2 O 4 electrode material for supercapacitor applications
Qiu et al. Construction of Ag3PO4/Ag4P2O7 nanospheres sensitized hierarchical titanium dioxide nanotube mesh for photoelectrocatalytic degradation of methylene blue
Chen et al. Synthesis and magnetic properties of Fe2O3–TiO2 nano-composite particles using pulsed laser gas phase evaporation–liquid phase collecting method
Pol et al. The effect of a magnetic field on a RAPET (reaction under autogenic pressure at elevated temperature) of MoO (OMe) 4: fabrication of MoO2 nanoparticles coated with carbon or separated MoO2 and carbon particles
Wang et al. Filling carbon nanotubes with Ni–Fe alloys via methylbenzene-oriented constant current electrodeposition for hydrazine electrocatalysis
Li et al. Synthesis of Ti3C2/TiO2 heterostructure by microwave heating with high electrochemical performance
Thomas et al. A review of Nb2CT x MXene as an emerging 2D material: synthesis, applications in rechargeable batteries and supercapacitors, progress, and outlook
Naveenraj et al. Nanosized tantala based materials–synthesis and applications
Hu et al. Coordination agent-dominated phase control of nickel sulfide for high-performance hybrid supercapacitor
Saravanakumar et al. Synthesis of X 3 (PO4) 2 [X= Ni, Cu, Mn] nanomaterials as an efficient electrode for energy storage applications
Cao et al. Novel fabrication strategy of nanostructured NiCo-LDHs monolithic supercapacitor electrodes via inducing electrochemical in situ growth on etched nickel foams
Moghadam et al. Fabrication and investigation of ZnO-CNT@ Fe3O4/NF as supercapacitor electrode by using a novel preparation method of CNT
CN110203904A (zh) 用于制备纳米结构碳材料的前体材料及方法
Guaglianoni et al. Novel nanoarchitectured cobalt-doped TiO2 and carbon nanotube arrays: Synthesis and photocurrent performance
Qian et al. Carbon fibers@ semiconductors nanostructures core–shell composites: facile strategy for highly efficient solar-driven photocatalysts
Ananth et al. Synthesis of RuO2 nanomaterials under dielectric barrier discharge plasma at atmospheric pressure–influence of substrates on the morphology and application
Isacfranklin et al. Hydrogen free direct growth carbon nanorod as a promising electrode in symmetric supercapacitor applications

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C14 Grant of patent or utility model
GR01 Patent grant
C17 Cessation of patent right
CF01 Termination of patent right due to non-payment of annual fee

Granted publication date: 20080723