CN1701228B - 用于测量氧浓度的单层敏感元件和系统 - Google Patents

用于测量氧浓度的单层敏感元件和系统 Download PDF

Info

Publication number
CN1701228B
CN1701228B CN038252953A CN03825295A CN1701228B CN 1701228 B CN1701228 B CN 1701228B CN 038252953 A CN038252953 A CN 038252953A CN 03825295 A CN03825295 A CN 03825295A CN 1701228 B CN1701228 B CN 1701228B
Authority
CN
China
Prior art keywords
individual layer
oxygen concentration
oxygen
measure oxygen
sensitive element
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
CN038252953A
Other languages
English (en)
Other versions
CN1701228A (zh
Inventor
任詠华
朱炜坚
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
University of Hong Kong HKU
Original Assignee
University of Hong Kong HKU
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by University of Hong Kong HKU filed Critical University of Hong Kong HKU
Publication of CN1701228A publication Critical patent/CN1701228A/zh
Application granted granted Critical
Publication of CN1701228B publication Critical patent/CN1701228B/zh
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/62Systems in which the material investigated is excited whereby it emits light or causes a change in wavelength of the incident light
    • G01N21/63Systems in which the material investigated is excited whereby it emits light or causes a change in wavelength of the incident light optically excited
    • G01N21/64Fluorescence; Phosphorescence
    • G01N21/6428Measuring fluorescence of fluorescent products of reactions or of fluorochrome labelled reactive substances, e.g. measuring quenching effects, using measuring "optrodes"
    • G01N21/643Measuring fluorescence of fluorescent products of reactions or of fluorochrome labelled reactive substances, e.g. measuring quenching effects, using measuring "optrodes" non-biological material
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/62Systems in which the material investigated is excited whereby it emits light or causes a change in wavelength of the incident light
    • G01N21/63Systems in which the material investigated is excited whereby it emits light or causes a change in wavelength of the incident light optically excited
    • G01N21/64Fluorescence; Phosphorescence
    • G01N21/6428Measuring fluorescence of fluorescent products of reactions or of fluorochrome labelled reactive substances, e.g. measuring quenching effects, using measuring "optrodes"
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/62Systems in which the material investigated is excited whereby it emits light or causes a change in wavelength of the incident light
    • G01N21/63Systems in which the material investigated is excited whereby it emits light or causes a change in wavelength of the incident light optically excited
    • G01N21/64Fluorescence; Phosphorescence
    • G01N21/6447Fluorescence; Phosphorescence by visual observation
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/62Systems in which the material investigated is excited whereby it emits light or causes a change in wavelength of the incident light
    • G01N21/63Systems in which the material investigated is excited whereby it emits light or causes a change in wavelength of the incident light optically excited
    • G01N21/64Fluorescence; Phosphorescence
    • G01N21/6428Measuring fluorescence of fluorescent products of reactions or of fluorochrome labelled reactive substances, e.g. measuring quenching effects, using measuring "optrodes"
    • G01N2021/6432Quenching
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/62Systems in which the material investigated is excited whereby it emits light or causes a change in wavelength of the incident light
    • G01N21/63Systems in which the material investigated is excited whereby it emits light or causes a change in wavelength of the incident light optically excited
    • G01N21/64Fluorescence; Phosphorescence
    • G01N21/6428Measuring fluorescence of fluorescent products of reactions or of fluorochrome labelled reactive substances, e.g. measuring quenching effects, using measuring "optrodes"
    • G01N2021/6439Measuring fluorescence of fluorescent products of reactions or of fluorochrome labelled reactive substances, e.g. measuring quenching effects, using measuring "optrodes" with indicators, stains, dyes, tags, labels, marks
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/75Systems in which material is subjected to a chemical reaction, the progress or the result of the reaction being investigated
    • G01N21/77Systems in which material is subjected to a chemical reaction, the progress or the result of the reaction being investigated by observing the effect on a chemical indicator
    • G01N2021/7769Measurement method of reaction-produced change in sensor
    • G01N2021/7786Fluorescence
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N31/00Investigating or analysing non-biological materials by the use of the chemical methods specified in the subgroup; Apparatus specially adapted for such methods
    • G01N31/22Investigating or analysing non-biological materials by the use of the chemical methods specified in the subgroup; Apparatus specially adapted for such methods using chemical indicators
    • G01N31/223Investigating or analysing non-biological materials by the use of the chemical methods specified in the subgroup; Apparatus specially adapted for such methods using chemical indicators for investigating presence of specific gases or aerosols
    • G01N31/225Investigating or analysing non-biological materials by the use of the chemical methods specified in the subgroup; Apparatus specially adapted for such methods using chemical indicators for investigating presence of specific gases or aerosols for oxygen, e.g. including dissolved oxygen

Landscapes

  • Health & Medical Sciences (AREA)
  • Immunology (AREA)
  • Physics & Mathematics (AREA)
  • Chemical & Material Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Pathology (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Optics & Photonics (AREA)
  • Molecular Biology (AREA)
  • Investigating Or Analysing Materials By The Use Of Chemical Reactions (AREA)
  • Investigating, Analyzing Materials By Fluorescence Or Luminescence (AREA)

Abstract

发光指示物共价连接于玻璃表面用于测量分析物浓度的单层敏感传感装置。本发明描述了一种含有以共价连接于玻璃表面的钌(II)络合物作为发光指示物单层的感应元件。该系统能够通过分析物对所述指示物的发光猝灭来检测分析物,例如氧气在气体中或在流体中的浓度。该单层敏感元件具有可重现和快速的响应行为。

Description

用于测量氧浓度的单层敏感元件和系统
发明领域
本发明涉及一种共价连接于玻璃表面的钌(II)发光络合物的单层敏感元件的制造方法,用于通过分析物对所述指示物的发光猝灭来光学检测分析物例如氧,在气体或流体中的浓度。
发明背景
早期对氧的光学检测方案使用的是有机物传感器,它们是利用多环芳烃(PAHs)(例如芘、苯并[a]芘、芘丁酸,以及十环烯等)具有长激发态寿命的荧光性质。这些荧光团具有相当长的激发态寿命(长达400ns),并对O2猝灭敏感。然而,由于它们在紫外或者蓝色光谱区域呈现出最大吸收。因此这些传感器件需要利用消耗大量电能和/或费用昂贵的高能量激发光源。此外,这些光学传感方案中所需要的检测器(例如PMT)造价昂贵而且需要高压电源。
为了克服上述缺点,本发明描述了一种基于过渡金属络合物的用于测量分析物浓度或分压的单层敏感元件制造方法,通过它可以获得可重现和快速的响应行为。
已知许多过渡金属和镧系元素的多种金属-有机物络合物能强烈发光。发光的过渡金属络合物,尤其是具有二亚胺型配体(例如,2,2’-联吡啶,1,10-菲咯啉以及其取代衍生物)的d6铂系金属例如钌、锇、铼、铑和铱,其光谱特性、激发态寿命以及发光量子产率方面都呈现出十分理想的特性。联吡啶钌(II)络合物的低能量位金属-至-配体的电荷迁移(MLCT,metal-to-ligand charge transfer)激发态被应用在许多光敏元件设计方案中,因为其发光能被多种反应试剂包括分子氧猝灭。它们被广泛使用的其它原因在于它们易于制备,对于光解作用比较稳定,激发态发光位于可见光区域,在室温溶液中具有长效寿命,并且由于配体的选择范围广泛,可以精细调节激发态的相对能级和跃迁能量,这使得络合物可以提供特定的发光基团以制造出多种传感器应用于环境、海洋学、工业、生物技术以及生物制药领域。
通常用于监测氧分压的光学装置是基于钌(II)络合物作为发光传感器。这类络合物的特性在Klassen等人的“Spectroscopic Studies ofRuthenium(II)Complexes.Ass ignment of the Luminescence”,TheJournal of Chemical Physics,1968,48,1853-1858中,以及Demas等人的“Energy Transfer from Luminescent Transition Metal Complexesto Oxygen”,Journal of the American Chemical Society,1977,99,3547-3551中有所描述。
大多光学传感设计方案是基于发光物质被气体例如分子氧猝灭的原理。该方法中,O2与发光强度的相关性通过Stern-Volmer公式表示:
Eq.1     I0/I=(∑[fn/(1+Ksvn[O2])])-1
其中fn为每个能被氧影响位点的分数份额,Ksvn为每个影响位点的猝灭常数。
通常有三种固定方法用来制备和固定化学/生化物质。它们是化学共价技术、物理技术以及静电技术。物理的固定方法或者胶囊化方法涉及在聚合物基质(例如硅橡胶或者溶胶凝胶)中吸附和包裹分子。这是最简单因而也是最廉价的固定方法。然而,该固定方法中感应试剂与聚合物支持物之间没有键合,固定的发光基团可能会泄漏。静电固定方法利用具有带电基团如磺酸基(磺化聚苯乙烯)或季铵基刚性聚合物支持物,能够静电结合带相反电荷的分子。然而,由于感应物质的不均匀分布以及其在长期使用中的外渗,使静电固定方法的重现性降低。最有效的固定方法是在基片例如溶胶凝胶和被固定物质之间形成化学键。尽管固定过程通常会导致反应物质的各种特性弱化,但金属-有机物发光团已证明了在保持其大部分有用的光学、光物理和光化学特性的情况下进行化学固定是可能的。化学固定的发光基团可以被浇注在含有均匀分布的感应物质的超薄膜上。含有固定的发光基团的超薄膜可用于制造响应时间非常短的光纤传感器。然而遗憾的是,只能通过控制各种参数例如溶胶凝胶的pH,旋涂过程中的旋转速度,以及基片中感应材料的浓度来保持所制造的传感器的均匀度。在此我们描述了一种具有功能化配体的联吡啶钌(II)络合物单层敏感元件的制造方法,其通过化学键连接在玻璃表面上。
发明简述
化学固定法涉及感应试剂或者发光基团与玻璃表面之间的共价键的形成,也被称为共价固定法。共价键的形成被认为是固定化学和生化物质的最佳技术,因为共价化学键具有稳定和可预测的特性。修饰过程通常涉及通过化学反应对玻璃表面进行修饰。为了共价固定所述“感应试剂”,必须包含有一个或多个连接位点。
本发明的一个优点在于激发光(蓝光)和发射光(红光)的波长都在可见光区域内。这能够降低系统的生产成本,因为该传感系统易于用低成本的替代物例如廉价的发光二极管和低价光电二极管来构建。本发明的另一个优点是容易制造出均匀的单层传感设备。控制厚度和表面浓度的参数容易保持恒定。本发明还有另一个优点在于响应时间快,响应信号强,具有良好的可逆性以及在气相和液相都能够工作而不存在泄漏的问题。
图1表示了功能化配体的合成。将4,4’-二甲基2,2’-联吡啶(0.5g)加入二异丙基氨基锂(LDA)中,二异丙基氨基锂(LDA)是通过nBuLi与二异丙胺在干燥的THF中于0℃和氮气保护下反应1小时。然后加入Br(CH2)2OTHP(THP=四氢吡喃)的THF溶液。该混合物在0℃和室温之间的温度下搅拌过夜。将甲醇加入该混合物中以破坏任何未反应的LDA,将该溶剂通过旋转式蒸发器除去。加入水并用乙酸乙酯萃取混合物。将该化合物溶解在含有对甲苯磺酸的乙醇中,该混合物搅拌过夜。通过旋转蒸发仪去除乙醇。加入水并用乙酸乙酯萃取混合物。分离出有机物层,用水洗涤,用硫酸镁干燥,并蒸发溶剂得到白色晶状固体产物。
图2表示了金属-多吡啶络合物的合成。起始物质顺-[Ru(4,7-二苯基-1,10-菲咯啉)2Cl2]·2H2O的合成是根据已发表的步骤[Sullivan等,Inorganic Chemistry,1978,17,3334-3341],用4,7-二苯基-1,10-菲咯啉代替2,2’-联吡啶。顺-[Ru(4,7-二苯基-1,10-菲咯啉)2Cl2]·2H2O与图1中制备的配体在乙醇中加热回流12小时。然后所有溶剂通过旋转蒸发仪蒸发。
图3表示了玻璃表面的修饰以及金属络合物的固定。将载玻片浸入3-氯丙基甲硅烷基的甲苯溶液中。在氮气下加热回流3小时。然后将该载玻片在丙酮中超声波处理清洗10分钟。将图2中制备的具有功能化配体的钌(II)络合物与该洗净的表面修饰过的载玻片在甲苯和乙腈混合物(1∶1)中加热回流12小时。再将载玻片在丙酮和甲醇中分别超声波处理清洗10分钟。
图4表示在不同氧浓度下载玻片上单层联吡啶钌(II)感应物质的发射光谱曲线。该激发波长为485nm。
图5表示在100%的氧气和100%的氮气之间转换时载玻片上单层联吡啶钌(II)感应物质的相对发射强度改变的响应时间。激发和发射波长分别为485nm和630nm。从氧气转换到氮气时传感器的响应时间为160s,而从氮气转换到氧气时其几乎是自发的。信号的改变是完全可逆的并且没有观察到滞后现象。
图6表示载玻片上的单层联吡啶钌(II)感应物质的Stern-Volmer曲线图。当n=2时得到最佳拟合曲线,通常在其它基于过渡金属络合物的氧传感器中也能观察到。其等式可由eq.1推得,表示为:
Eq . 2 , I o / I = ( f 1 1 + K sv 1 [ Q ] + f 2 1 + K sv 2 [ Q ] ) - 1
该图中的相关因子r2,通过最小二乘法估算为0.998。Eq.2表示有两个氧影响位点:一个为氧易影响的(Ksv1=0.6135%-1,f1=0.929),另一个为氧难影响位点(Ksv2=0.0092%-1,f2=0.071)。

Claims (6)

1.一种用于测量氧浓度的单层敏感元件,包括:共价连接在基片表面的发光指示物的透明单层,其中所述发光指示物由通式[M(N,N)2(P-((CH2)m-X-(CH2)n-Si)sG)]Y2组成,其中M为Ru(II)、Os(II)、Rh(III)或Ir(III);N,N为双齿配体,选自2,2’-联吡啶、1,10-菲咯啉、4,7-二苯基-1,10-菲咯啉,或2-苯基吡啶;P为二亚胺双齿配体,选自联吡啶或菲咯啉;m和n相互独立地取0到10的数值;X为杂原子,选自O或N;G为基片表面;s的数值大于或等于1;Y为Cl、Br、I、PF6、BF4、ClO4、NO3、NCS、SO3CF3、SbF6阴离子。
2.一种如权利要求1所述的用于测量氧浓度的单层敏感元件,其中所述基片包括玻璃或者光纤。
3.一种如权利要求1所述的用于测量氧浓度的单层敏感元件,用于检测气体或流体中的分析物。
4.一种如权利要求1所述的用于测量氧浓度的单层敏感元件,进一步包括透气膜。
5.一种用于测量氧浓度的系统,其具有一个或多个如权利要求1所述的元件。
6.一种用于测量氧浓度的系统,具有一个或多个激发光通过如权利要求1所述的元件。
CN038252953A 2002-09-30 2003-09-29 用于测量氧浓度的单层敏感元件和系统 Expired - Lifetime CN1701228B (zh)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
US10/261,191 2002-09-30
US10/261,191 US20040062683A1 (en) 2002-09-30 2002-09-30 Sensitive single-layer sensing device of covalently attached luminescent indicator on glass surface for measuring the concentration of analytes
PCT/CN2003/000833 WO2004029597A1 (en) 2002-09-30 2003-09-29 Sensitive single-layer sensing device of covalently attached luminescent indicator on glass surface for measuring the concentration of analytes

Publications (2)

Publication Number Publication Date
CN1701228A CN1701228A (zh) 2005-11-23
CN1701228B true CN1701228B (zh) 2010-05-26

Family

ID=32029901

Family Applications (1)

Application Number Title Priority Date Filing Date
CN038252953A Expired - Lifetime CN1701228B (zh) 2002-09-30 2003-09-29 用于测量氧浓度的单层敏感元件和系统

Country Status (5)

Country Link
US (1) US20040062683A1 (zh)
EP (1) EP1546686A4 (zh)
CN (1) CN1701228B (zh)
AU (1) AU2003271509A1 (zh)
WO (1) WO2004029597A1 (zh)

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8081313B2 (en) * 2007-05-24 2011-12-20 Airbus Operations Limited Method and apparatus for monitoring gas concentration in a fluid
EP2073000A1 (en) * 2007-12-20 2009-06-24 Nederlandse Organisatie voor toegepast- natuurwetenschappelijk onderzoek TNO Coated waveguide for optical detection
GB0813715D0 (en) * 2008-07-28 2008-09-03 Airbus Uk Ltd A monitor and a method for measuring oxygen concentration
US8077316B2 (en) * 2009-02-18 2011-12-13 The Board Of Regents For Oklahoma State University Chlorine dioxide sensor
US8343771B2 (en) * 2011-01-12 2013-01-01 General Electric Company Methods of using cyanine dyes for the detection of analytes
US10331911B2 (en) 2016-06-29 2019-06-25 International Business Machines Corporation Secure crypto module including security layers
CN109233547B (zh) * 2017-05-26 2020-07-24 中国科学院大学 一种氧浓度响应高分子光致发光涂层及其制备与应用

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4752115A (en) * 1985-02-07 1988-06-21 Spectramed, Inc. Optical sensor for monitoring the partial pressure of oxygen
CN1235185A (zh) * 1998-05-12 1999-11-17 湖南大学 用于荧光熄灭氧传感器的高灵敏度氧敏感发光材料
US6139798A (en) * 1992-07-24 2000-10-31 Avl Medical Instruments Ag Sensor membrane of an optical sensor
CN2483719Y (zh) * 2001-06-19 2002-03-27 吉林大学 光化学氧分子传感装置
US6441055B1 (en) * 1998-07-15 2002-08-27 Institut Fur Chemo-Und Biosensorik Munster E.V. Sensor membrane for determining oxygen concentrations and process for the preparation thereof

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3904373A (en) * 1973-10-26 1975-09-09 Gerald Bruce Harper Indicators covalently bound to insoluble carriers
AT390517B (de) * 1988-08-04 1990-05-25 Avl Verbrennungskraft Messtech Optischer sensor und verfahren zu dessen herstellung
JPH0713597B2 (ja) * 1989-01-19 1995-02-15 テルモ株式会社 酸素濃度測定用具
US5580527A (en) * 1992-05-18 1996-12-03 Moltech Corporation Polymeric luminophores for sensing of oxygen
US5381505A (en) * 1993-08-09 1995-01-10 Uop Optical fibers with a light absorbing coating
DE69519783T2 (de) * 1994-04-29 2001-06-07 Perkin Elmer Corp Verfahren und vorrichtung zur echtzeiterfassung der produkte von nukleinsäureamplifikation
DE19519496A1 (de) * 1995-05-27 1996-11-28 Lau Matthias Dipl Ing Sauerstoffsensitives Einschichtsystem und Verfahren zur Anordnung des Systems
US5912115A (en) * 1997-12-12 1999-06-15 Akzo Nobel, N.V. Evacuated sensor device for detecting microorganisms in blood samples, and method thereof
US6406777B1 (en) * 2000-06-14 2002-06-18 The United States Of America As Represented By The Secretary Of The Navy Metal and glass structure for use in surface enhanced Raman spectroscopy and method for fabricating same
US20030180964A1 (en) * 2002-03-20 2003-09-25 Dan-Hui Yang Method for immobilizing analyte sensitive materials on a sol-gel matrix

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4752115A (en) * 1985-02-07 1988-06-21 Spectramed, Inc. Optical sensor for monitoring the partial pressure of oxygen
US6139798A (en) * 1992-07-24 2000-10-31 Avl Medical Instruments Ag Sensor membrane of an optical sensor
CN1235185A (zh) * 1998-05-12 1999-11-17 湖南大学 用于荧光熄灭氧传感器的高灵敏度氧敏感发光材料
US6441055B1 (en) * 1998-07-15 2002-08-27 Institut Fur Chemo-Und Biosensorik Munster E.V. Sensor membrane for determining oxygen concentrations and process for the preparation thereof
CN2483719Y (zh) * 2001-06-19 2002-03-27 吉林大学 光化学氧分子传感装置

Also Published As

Publication number Publication date
WO2004029597A1 (en) 2004-04-08
CN1701228A (zh) 2005-11-23
EP1546686A4 (en) 2006-05-03
AU2003271509A1 (en) 2004-04-19
EP1546686A1 (en) 2005-06-29
US20040062683A1 (en) 2004-04-01

Similar Documents

Publication Publication Date Title
Mohr et al. Application of chromogenic and fluorogenic reactands in the optical sensing of dissolved aliphatic amines
JP4272347B2 (ja) 蛍光強度のシグナルを基準化するための方法および装置
Huber et al. Dual lifetime referencing as applied to a chloride optical sensor
Klimant et al. Fast response oxygen micro-optodes based on novel soluble ormosil glasses
Werner et al. Novel optical pH-sensor based on a boradiaza-indacene derivative
EP1000171B1 (en) Fluorescent polymeric sensor for the detection of urea
US4892640A (en) Sensor for the determination of electrolyte concentrations
US7456023B2 (en) Reagent for luminescence optical determination of an analyte
Chu et al. Sensitive single-layered oxygen-sensing systems: polypyridyl Ruthenium (II) complexes covalently attached or deposited as Langmuir− Blodgett monolayer on glass surfaces
US5958786A (en) Fluorescent polymeric sensor for the detection of creatinine
US5308581A (en) Substance of an optical fluorescence measuring arrangement for measuring the pH of a sample and optical sensor with such an indicator substance
CN105277520B (zh) 一种比率型荧光氧传感膜的制备及应用
CN1701228B (zh) 用于测量氧浓度的单层敏感元件和系统
Turel et al. Direct UV-LED lifetime pH sensor based on a semi-permeable sol–gel membrane immobilized luminescent Eu3+ chelate complex
Niu et al. Time-gated fluorescence sensor for trace water content determination in organic solvents based on covalently immobilized europium ternary complex
Gonçalves et al. Fiber optic lifetime pH sensing based on ruthenium (II) complexes with dicarboxybipyridine
US6241948B1 (en) Sensing device with sol-gel derived film on the light source
CN100575931C (zh) 1-烯丙氧基-4-羟基蒽醌-9,10-二酮及其制备方法和应用
Felorzabihi et al. Determination of the Forster distance in polymer films by fluorescence decay for donor dyes with a nonexponential decay profile
Mohr et al. Synthesis and characterization of fluorophore-absorber pairs for sensing of ammonia based on fluorescence
US5015715A (en) Method for bonding an analyte-sensitive dye compound to an addition-cure silicone
Ertekin et al. Fiber optic sodium and potassium sensing by using a newly synthesized squaraine dye in PVC matrix
Rathgeb et al. Dyeless optical detection of ammonia in the gas phase using pH-responsive polymers with reflectometric interference spectroscopy
CN101845145B (zh) 芘取代聚二甲基硅氧烷衍生物及其制备方法与应用
Sloan et al. A fibre‐optic calcium ion sensor using a calcein derivative

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C14 Grant of patent or utility model
GR01 Patent grant
CX01 Expiry of patent term

Granted publication date: 20100526

CX01 Expiry of patent term