CN110203904A - 用于制备纳米结构碳材料的前体材料及方法 - Google Patents

用于制备纳米结构碳材料的前体材料及方法 Download PDF

Info

Publication number
CN110203904A
CN110203904A CN201910489282.9A CN201910489282A CN110203904A CN 110203904 A CN110203904 A CN 110203904A CN 201910489282 A CN201910489282 A CN 201910489282A CN 110203904 A CN110203904 A CN 110203904A
Authority
CN
China
Prior art keywords
carbon
precursor material
conductive rod
nanostructured
phase
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN201910489282.9A
Other languages
English (en)
Other versions
CN110203904B (zh
Inventor
卡马里阿里
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Northeastern University China
Original Assignee
Northeastern University China
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Northeastern University China filed Critical Northeastern University China
Priority to CN201910489282.9A priority Critical patent/CN110203904B/zh
Priority to EP19922251.4A priority patent/EP3765405A4/en
Priority to US16/980,769 priority patent/US20210164114A1/en
Priority to PCT/CN2019/097491 priority patent/WO2020244039A1/en
Priority to JP2020562646A priority patent/JP2021521094A/ja
Publication of CN110203904A publication Critical patent/CN110203904A/zh
Application granted granted Critical
Publication of CN110203904B publication Critical patent/CN110203904B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y30/00Nanotechnology for materials or surface science, e.g. nanocomposites
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25BELECTROLYTIC OR ELECTROPHORETIC PROCESSES FOR THE PRODUCTION OF COMPOUNDS OR NON-METALS; APPARATUS THEREFOR
    • C25B1/00Electrolytic production of inorganic compounds or non-metals
    • C25B1/01Products
    • C25B1/135Carbon
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J21/00Catalysts comprising the elements, oxides, or hydroxides of magnesium, boron, aluminium, carbon, silicon, titanium, zirconium, or hafnium
    • B01J21/18Carbon
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/70Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper
    • B01J23/74Iron group metals
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/20Catalysts, in general, characterised by their form or physical properties characterised by their non-solid state
    • B01J35/23Catalysts, in general, characterised by their form or physical properties characterised by their non-solid state in a colloidal state
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B32/00Carbon; Compounds thereof
    • C01B32/15Nano-sized carbon materials
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B32/00Carbon; Compounds thereof
    • C01B32/15Nano-sized carbon materials
    • C01B32/158Carbon nanotubes
    • C01B32/16Preparation
    • C01B32/162Preparation characterised by catalysts
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25BELECTROLYTIC OR ELECTROPHORETIC PROCESSES FOR THE PRODUCTION OF COMPOUNDS OR NON-METALS; APPARATUS THEREFOR
    • C25B11/00Electrodes; Manufacture thereof not otherwise provided for
    • C25B11/02Electrodes; Manufacture thereof not otherwise provided for characterised by shape or form
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25CPROCESSES FOR THE ELECTROLYTIC PRODUCTION, RECOVERY OR REFINING OF METALS; APPARATUS THEREFOR
    • C25C3/00Electrolytic production, recovery or refining of metals by electrolysis of melts
    • DTEXTILES; PAPER
    • D01NATURAL OR MAN-MADE THREADS OR FIBRES; SPINNING
    • D01FCHEMICAL FEATURES IN THE MANUFACTURE OF ARTIFICIAL FILAMENTS, THREADS, FIBRES, BRISTLES OR RIBBONS; APPARATUS SPECIALLY ADAPTED FOR THE MANUFACTURE OF CARBON FILAMENTS
    • D01F9/00Artificial filaments or the like of other substances; Manufacture thereof; Apparatus specially adapted for the manufacture of carbon filaments
    • D01F9/08Artificial filaments or the like of other substances; Manufacture thereof; Apparatus specially adapted for the manufacture of carbon filaments of inorganic material
    • D01F9/12Carbon filaments; Apparatus specially adapted for the manufacture thereof
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G11/00Hybrid capacitors, i.e. capacitors having different positive and negative electrodes; Electric double-layer [EDL] capacitors; Processes for the manufacture thereof or of parts thereof
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G11/00Hybrid capacitors, i.e. capacitors having different positive and negative electrodes; Electric double-layer [EDL] capacitors; Processes for the manufacture thereof or of parts thereof
    • H01G11/22Electrodes
    • H01G11/30Electrodes characterised by their material
    • H01G11/32Carbon-based
    • H01G11/36Nanostructures, e.g. nanofibres, nanotubes or fullerenes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G11/00Hybrid capacitors, i.e. capacitors having different positive and negative electrodes; Electric double-layer [EDL] capacitors; Processes for the manufacture thereof or of parts thereof
    • H01G11/22Electrodes
    • H01G11/30Electrodes characterised by their material
    • H01G11/32Carbon-based
    • H01G11/44Raw materials therefor, e.g. resins or coal
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/054Accumulators with insertion or intercalation of metals other than lithium, e.g. with magnesium or aluminium
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/58Selection of substances as active materials, active masses, active liquids of inorganic compounds other than oxides or hydroxides, e.g. sulfides, selenides, tellurides, halogenides or LiCoFy; of polyanionic structures, e.g. phosphates, silicates or borates
    • H01M4/583Carbonaceous material, e.g. graphite-intercalation compounds or CFx
    • H01M4/587Carbonaceous material, e.g. graphite-intercalation compounds or CFx for inserting or intercalating light metals
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/62Selection of inactive substances as ingredients for active masses, e.g. binders, fillers
    • H01M4/624Electric conductive fillers
    • H01M4/625Carbon or graphite
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B2202/00Structure or properties of carbon nanotubes
    • C01B2202/20Nanotubes characterized by their properties
    • C01B2202/34Length
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B2202/00Structure or properties of carbon nanotubes
    • C01B2202/20Nanotubes characterized by their properties
    • C01B2202/36Diameter
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G11/00Hybrid capacitors, i.e. capacitors having different positive and negative electrodes; Electric double-layer [EDL] capacitors; Processes for the manufacture thereof or of parts thereof
    • H01G11/04Hybrid capacitors
    • H01G11/06Hybrid capacitors with one of the electrodes allowing ions to be reversibly doped thereinto, e.g. lithium ion capacitors [LIC]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G11/00Hybrid capacitors, i.e. capacitors having different positive and negative electrodes; Electric double-layer [EDL] capacitors; Processes for the manufacture thereof or of parts thereof
    • H01G11/22Electrodes
    • H01G11/30Electrodes characterised by their material
    • H01G11/50Electrodes characterised by their material specially adapted for lithium-ion capacitors, e.g. for lithium-doping or for intercalation
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M2004/026Electrodes composed of, or comprising, active material characterised by the polarity
    • H01M2004/027Negative electrodes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M2300/00Electrolytes
    • H01M2300/0017Non-aqueous electrolytes
    • H01M2300/0025Organic electrolyte
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Nanotechnology (AREA)
  • Inorganic Chemistry (AREA)
  • Electrochemistry (AREA)
  • Power Engineering (AREA)
  • Metallurgy (AREA)
  • General Chemical & Material Sciences (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Manufacturing & Machinery (AREA)
  • Textile Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Composite Materials (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Carbon And Carbon Compounds (AREA)

Abstract

本发明属于碳材料领域,提供用于制备碳纳米结构的前驱体材料及方法。本发明直接使用岩石或者将碳原料与金属或金属氧化物催化剂混合制备前体材料。然后用金属丝包裹前体材料,并在熔融盐体系中阴极极化,制备纳米结构碳材料。分散在碳相中的金属或金属氧化物能够起到催化剂的作用,促进纳米结构碳材料的生成;该前体材料可为自然界中的岩石或者人工合成,易于获得。纳米结构碳材料由纳米炭颗粒、碳纤维和碳纳米管组成。制备工艺简单,易于实施,所得到的纳米结构材料具有高导电性,可作为储能装置的活性材料或添加剂。

Description

用于制备纳米结构碳材料的前体材料及方法
技术领域
本发明属于碳材料领域,具体涉及一种用于制备纳米结构碳材料的前体材料及方法。
背景技术
碳纳米结构,包括碳纳米纤维、碳纳米管和碳纳米颗粒,具有独特的性能,包括高表面积、 化学和物理稳定性以及导电性。这些特性使得碳纳米结构在储能设备、复合材料和水净化等诸 多领域的应用显得尤为重要。碳纳米结构的制备方法多种多样。这些方法主要是在催化剂体系 中引入气相中的碳。
第一种方法是在惰性气体中,在两个碳质电极上施加电流,从而使碳纳米管和碳纳米颗粒 的产量达到合理的水平。这种方法叫做等离子电弧放电。它包括一个电极作为阳离子损耗,然 后在另一个电极上沉积。石墨棒的激光汽化和金属催化剂上碳纳米结构的生长也可以产生碳纳 米结构。
电弧放电和激光汽化是目前获得高质量碳纳米管的主要方法。但是,这两种方法都有缺点。 这两种方法都涉及碳源的损耗,因此通过这些方法大规模生产碳纳米结构是困难的,也是能源 消耗较大的。
化学气相沉积法也用于制备碳纳米结构。在这种方法中,碳氢化合物气体在金属催化剂上 分解,温度通常在600-1000℃之间,生成各种碳材料,如碳纤维和长丝。但化学气相沉积方法 效率低,成本高。
因此,将固相碳直接转化为碳纳米结构对于大规模生产低成本、低能耗的碳纳米结构具有 重要意义。
发明内容
本发明提出了一种将固体碳直接转化为纳米结构碳材料的前体材料。本发明将碳原料与金 属或金属氧化物催化剂混合制备前体材料。然后用金属丝包裹前体材料,并在熔融盐体系中阴 极极化,制备纳米结构碳材料。
本发明的技术方案为:
用于制备纳米结构碳材料的前体材料,包括碳相和非碳相,非碳相分散在碳相中,所述非 碳相的特征元素包括Fe、Ni、Co、Si、Na、Mg、Al、K和Ca元素中的一种或两种以上,前体材料中非碳相的特征元素质量百分比为0.1~5%,所述非碳相的特征元素的存在形式为单质 或其氧化物;碳相为非晶态碳或者晶态碳;非碳相中特征元素的单质或其氧化物的粒径为 1nm~100μm。
采用上述前体材料制备纳米结构碳材料的方法,包括步骤如下:
步骤1,将前体材料(1)用Mo、W或Ni做的导线(2)包裹,根据前体材料(1)的 尺寸,导线(2)的直径为0.5-12mm,将导电棒A(3)的一端固定在前体材料(1)中,导线 (2)在缠绕过程中与导电棒A(3)连接,导电棒A(3)的直径为5-6mm;
步骤2,将带有导电棒A并包裹导电线的前体材料,放置于反应容器(4)底部的陶瓷圆 盘(5)上,反应容器(4)中填充熔盐(6),所述熔盐为LiCl、NaCl、CaCl2或KCl中的一种 或两种以上的混合物;所述反应容器(4)由石墨、Mo或W制成;
步骤3,熔盐的温度为350℃~900℃;将导电棒B(7)连接到反应容器(4)上,导电棒B(7)与导电棒A(3)的材质相同;导电棒A(3)与电源的负极相连,导电棒B(7)与电 源的正极相连;
步骤4,根据前体材料的尺寸,通过1~10000A的直流电,通电10min~20h;生成碳纳米 结构;待熔盐冷却后,将熔盐溶解、过滤回收纳米结构碳材料。
上述陶瓷圆盘(5)由Al2O3、MgO或ZrO2制成。
上述导电棒B(7)与导电棒A(3)的材质为Mo、W、Ni或不锈钢中的一种。
上述前体材料在反应容器中的气氛为氩气、空气、氮气和氦气中的一种或两种以上的混合 气氛。
上述步骤4得到的纳米结构碳材料包括1nm~1000nm大小的碳纳米粒子、直径为1nm~1000nm的碳纳米纤维和外径为1nm~1000nm的碳纳米管。
在前体材料阴极极化的情况下,碳相中的金属氧化物可以还原为相应的金属,新形成的金 属可以作为催化剂将碳相转化为碳纳米结构。
Fe、Ni、Co、Si、Na、Mg、Al、K或Ca等金属用于前体材料。在前体材料的阴极极化 过程中,金属颗粒周围的薄氧化层被还原为金属,由此产生的金属颗粒起到高效催化剂的作用, 将碳相转移到碳纳米结构中。
本发明的有益效果为,这种前体材料是由元素碳和金属氧化物或随机分散在碳相中的金属 组成的,分散在碳相中的金属或金属氧化物能够起到催化剂的作用,促进纳米结构碳材料的生 成;该前体材料可为自然界中的岩石或者人工合成,易于获得。纳米结构碳材料由纳米炭颗粒、 碳纤维和碳纳米管组成。制备工艺简单,易于实施,所得到的纳米结构材料具有高导电性,可 作为储能装置的活性材料或添加剂。
附图说明
图1为用于制备碳纳米结构的前体材料示意图。
图2为前体材料制备纳米结构碳材料的工艺示意图。
图3为岩石的SEM图像;
图4为图3SEM图像的EDX图;
图5为纳米结构碳材料的SEM图像;
图6为图5中碳纤维的EDX图;
图7为纳米结构碳材料的拉曼光谱;
图8电流密度为75mAg-1纳米结构碳材料在100次循环后的电容量;
图9电流密度为187mAg-1纳米结构碳材料在100次循环后的电容量;
图10为净化后纳米结构碳材料的SEM图;
图11为实施例5的纳米结构碳材料的SEM图像;
图12为实施例6的纳米结构碳材料的SEM图像;
图13为实施例7的纳米结构碳材料的SEM图像。
图中:A碳相;B非碳相;1前体材料;2导线;3导电棒A;4反应容器;5陶瓷圆盘;6 熔盐;7导电棒B。
具体实施方式
实施例1
天然岩石被用作前体材料。图3显示了岩石的扫描电镜形态。岩石中含有1-60um的颗粒. 图4显示了图3所示的SEM图像的EDX图。可以看出,该材料包含了由C、O、Na、Mg、 Al、Si、K、Ca、Fe等各种元素组成的相对均匀分布。岩石的化学成分见表1。
表1用作前体材料的岩石成分
元素 wt%
C 80.47
O 9.71
Na 0.14
Mg 0.09
Al 2.52
Si 3.78
K 0.31
Ca 0.13
Fe 2.85
总量: 100.00
将一块岩石用钼丝包裹,钼棒被拧紧到岩石中。本实施例中使用了图2所示的反应容器。 含有LiCl(80wt%)、NaCl(10wt%)、KCl(5wt%)和CaCl2(5wt%)混合物作为电解质。在750℃ 熔盐中,岩石被阴极极化。30A的电流在岩石和用作阳极的石墨反应容器之间传递。浸入熔盐 的岩石与Pt参考电极之间的电位在1-10V范围内。熔盐电解过程为2小时。熔盐过程是在 N2下进行的。然后将系统冷却下来,用清水清洗盐,并对渗滤液进行过滤。纳米结构碳材料在 80℃下干燥2小时。
图5显示了纳米结构碳材料的扫描电子显微镜图像,其中可以看到碳纤维、碳纳米管和碳 纳米颗粒的混合物,其大小在10nm至2μm之间。该产品的另一个SEM映像如图6所示。图所示的碳纤维EDX成分分析见表2。
表2图6中碳纤维的化学成分
元素 wt% 原子百分比
C 87.32 93.37
O 4.95 3.98
Na 0.12 0.07
Al 0.12 0.06
Si 0.96 0.44
Cl 3.43 1.24
K 1.10 0.36
Ca 0.27 0.09
Fe 1.73 0.40
总量: 100.00 100.00
图7显示了纳米结构碳材料的拉曼光谱,其中D、G和2D波段的存在是显而易见的。拉曼结果与显示纳米结构碳材料形成的微观结果一致。
实施例2
以实施例1中制备的纳米结构碳材料作为锂离子电池的阳极材料。该工作电极采用90% 纳米结构碳材料和10%的聚偏氟乙烯和正甲基丙酮(NMP)作为溶剂制成,然后涂在铜箔上, 在50℃真空干燥,24小时内进行真空干燥。1M LiPF6溶于按摩尔比1:1配比的碳酸亚乙烯(EC) 和碳酸二乙酯(DEC)用作电解质。不使用导电碳。图8和图9显示了电流密度分别为75mAg-1和187mAg-1纳米结构碳材料在100次循环后的容量。在75mAg-1,材料的容量约为250mAh g-1。在187mAg-1的较高电流密度下,纳米结构复合材料的容量为150mAhg-1
这种性能是在不添加导电添加剂的情况下实现的。结果表明,制备的纳米结构碳材料具有 较高的导电性,可作为锂离子电池、铝离子电池、超级电容器或其它储能装置(如Na离子电 池、K离子电池、Al离子电池)中电极的活性材料或添加剂。在表2中,样品的氯含量是由于 材料中存在残留盐。通过进一步用水清洗样品和过滤悬浮液,可以很容易地回收这种盐。通过 在HCl、H2SO4或HNO3等酸中洗涤制备的纳米结构碳材料,可以获得超纯碳纳米结构。
实施例3
使用实施例1中方法生产的10g纳米结构碳材料在质量浓度50%的50ml HCl中进行清 洗,并使用平均孔尺寸约为5μm的滤纸对悬浮液进行过滤。然后将浸漏液在250℃干燥2小 时。图10显示了净化后纳米结构碳材料的扫描电子显微镜(SEM)。纯化纳米结构碳包含体积 百分比50%直径为10-200nm的碳纳米管和纤维,还包含50%直径为10-200nm的球状碳颗 粒。经纯化的纳米结构材料的化学成分见表3。
表3纳米结构碳材料纯化后的化学成分
元素 wt%
C 95.27
O 3.2
Na 0.12
Al 0.10
Si 0.87
Cl 0.2
K 0.1
Ca 0.12
Fe 0.02
总量: 100.00
实施例4
用10ml质量浓度5%HF溶液清洗实施例3中生产的1g纯化纳米结构碳材料30分钟。对悬浮液进行过滤,过滤产物在250℃下干燥2小时。额外纯化的纳米结构碳材料的化学成分 见表4。
表4纳米结构碳材料经过额外纯化后的化学成分。
元素 wt%
C 99.46
O 0.5
Al 0.01
Si 0.02
Cl 0.01
总量: 100.00
实施例5
前体材料由无定形碳粉、3.2wt%Fe2O3和3.2wt%SiO2组成。将混合物料用球磨机球磨, 球磨后无定形碳粉、Fe2O3和SiO2的粒径分别为2μm、620nm和850nm。粉末通过使用冷等 静压机被压实成固体的前体材料。然后将该前体材料包裹在直径为1.5毫米的钼长丝中。然后 将前体材料放置于熔盐中,与实施例1相同的条件下持续30min。所获得的产品的微观结构如 图11所示。可以看出,该产品的形状是大小为20nm~100nm的碳纳米管和直径为10nm~200nm 的球形碳颗粒的复合混合物。
实施例6
重复实施例5,不同的是前体材料由结晶石墨粉、5wt%的CoO和1.3wt%的Al2O3制成的。前体材料中的结晶石墨粉、CoO和Al2O3的平均粒径分别为3.2μm、2.3μm和1.5μm。 最终产品的SEM形态如图12所示。该产品包括碳纳米管、碳纳米纤维和球形碳颗粒的混合 物。
实施例7
重复实施例5,其中前体材料由非晶态碳加3wt%Ni和2wt%Fe和1.5wt%Al组成。该工 艺在850℃下使用氯化钠盐进行了40min。该产品的扫描电子显微镜形态如图13所示。该产 品包括碳纳米管、碳纳米纤维和碳纳米粒子。

Claims (6)

1.用于制备纳米结构碳材料的前体材料,其特征在于,包括碳相和非碳相,非碳相分散在碳相中,所述非碳相的特征元素包括Fe、Ni、Si、Co、Na、Mg、Al、K和Ca元素中的一种或两种以上,前体材料中非碳相的特征元素质量百分比为0.1~5%,所述非碳相的特征元素的存在形式为单质或其氧化物;碳相为非晶态碳或者晶态碳;非碳相中特征元素的单质或其氧化物的粒径为1nm~100μm。
2.采用权利要求1所述前体材料制备纳米结构碳材料的方法,其特征在于,包括步骤如下:
步骤1,将前体材料(1)用Mo、W或Ni做的导线(2)包裹,根据前体材料(1)的尺寸,导线(2)的直径为0.5-12mm,将导电棒A(3)的一端固定在前体材料(1)中,导线(2)在缠绕过程中与导电棒A(3)连接,导电棒A(3)的直径为5-6mm;
步骤2,将带有导电棒A并包裹导电线的前体材料,放置于反应容器(4)底部的陶瓷圆盘(5)上,反应容器(4)中填充熔盐(6),所述熔盐为LiCl、NaCl、CaCl2或KCl中的一种或两种以上的混合物;所述反应容器(4)由石墨、Mo或W制成;
步骤3,熔盐的温度为350℃~900℃;将导电棒B(7)连接到反应容器(4)上,导电棒B(7)与导电棒A(3)的材质相同;导电棒A(3)与电源的负极相连,导电棒B(7)与电源的正极相连;
步骤4,根据前体材料的尺寸,通过1~10000A的直流电,通电10min~20h;生成碳纳米结构;待熔盐冷却后,将熔盐溶解、过滤回收纳米结构碳材料。
3.根据权利要求2所述的制备纳米结构碳材料的方法,其特征在于,陶瓷圆盘(5)由Al2O3、MgO或ZrO2制成。
4.根据权利要求2所述的制备纳米结构碳材料的方法,其特征在于,导电棒B(7)与导电棒A(3)的材质为Mo、W、Ni或不锈钢中的一种。
5.根据权利要求2所述的制备纳米结构碳材料的方法,其特征在于,前体材料在反应容器中的气氛为氩气、空气、氮气和氦气中的一种或两种以上的混合气氛。
6.根据权利要求2所述的制备纳米结构碳材料的方法,其特征在于,步骤4得到的纳米结构碳材料包括1nm~1000nm大小的碳纳米粒子、直径为1nm~1000nm的碳纳米纤维和外径为1nm~1000nm的碳纳米管。
CN201910489282.9A 2019-06-06 2019-06-06 用于制备纳米结构碳材料的前体材料及方法 Active CN110203904B (zh)

Priority Applications (5)

Application Number Priority Date Filing Date Title
CN201910489282.9A CN110203904B (zh) 2019-06-06 2019-06-06 用于制备纳米结构碳材料的前体材料及方法
EP19922251.4A EP3765405A4 (en) 2019-06-06 2019-07-24 PRECURSOR MATERIALS AND PROCESSES FOR THE PREPARATION OF NANOSTRUCTURED CARBONATED MATERIALS
US16/980,769 US20210164114A1 (en) 2019-06-06 2019-07-24 Precursor materials and methods for the preparation of nanostructured carbon materials
PCT/CN2019/097491 WO2020244039A1 (en) 2019-06-06 2019-07-24 Precursor materials and methods for the preparation of nanostructured carbon materials
JP2020562646A JP2021521094A (ja) 2019-06-06 2019-07-24 ナノ構造炭素材料を製造するための前駆体材料及び方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201910489282.9A CN110203904B (zh) 2019-06-06 2019-06-06 用于制备纳米结构碳材料的前体材料及方法

Publications (2)

Publication Number Publication Date
CN110203904A true CN110203904A (zh) 2019-09-06
CN110203904B CN110203904B (zh) 2021-07-09

Family

ID=67791221

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201910489282.9A Active CN110203904B (zh) 2019-06-06 2019-06-06 用于制备纳米结构碳材料的前体材料及方法

Country Status (5)

Country Link
US (1) US20210164114A1 (zh)
EP (1) EP3765405A4 (zh)
JP (1) JP2021521094A (zh)
CN (1) CN110203904B (zh)
WO (1) WO2020244039A1 (zh)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110983374A (zh) * 2019-12-17 2020-04-10 苏州涂冠镀膜科技有限公司 一种用于电解酸性水的涂层电极及其制备方法
CN111153399A (zh) * 2020-01-10 2020-05-15 北京理工大学 一种将废弃生物质材料转化为碳纳米管的电化学方法
CN112301364A (zh) * 2020-10-10 2021-02-02 重庆理工大学 一种石墨化碳粉的制备方法
WO2022110581A1 (zh) * 2020-11-30 2022-06-02 青岛恒能达能源科技有限公司 一种碳基复合材料及其制备方法和应用
RU2782027C1 (ru) * 2019-04-30 2022-10-21 Цзинин Юниверсити Способ получения углеродного наноклеточного материала

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1375451A (zh) * 2001-03-12 2002-10-23 双叶电子工业株式会社 制备纳米碳的方法、纳米碳、含其的材料及制备设备
CN103072968A (zh) * 2013-01-25 2013-05-01 北京化工大学 碳纳米复合材料及其制备方法
CN105518183A (zh) * 2013-08-06 2016-04-20 曼彻斯特大学 石墨烯和石墨烷的生产
WO2016138469A1 (en) * 2015-02-26 2016-09-01 The George Washington University Methods and systems for carbon nanofiber production
CN106414323A (zh) * 2014-02-14 2017-02-15 剑桥企业有限公司 生产石墨烯的方法
CN106957636A (zh) * 2016-01-12 2017-07-18 中国科学院上海应用物理研究所 熔盐基碳纳米流体及其制备方法
KR20180083158A (ko) * 2017-01-12 2018-07-20 한국해양대학교 산학협력단 탄소나노입자-탄소재 복합체 및 그 제조방법
CN109312479A (zh) * 2016-04-20 2019-02-05 西弗吉尼亚大学研究公司 用纳米结构化的碳化物化合物进行碳化物-至-碳转化的方法、设备及电极

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6683783B1 (en) * 1997-03-07 2004-01-27 William Marsh Rice University Carbon fibers formed from single-wall carbon nanotubes
JP3623732B2 (ja) * 2000-11-10 2005-02-23 独立行政法人科学技術振興機構 単層カーボンナノチューブの製造方法とそれにより得られる単層カーボンナノチューブおよび多孔質体原料
JP5280217B2 (ja) * 2009-01-14 2013-09-04 東洋炭素株式会社 金属−炭素複合材料
CN102530931B (zh) * 2011-12-14 2014-04-02 天津大学 基于石墨烯的纳米复合材料及其制备方法
GB2500611A (en) * 2012-03-26 2013-10-02 Cambridge Entpr Ltd Powder comprising carbon nanostructures and method of preparation
CN106587010B (zh) * 2016-12-05 2018-09-14 华南理工大学 一种使用碳包覆金属催化剂制备的碳纳米管材料及其制备方法
CN108011084A (zh) * 2017-11-23 2018-05-08 武汉大学 一种硅/碳复合材料的熔盐电化学制备方法

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1375451A (zh) * 2001-03-12 2002-10-23 双叶电子工业株式会社 制备纳米碳的方法、纳米碳、含其的材料及制备设备
CN103072968A (zh) * 2013-01-25 2013-05-01 北京化工大学 碳纳米复合材料及其制备方法
CN103072968B (zh) * 2013-01-25 2015-04-15 北京化工大学 碳纳米复合材料及其制备方法
CN105518183A (zh) * 2013-08-06 2016-04-20 曼彻斯特大学 石墨烯和石墨烷的生产
CN106414323A (zh) * 2014-02-14 2017-02-15 剑桥企业有限公司 生产石墨烯的方法
WO2016138469A1 (en) * 2015-02-26 2016-09-01 The George Washington University Methods and systems for carbon nanofiber production
CN106957636A (zh) * 2016-01-12 2017-07-18 中国科学院上海应用物理研究所 熔盐基碳纳米流体及其制备方法
CN109312479A (zh) * 2016-04-20 2019-02-05 西弗吉尼亚大学研究公司 用纳米结构化的碳化物化合物进行碳化物-至-碳转化的方法、设备及电极
KR20180083158A (ko) * 2017-01-12 2018-07-20 한국해양대학교 산학협력단 탄소나노입자-탄소재 복합체 및 그 제조방법

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2782027C1 (ru) * 2019-04-30 2022-10-21 Цзинин Юниверсити Способ получения углеродного наноклеточного материала
CN110983374A (zh) * 2019-12-17 2020-04-10 苏州涂冠镀膜科技有限公司 一种用于电解酸性水的涂层电极及其制备方法
CN111153399A (zh) * 2020-01-10 2020-05-15 北京理工大学 一种将废弃生物质材料转化为碳纳米管的电化学方法
CN112301364A (zh) * 2020-10-10 2021-02-02 重庆理工大学 一种石墨化碳粉的制备方法
WO2022110581A1 (zh) * 2020-11-30 2022-06-02 青岛恒能达能源科技有限公司 一种碳基复合材料及其制备方法和应用

Also Published As

Publication number Publication date
EP3765405A1 (en) 2021-01-20
US20210164114A1 (en) 2021-06-03
JP2021521094A (ja) 2021-08-26
WO2020244039A1 (en) 2020-12-10
CN110203904B (zh) 2021-07-09
EP3765405A4 (en) 2021-08-04

Similar Documents

Publication Publication Date Title
US9755225B2 (en) Process for silicon nanowire-graphene hybrid mat
CN110203904B (zh) 用于制备纳米结构碳材料的前体材料及方法
CN109273680B (zh) 一种多孔硅碳负极材料及其制备方法和锂离子电池
JP5826405B2 (ja) ナノシリコン炭素複合材料及びその調製方法
Wang et al. Recycling of photovoltaic silicon waste for high-performance porous silicon/silver/carbon/graphite anode
KR100905691B1 (ko) 탄소나노섬유를 혼성화시킨 리튬 이차전지용 음극 활물질
US20110297889A1 (en) METHOD FOR MANUFACTURING A COMPOSITE MATERIAL OF SnO2 AND CARBON NANOTUBES AND/OR CARBON NANOFIBERS, MATERIAL OBTAINED BY THE METHOD, AND LITHIUM BATTERY ELECTRODE COMPRISING SAID MATERIAL
Zhang et al. Cotton/rGO/carbon-coated SnO2 nanoparticle-composites as superior anode for Lithium ion battery
Chen et al. Graphene quantum dots modified nanoporous SiAl composite as an advanced anode for lithium storage
Ren et al. Self-supported graphene nanosheet-based composites as binder-free electrodes for advanced electrochemical energy conversion and storage
Wang et al. Synthesis of silicon nanosheets from kaolinite as a high-performance anode material for lithium-ion batteries
CN108987729B (zh) 一种锂硫电池正极材料及其制备方法与锂硫电池
WO2020150542A1 (en) Process for producing semiconductor nanowires and nanowire-graphene hybrid particulates
Fang et al. Lithiophilic current collector based on nitrogen doped carbon nanotubes and three-dimensional graphene for long-life lithium metal batteries
JP2020528873A (ja) ナノ構造化材料及びその製造方法
Sundar et al. Synthesis and characterization of graphene and its composites for Lithium-Ion battery applications: A comprehensive review
Zhang et al. A nanosilver-actuated high-performance porous silicon anode from recycling of silicon waste
Han et al. Facile assembly of α-Fe2O3 nanorings@ reduced graphene oxide composites with high lithium storage performance
Chen et al. In-situ synthesis of reduced graphene oxide wrapped Mn3O4 nanocomposite as anode materials for high-performance lithium-ion batteries
Cao et al. Sb&Sb 2 O 3@ C-enhanced flexible carbon cloth as an advanced self-supporting anode for sodium-ion batteries
Chen et al. Mg2Si promoted magnesio-mechanical reduction of silica into silicon nanoparticles for high-performance Li-ion batteries
Ji et al. Synthesis of large-size bulk hierarchically graphene-structured porous carbon and its versatile applications as hosts of sulfur and lithium for Li-S full cells and electrocatalyst for water splitting
US11929504B2 (en) Coated vertically aligned carbon nanotubes on nickel foam
Ha et al. A study on the electrochemical properties of silicon/carbon composite for lithium-ion battery
Zhang et al. Ultrafine SnO 2 nanoparticles decorated onto graphene for high performance lithium storage

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant