CN1701217A - 一种用于校准Coriolis流量计的驱动信号的系统 - Google Patents

一种用于校准Coriolis流量计的驱动信号的系统 Download PDF

Info

Publication number
CN1701217A
CN1701217A CNA018131727A CN01813172A CN1701217A CN 1701217 A CN1701217 A CN 1701217A CN A018131727 A CNA018131727 A CN A018131727A CN 01813172 A CN01813172 A CN 01813172A CN 1701217 A CN1701217 A CN 1701217A
Authority
CN
China
Prior art keywords
drive signal
vibration
driver
flowtube
instruction
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CNA018131727A
Other languages
English (en)
Other versions
CN100443863C (zh
Inventor
T·D·沙普
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Micro Motion Inc
Original Assignee
Micro Motion Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Micro Motion Inc filed Critical Micro Motion Inc
Publication of CN1701217A publication Critical patent/CN1701217A/zh
Application granted granted Critical
Publication of CN100443863C publication Critical patent/CN100443863C/zh
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01FMEASURING VOLUME, VOLUME FLOW, MASS FLOW OR LIQUID LEVEL; METERING BY VOLUME
    • G01F1/00Measuring the volume flow or mass flow of fluid or fluent solid material wherein the fluid passes through a meter in a continuous flow
    • G01F1/76Devices for measuring mass flow of a fluid or a fluent solid material
    • G01F1/78Direct mass flowmeters
    • G01F1/80Direct mass flowmeters operating by measuring pressure, force, momentum, or frequency of a fluid flow to which a rotational movement has been imparted
    • G01F1/84Coriolis or gyroscopic mass flowmeters
    • G01F1/8409Coriolis or gyroscopic mass flowmeters constructional details
    • G01F1/8436Coriolis or gyroscopic mass flowmeters constructional details signal processing
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01FMEASURING VOLUME, VOLUME FLOW, MASS FLOW OR LIQUID LEVEL; METERING BY VOLUME
    • G01F25/00Testing or calibration of apparatus for measuring volume, volume flow or liquid level or for metering by volume
    • G01F25/10Testing or calibration of apparatus for measuring volume, volume flow or liquid level or for metering by volume of flowmeters

Landscapes

  • Physics & Mathematics (AREA)
  • Fluid Mechanics (AREA)
  • General Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Signal Processing (AREA)
  • Measuring Volume Flow (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

一种系统,用于校准施加给固定在导管上的驱动器的驱动信号,该驱动信号使驱动器提供一个以期望的振动模式振动导管的力。首先是推导一个设备的数学模型,然后是利用这个模型从数学上计算一个合适的驱动信号电压,由此实现校准。动态模型的推导和驱动信号电压的计算是通过以下来实现:振动导管、测量导管的振动、根据经过测量的振动来检测设备的物理特征、和确定一个驱动信号,该驱动信号会使驱动器对确定设备的物理特征作出响应,以期望的振动模式振荡导管。

Description

一种用于校准Coriolis流量计的驱动信号的系统
技术领域:
本发明涉及一种设备,它用于测量流经例如Coriolis质量流量计设备的物质的特性。尤其是,本发明涉及校准一种固定在导管上的驱动器以便使其只以期望的振动模式来激励导管。而且还特别是,本发明涉及确定一种使驱动器以期望的振动模式来振动导管的驱动信号。
背景技术
使用Coriolis效应流量计对通过流量计内的导管流动的物质进行测量质量流量和其它信息是众所周知的。典型的Coriolis流量计在由J.E.Smith等人在美国于1978年8月29日申请的专利4,109,524,于1985年1月1日申请的专利4,491,025,和于1982年2月11日申请的专利Re.31.450中得以揭示。这些流量计都有一个或多个直的结构或弯曲的结构的导管。在Coriolis质量流量计中的每一个导管都有一套固有振动模式,这种振动模式可以是一种简单的弯曲类型、扭曲类型,或是相结合的类型。驱动每一个导管使之在与多个固有振动模式中的其中一个的谐振处振荡。物质从在流量计入口侧的连接管线流进流量计,径直通过一个或多个导管,从流量计的出口侧流出流量计。振动填满系统的物质的固有振动模式在本领域内可以通过结合导管质量和在导管内流动的物质来确定。
当没有物质流经流量计时,由于施加的驱动力,沿导管的所有点都以同一相位或以可被矫正的小的初始固定相位偏移来振荡。当物质流动时,Coriolis力使得沿振动的导管的每一点都有不同的相位。导管入口侧的相位滞后于驱动器,同时导管出口侧的相位超前于驱动器。将传感器放置在导管(或多个导管)上以便产生表示导管(或多个导管)动作的正弦信号。处理从传感器输出的信号以便确定在这些信号之间的相位差。在两个传感器信号之间的相位差与经过导管(或多个导管)的物质的质量流率成比例。
每个Coriolis流量计和每个振动管密度计的主要部件是驱动或激励系统。驱动系统工作时会对导管施加周期性的物理力,这使得导管振荡。驱动系统包括安装在导管(或多个导管)上的驱动机构和用于产生驱动信号以操作驱动机构的驱动电路。典型的驱动机构包括许多已知装置之一,例如安装在一个导管上的磁铁和以与该磁铁成相反关系的方式安装在另一个导管上的线圈。
驱动电路给驱动机构持续施加周期性的驱动信号。驱动信号是典型的正弦波或方波。在典型的磁性线圈驱动机构中,周期性的驱动信号使线圈产生一个交替的磁场。线圈的交替磁场和由磁力产生的恒定磁场使流量导管以正弦曲线图形的方式振动。本领域的技术人员都明白任何可将电信号转换成机械力的装置都适用于如驱动器这样的应用(见由Carpenter发表并转让给Micro Motion,Inc的美国专利4,777,833)。同时,不必非要使用正弦信号。任何周期性的信号作为驱动器信号也是很适合的。(见由Kalotay等人发表并转让给Micro Motion,Inc的美国专利5,009,109)。
对于双管流量计,一个可典型驱动Coriolis流量计使之振动的典型模式,尽管这不是唯一的模式,是一个第一异相的弯曲模式。第一异相的弯曲模式是基本的谐振弯曲模式,在该模式中双管Coriolis流量计的两个导管以相位相反的方式振动。然而,目前这在Coriolis流量计的振动结构中并不是唯一的振动模式。在一些导管中也可以激励更高的振动模式。例如,可以激励第一异相的扭曲模式作为流经振动导管的物质和随后由流动的物质引起Coriolis力的结果。其它更高的可被激励的振动模式包括同相弯曲和横向振动模式。
在以第一异相弯曲模式驱动的Coriolis流量计中可以激励数百个振动模式。即使在相对窄的靠近第一异相弯曲模式的频率范围内,也存在至少数个额外的可由驱动系统激励的振动模式。除了可由驱动器激励的多个模式外,由于流量计的外部振动,不希望的振动模式也能够被激励。例如,生产线中的机械附近可能产生振动,该振动可以在Coriolis流量计中激励不想要的振动模式。
驱动系统能够激励额外的和不希望的振动模式,因为驱动器机制不是理想的。驱动系统包括产生命令信号的驱动电路和将收到的命令信号转换成力的驱动器机制。理想到驱动器机制是线性的,并且该机制将产生与命令信号线性相关的力。然而,由于各种原因,在对驱动器施加的命令信号和由驱动器产生的力之间的关系是非线性的。制造公差要求将驱动器元件对称地放置在导管上。任何最终的非线性在驱动力下引起失真,该驱动力是作为在原始驱动信号的谐波处对该结构施加的力出现。配置驱动系统,对驱动器施加驱动信号,驱动器对一个导管(或多个导管)施加足够的力以使它们以期望的振动模式振动。然而,当驱动器不是理想的情况下,对一个导管(或多个导管)施加的力不是理想的,并且力可在更高的频率处产生。这些高频率力可以激励其它不想要的结构模式。
实施的偏心力可以在一些导管内激励多个振动模式。这样,驱动Coriolis流量计,使其以期望的振动模式,例如第一异相弯曲模式,振荡或谐振,该流量计实际上有除了以期望的模式外还以许多其它模式振荡的一个导管(或多个导管)。驱动仪表,使其以除第一异相弯曲模式外的不同模式振荡,产生具有包括预期的振动模式在内的多个被激励的振动模式的相同现象。
如果诸如Coriolis流量计等设备不是均衡的,由导管施加到驱动器上的偏心力就是一个特殊的问题。当设备内的振动相互抵消,生成零和的设备振动时,该设备是均衡的。当振动没有相互抵消时,设备就不是均衡的。这会对系统施加一个力。一个典型的双导管的设备,例如双导管的Coriolis流量计,是均衡的,因为两个导管彼此以相位相反的方式振动,这就会抵消相对振动。然而,非均衡的设备缺少这样的一个导管:它是以相对方向振动以便可以抵消来自该导管的振动力。
非均衡性能够在周围环境和导管之间引起显著的耦合。该耦合增加了周围环境的结构动态碰撞,并且可以引起由驱动器对导管施加的谐波力所激励的不期望的振动模式。因此,期望在非均衡的设备中有一个驱动器,它施加仅激励需要的振动模式的力。
基于上述原因,需要一个用于振动设备里的导管的驱动电路系统以减少由驱动器振荡导管所激励的不期望的振动模式,而该设备用于测量驱动流量计中振动的导管。
发明内容
通过提供一个用于校准驱动信号的系统来解决上述的问题及其他问题,并且可在本领域内获得进步。为测量流经导管的物质的特性,本发明的校准系统确定了用于固定在导管上的驱动器的合适的驱动信号。该驱动信号使驱动器施加一个力,该力以期望的振动模式振动导管。通过确定合适的驱动信号,将减少由驱动器施加给导管的谐波力。这会增加以期望的振动模式振动的量,并减少以不期望的振动模式振动的量。以不期望的振动模式的振动的减少会大幅度减少使流量计易遭受的噪声层。放大期望的响应并减少噪音会更加精确的进行例如质量流率等特性的测量。而且,会提高测量的可重复性。
为了校准合适的驱动信号,将例如加速计的传感器贴近驱动器固定在导管上。计算机或数字处理器用宽频带的噪音信号来激励该驱动器。这会使驱动器施加一个限带噪声力给导管和传感器,以用来测量驱动器处的振动结构的动作。数字处理器则接收从传感器输出的关于结构动作的数据。数字处理器利用数据产生一个该结构和驱动器的动态模式。数字处理器利用动态模式确定驱动信号,该信号将使驱动器施加一个力给导管,这个力将以期望的振动模式来振动该导管。
在一个实施例中,数字处理器输出结果给显示器等,配置与驱动器连接的常规模拟驱动电路使之可以产生合适的驱动信号。在这个优选的实施例中,可以通过在驱动电路中设置参考电压来配置常规的驱动电路。
在一个替换的实施例中,电子测量仪包含一个数字信号处理器,该处理器控制施加给驱动器的驱动信号。当在电子测量仪中使用数字信号处理器时,通过数字信号处理器周期性的进行校准以便随着设备的结构动态变化来调整驱动信号。这是通过周期性振动驱动器的导管来进行的。然后将振动数据存储在存储器中。将存储的数据和当前的振动数据一起使用,检测新的设备结构动态,确定新的驱动信号。
本发明的一方面是关于一种用来校准施加给驱动器的驱动信号的方法,该驱动信号使所述驱动器振荡流量测量设备里的至少一个流量管,该流量测量设备用于测量在所述至少一个流量管里流动的物质的特性,该方法包括以下步骤:
利用所述驱动器振动所述至少一个流量管;
对振动所述流量管作出响应,测量所述至少一个流量管的振动;其特征在于,包括步骤:
根据所述已测量的所述至少一个流量管的振动来检测所述设备和所述驱动器的物理特性;根据所述物理特性的检测结果来确定用于所述驱动器的驱动信号,和
将所述已确定的驱动信号用于所述驱动器以便以期望的振动模式来振荡所述至少一个流量管;
另一方面是一种方法,其中的所述流量测量设备是一个流量计,并且该方法用来校准将要施加给所述流量计的驱动器的驱动信号,所述方法的特征在于,包括以下步骤:
施加一个第一信号给所述驱动器以便振动所述至少一个流量管;
当对所述驱动器施加所述第一信号时,对振动所述至少一个流量管作出响应,测量所述至少一个流量管和所述驱动器的振动;
当对所述驱动器施加所述第一信号时,根据对所述至少一个流量管的所述振动的测量,确定物理振动特性,其振动特性包括所述流量计的任何不期望的物理振动特性,该流量计具有所述流量管和所述驱动器;
确定所述已确定的物理振动特性的校正因子;
利用所述已确定的物理振动特性和所述校正因子,确定将要施加给所述驱动器的驱动信号;和
给所述驱动器施加所述已确定的驱动信号以便以期望的振动模式振荡所述至少一个流量管,该振动模式会补偿所述不期望的物理振动特性;
另一个方面是存储所述至少一个流量管的所述振动的测量值的步骤,其中检测所述设备的所述物理特性的所述步骤还包括以下步骤:
结合当前的振动测量值和所述已存储的振动测量值以便确定所述物理特性;
另一方面包括为了响应确定的所述驱动信号,在驱动信号电路中设置参考电压,以使所述驱动信号电路产生所述驱动信号的步骤;
另一个方面还包括周期性的重复用于校准所述驱动信号的所述方法的步骤;
另一个方面是其中所述检测所述驱动器和设备的物理特性的步骤包括根据所述已测量的振动来模拟所述驱动器和设备的动态的步骤。
另一方面还包括改变驱动电路以便产生所述驱动信号的步骤。
另一方面是确定所述驱动信号的步骤包括以下步骤:
计算表示驱动信号和对所述导管施加的力之间关系的函数多项式的系数;
确定表示所述驱动信号和所述力之间关系的所述函数的反函数多项式的系数;和
将所述驱动信号的命令电平加入所述反函数以便确定所述驱动信号。
另一方面包括用于测量物质特性的设备的电子测量仪,所述设备有至少一个用于接收物质的流量管,一个用于振动所述至少一个流量管的驱动器,多个用于在沿所述流量管的各点处测量所述至少一个导管振动的传感器,所述电子测量仪包括用于给所述驱动器施加驱动信号以使所述驱动器振荡至少一个流量管的驱动电路,和用于测量流过所述至少一个流量管的物质的特性的电路,所述电子测量仪还包括:
第一电路,用于接收从所述传感器输出的信号,并根据所述已测量的所述至少一个流量管的振动来检测所述设备和所述驱动器的物理特性;和
第二电路,用于根据所述设备和所述驱动器的物理特性来确定使所述驱动器以期望的振动模式振荡所述至少一个流量管的驱动信号。
另一个方面还包括一个用于存储所述至少一个流量管的振动测量值的存储器。
另一个方面是所述第一电路还包括用于结合当前的振动测量值和所述已存储的振动测量值以用来确定所述物理特性的电路。
另一个方面包括在驱动信号电路中设置的参考电压,该参考电压被设置成一个用来产生所述驱动信号的电平作为对确定所述驱动信号的响应,以使所述驱动信号电路产生所述驱动信号。
另一个方面包括用于周期性重复所述驱动信号校准的定时电路。
另一个方面是所述第一电路包括用于根据所述已测量的振动来模拟所述设备和驱动器的动态的模拟电路。
另一个方面是所述第二电路包括:
用于计算表示驱动信号和对所述导管施加的力之间关系的函数多项式的系数的电路;
用于确定表示所述驱动信号和所述力之间关系的所述函数的反函数多项式的系数的电路;和
用于将所述当前驱动信号的命令信号加入所述反函数以便确定所述驱动信号的电路。
另一个方面包括一种用于校准施加给驱动器以使所述驱动器振荡一个设备中的至少一个流量管的驱动信号的产品,其中该设备用来测量流经所述至少一个流量管的物质的特性,所述产品包括:
指令,用于指示处理器作以下动作:
接收从固定在所述至少一个流量管的传感器输出的测量所述至少一个流量管振动的信号,和
根据所述已测量的所述至少一个流量管的振动来检测所述设备和驱动器的物理特性,和
根据所述设备和所述驱动器的物理特性来确定使所述驱动器以期望的振动模式振荡所述至少一个流量管的驱动信号;和
可由所述处理器读取的媒介,用于存储所述指令。
另一个方面是所述指令还包括用于指示所述处理器施加所述驱动信号给所述驱动器使之以所述期望的振动模式振荡所述至少一个流量管的指令。
另一个方面是所述指令还包括用于指示所述处理器将所述至少一个流量管的所述振动测量值存储在存储器中的指令。
另一个方面是使处理器检测所述设备和驱动器的所述物理特性的所述指令还包括:
用于指示所述处理器从所述存储器读取所述测量值,并且指示处理器结合当前的振动测量值和所述已存储的振动测量值以用来确定所述物理特性的指令。
另一个方面是所述指令还包括:
用于指示所述处理器给出一个响应于确定的所述驱动信号的驱动信号电路参考电压,使所述驱动信号电路产生所述驱动信号的指令。
另一个方面是所述指令还包括用于指示所述处理器周期性重复所述驱动信号校准的指令。
另一个方面是用于检测所述设备和驱动器的所述物理特性的所述指令包括用于指示所述处理器根据所述已测量的振动来模拟所述设备和驱动器的动态的指令。
另一个方面是用于指示所述处理器确定所述驱动信号的指令包括:
用于指示所述处理器计算表示驱动信号和对所述导管施加的力之间关系的函数多项式的系数,确定表示所述驱动信号和所述力之间关系的所述函数的反函数多项式的系数,和将所述驱动信号的命令信号加入所述反函数以确定所述驱动信号的指令。
另一个方面包括一种方法,用于校准施加给驱动器的驱动信号使所述驱动器振荡位于设备里的至少一个流量管,其中该设备用于测量在所述至少一个流量管里流动的物质的特性,所述方法包括以下步骤:
由所述驱动器振动所述至少一个流量管;
为响应所述振动,测量所述至少一个流量管的振动;
根据所述已测量的所述至少一个流量管的振动来检测所述设备和驱动器的物理特性;和
根据所述至少一个流量管和所述驱动器的物理特性来确定使所述驱动器以期望的振动模式振荡所述至少一个流量管的驱动信号。
附图说明
驱动信号的校准系统的上述及其它特征可以根据阅读详细的说明和附图来加以理解:
图1示出结合本发明的驱动信号校准系统的Coriolis质量流量计;
图2示出在本发明的驱动信号校准系统中使用的电子测量仪;
图3示出用于产生由驱动信号校准系统确定的用于激励期望的振动模式的驱动信号的驱动电路;
图4示出用于进行驱动信号校准的处理单元;
图5示出使用数字发送器的电子测量仪20的第二实施例的框图;
图6示出由理想驱动系统振荡的导管振动的曲线图;
图7示出由典型的非理想驱动系统振荡的导管振动的曲线图;
图8示出由具有已校准的驱动信号的驱动系统振荡的导管实际振动的曲线图;
图9示出一种用于校准驱动信号的方法的流程图;
图10示出了由数字处理器完成的处理以便进行驱动信号校准的流程图;和
图11示出单元906&1007的其它细节。
具体实施方式
总的Coriolis流量计-图1
图1示出了包括Coriolis测量计部件10和电子测量仪20的典型Coriolis流量计5。电子测量仪20与测量计部件10经过导线100连接,用于在路径26上提供密度、质量流率、体积流率和合计的质量流量信息。说明了Coriolis流量计的结构,尽管本领域的技术人员都明白本发明可以结合任何具有振动的导管用以测量流经该导管的物质的特性的设备来实现。这种设备的第二个例子是振动管密度计,它没有可由Coriolis质量流量计提供的额外的测量能力。
测量计部件10包括一对处理连接,例如法兰101和101’,歧管102和导管103A和103B。与导管103A和103B连接的是驱动器104、加速计190和传感器105和105’。撑杆106和106’用于确定每个导管振荡的轴W和W’。
当将流量计5插进用于传输正被测量的处理物质的管道系统(未示出)时,该物质经过法兰101进入测量计部件10,穿过歧管102(在这里物质直接进入导管103A和103B),流经导管103A和103B,并返回歧管102,物质从这里经由法兰101’流出测量计部件10。
选择导管103A和103B并将它们恰当地安装在歧管102上,使之实际上各自有相同的质量分布、关于弯曲轴W-W和W’-W’的惯性和弹性瞬时模量。导管103A-103B从歧管向外以基本平行的方式伸出。
导管103A-103B由驱动器104以关于它们各自的弯曲轴W和W’的相位相反的方式和以被称为流量计的第一异相谐振弯曲模式驱动。驱动器104包括许多众所周知的装置中的任何一个,例如安装在导管103A上的磁铁和安装在导管103B上的反作用线圈,交流电流过磁铁和线圈用于振动这两个导管。电子测量仪20通过导线110施加合适的驱动信号给驱动器104。
将传感器105和105’放置在至少一个导管103A和103B的相对两端上用以测量导管的振荡。当导管103A-103B振动时,传感器105和105’产生第一和第二速率信号。将第一和第二速率信号施加给导线111和111’。加速传感器105”贴近驱动器104固定在导管上,产生响应导管103A和103B振荡的加速信号。将加速信号施加给导线111”来表示流量管103A和103B的振动。
电子测量仪20接收分别在导线111,111’和111”上出现的第一和第二传感器速率信号和驱动器速率信号。电子测量仪20处理第一和第二速率信号用以计算质量流率、密度,或是通过测量计部件10的物质的其它特性。电子测量仪20在路径26上将经过计算的信息施加给利用装置(未示出),例如数字信号处理单元(见图4)。
本领域的技术人员都知道Coriolis流量计5在结构上要比振动管密度计小。振动管密度计也使用振动管,其中液体流过振动管,或是在简单类型的密度计的情况下,液体在振动管中保持。振动管密度计同样使用用来激励导管振动的驱动系统。典型的振动管密度计仅利用一个反馈信号,因为密度测量只需要测量频率,而不需要测量相位。在这里,本发明的说明同样适用于振动管密度计。本领域的技术人员都明白Coriolis流量计有两个可用的反馈信号,而振动管密度计仅有一个典型的可用反馈信号。因此,为了使本发明适用于振动管密度计,只需要在振动管密度计中提供附加的反馈信号即可。而且,本领域的技术人员都明白下面的发明的步骤和方法可以在通过振动导管来测量物质特性的任何设备中使用。
电子测量仪-图2
图2进一步示出了电子测量仪20的细节。电子测量仪20包括特性测量电路30,和流动管驱动电路40。特性测量电路30是许多已知的用于根据振动导管的两点之间的相位不同来计算物质特性的电路之一,该物质特性如当物质通过振动导管103A-103B时的质量流率。特性测量电路30在导线26上产生输出用于使用装置(未示出)。使用装置可以是例如显示器和图4所示的数字处理单元。特性测量电路30的细节对于本领域的技术人员来说是众所周知的,并没有成为本发明的一部分。关于用于确定物质的质量流率的特性测量电路30的典型信息见由Smith于1983年11月29日公开并转让给Micro Motion,Inc的美国专利RE31,450,或是Zolock于1989年11月14日公开并转让给MicroMotion,Inc的美国专利4,879,911,或是Zolock于1993年8月3日公开并转让给Micro Motion,Inc的美国专利5,231,884。
在流量计驱动电路系统中,驱动电路40在路径41上接收来自左边传感器105的反馈信号。正如结合图3所作的更加详细地描述,驱动电路系统在路径110上施加驱动信号给驱动线圈104。本领域的技术人员都明白现有的驱动系统可以选择使用右边传感器作为用于驱动电路40的反馈。同时,一些现有的驱动系统可以使用两个传感器信号的和作为用于驱动电路40的反馈信号。
驱动电路40-图3
图3进一步示出了驱动电路40的细节。驱动电路40在路径41上接收来自流量计的许多传感器之一的反馈信号,并调节传感器信号的幅度以便在路径110上施加驱动信号给驱动器104。注意,一些现有的驱动系统合计两个传感器的信号并处理经合计的信号用以生成驱动信号。驱动电路40在路径41上接收来自传感器105的信号。传感器信号要经过整流器300和积分器301。从积分器301输出的信号表示传感器信号105的平均幅度。平均幅度信号被施加给幅度控制302。幅度控制302比较来自积分器301的平均幅度信号和参考电压Vref。如果平均幅度低于参考电压,乘法器303放大传感器信号并且将经过幅度调节的传感器信号施加给路径305。功率放大器304放大经过幅度调节的传感器信号105以便产生要在路径110上反馈给驱动器104的最后驱动信号。因此,驱动电路40维持幅度相对恒定的驱动信号。现有的控制电路40的细节对于Coriolis电子流量计领域的技术人员来说是众所周知的,并没有成为本发明的一部分。关于驱动电路40的更多实施例的更详细的论述见美国专利5 009 109。
数字处理单元-图4
图4示出了用于执行指令的数字处理单元400,该指令提供了本发明的驱动信号校准。数字处理单元400有处理器401,用于执行存储在存储器里的指令以便完成例如本发明的驱动信号校准的应用。处理器401可以是常规处理器、微处理器或连接在一起工作以便完成一连串指令的串联处理器。
处理器401与存储器总线402连接以便从存储器中读取指令和数据,和往存储器中写入数据。随机读取存储器(RAM)412是一个通过路径411与存储器总线402连接的易失存储器。RAM412存储由处理器401当前执行的指令和完成指令所需要的数据。只读存储器(ROM)414通过路径413与存储器总线402连接。ROM414存储处理器401所需的配置和操作系统信息以便执行用于允许处理器400实现应用的系统例行程序。
处理器401也连接输入/输出(“I/O”)总线403。I/O总线403将处理器401和外围设备连接以用于允许处理器401发送数据给外围设备和从外围设备接收数据。一些与I/O总线连接的典型设备包括存储器422、显示器424、I/O设备426、和I/O设备428,但并不局限于此。存储器422通过路径421连接I/O总线403,存储能够由处理器401执行的数据和应用指令。存储器422的一个例子是磁盘,可以从磁盘读取数据和往磁盘写入数据。显示器424通过路径423连接I/O总线403,它是连接驱动器的设备,能够接收从处理器401输出的数据并以用户理解的方式显示数据。例如,显示器424可以是监视器和与总线连接的视频卡。显示器424也可以是用于根据接收的数据来提供可听声音的设备。
I/O设备426通过路径425连接I/O总线403。I/O设备426是用于接收输入数据或是输出数据给用户或其它机器的设备。I/O设备426的一些例子包括键盘、鼠标、局域网(LAN)连接、调制解调器、或是同类设备,但并不局限于此。I/O设备428通过路径413连接I/O总线403,并在优选实施例中是一个通过路径26接收从电子测量仪20输出的数据的I/O设备。I/O设备428将通过路径26接收到的数据转换成能被处理器401识别的数据。
电子测量仪20的数字信号处理器-图5
可选择的、取代有数字处理单元400与电子测量仪20连接的电子测量仪可以是数字信号处理器。图5示出了电子测量仪20的元件,其中电子测量仪20是数字信号处理器。路径111和111’从流量计部件10发送左右两边的速率信号到电子测量仪20上。电子测量仪20里的模拟-数字(A/D)转换器503接收速率信号。A/D转换器503将左右两边的速率信号转换成可由处理器501使用的数字信号,并且在路径513上发送数字信号给I/O总线510。I/O总线510将数字信号传输给处理器501。在I/O总线510和路径512上发送驱动信号给数字-模拟(D/A)转换器502。来自D/A转换器502的模拟信号通过路径110被发送给驱动器104。路径26与I/O总线510连接,传送信号给输入和输出装置(未示出),该装置允许电子测量仪20从操作者接收数据,和传送数据给操作者。
处理器501通过路径521从只读存储器(ROM)520中读取用于完成流量计的各种功能的指令,其中的各种功能包括计算物质的质量流率,计算物质的体积流率,和计算物质的密度,但并不局限于此。执行各种功能的数据和指令存储在随机存取处理器(RAM)530中。处理器501通过路径531进行RAM存储器530的读取和写入操作。
驱动信号校准的基本原理
本发明是一种用于校准例如Coriolis流量计5的设备里的驱动信号的系统。将经校准的驱动信号用于驱动器,这样驱动器会给导管施加一个力,使导管以期望的振动模式振动。可以在管线中的设备开始工作之前完成驱动信号的校准,或是当设备测量流经管线的物质的特性时,周期性地进行驱动信号的校准。
为校准驱动信号,必须产生Coriolis流量计5的数学模型。出于讨论的目的,假设Coriolis流量计5的系统是非线性,且时间不变性。在这样的系统中,输入和输出之间的关系并不随时间变化。下面的等式给出了从数学上模拟非线性、时间不变性系统的最通用方法:
x · = f ( x , r ) - - - ( 1 )
y=g(x,r);    (2)
其中:
x=系统状态;
r=系统的输入(驱动信号);
y=系统的输出;和
f和g是描述系统功能的函数。
等式1和2太笼统,以至于不能用于确定可以产生所期望输出的所要求的输入,其中所期望输出可以是例如导管103A-103B以期望的振动模式振动。在使用有关Coriolis流量计5的系统的信息中,选择更具体的数学模型的形式。将流量计模型分成两个子系统,一个代表流量计的机械结构,另一个代表在该结构上放置的驱动器。已知可以由理想的线性系统来精确模拟机械结构。非理想的驱动器给该结构施加驱动力。将驱动器子系统模拟成非线性函数。对于Coriolis流量计5,选择下面标准的状态空间等式来模拟该系统:
x · = Ax + B f α ( r ) ; - - - ( 3 )
y=Cx+Dfα(r);    (4)
其中:
A,B,C,D=是模拟Coriolis流量计部件10的结构动态的矩阵;
fα(r)=模拟驱动命令信号和由驱动器产生的力之间关系的函数;
r=驱动器信号。
从等式3和4中,可以看出fα(r)的反函数(fα -1(r))将补偿系统的非线性,使得施加给导管103A和103B的力在期望的范围内的期望的振动模式中是线性的。fα(r)的精确形式是未知的。近似fα -1(r)的一种方法是关于假设的多项式,如下面的等式5所示。
fa -1(r)=α01r+α2r23r34r4+……    (5)
其中α0…α4是未知的常数。
用作近似fα -1(r)的多项式的阶数在驱动流量计时所采用r(命令信号)值的范围内由系统给出的非线性的特性来确定。为了校准驱动信号,确定fα -1(r),驱动信号被设为fα -1(r);最后的动态系统变成:
x=Ax+Bfα(fα -1(r))≈Ax+Br;         (6)
其中(fα -1(r))是校正因子;            (7)
因此,为校准驱动信号,必须为特殊的驱动器确定α0,l∈{0,1,2,3,…}。出于当前讨论的目的,由下面的多项式来近似fα(r):
fα(r)=β01*r+β2*r23*r3+…    (8)
为了清晰明确,调整示出的三阶多项式,若需要的话,可以调整不同阶的多项式使之适合数据。因此,等式3和4可以重新写成:
x · = Ax + B ( β 0 + β 1 r + β 2 r 2 + β 3 r 3 ) - - - ( 9 )
y=Cx+D(β01*r+β2r23r3)        (10)和最后,
y=Cx+[Dβ1;Dβ2;Dβ3]·[r,r2…r3]T(10B)
等式10A和10B可以看作多端输入动态系统的动态方程,其中输入相当于多项式的每一项,[r,r2,r3]。标准的多端输入系统识别方法可以用于确定与动态系统相关的所有变量。1987年,新泽西州,EnglewoodCliffs,PTR Prentice Hall,Lennart Lijung的 系统识别的部分2:用户 理论,包含了对用于估计等式10A和10B中的参数的技术的详细说明。
一旦确定下来动态系统的变量,就必须确定反函数(校正因子)fα -1(r)。因为驱动器104具有在例如Coriolis流量计5的设备的正常工作范围内呈单调的非线性,所以存在反函数。确定反函数fα -1(r)的一种方法是使多项式适合于反函数,使得等式fα(r)·fα -1(r)=1。然而,也可以使用其它方法来确定反函数。
下面是一个对施加给驱动器104使得驱动器104以期望的振动模式来振动导管103A-103B的驱动信号进行校准的例子。假设由下面的等式来模拟驱动器104:
fα(r)=r+.5r2+.3r3    (11)
在这个例子中的Coriolis流量计5的离散结构模型是一个由等式12,13,14和15中的下面各项来定义的二阶系统:
A = 1.403 - . 9844 1 0 - - - ( 12 )
B = 1 0 - - - ( 13 )
C=[1 0]               (14)
D=0                   (15)
第一步是利用信号发生器给Coriolis流量计5驱动器施加限制杂乱噪声命令信号的频带,并读取来自加速计190的输出数据。接着,估计用于调整非线性的多项式的阶数。在选定的多项式的阶数中有许多自由项。假如选定的阶数太高了,则与高阶相关的项将会很小,可以被忽略。这样就选择五阶多项式。对于多项式中的每一项,产生一个系统模型的输入,将这个单一输入的系统变成具有多个虚拟输入的系统(物理驱动器命令与所有单个元素的和一致)。
每个输入都与多项式的一个不同项一致,如等式8。这些输入是向量[r,r2,r3,r4,r5]。使用标准的MIMO识别技术来估计模型参数。B矩阵中的项是非线性多项式的系数。见参考文献1,它论述了估计这些参数的各种技术。
一旦确定了模型,就检查B矩阵。正如在等式10A所看到的,B矩阵将组成与多项式的系数成比例的列向量。通过第一列β完全分开等式(10A),产生多项式系数估计值β。
在本例中,噪声发生器的信号被设为信噪比40dB。那么五阶多项式用于同驱动信号一致的fα(r),产生下面的结果:
fα(r)=.9987*r+.5002*r2+.2998*r3-.0003*r4+0.0000*r5(16)
当比较等式11和16时,明显的看出,该系统精确的表征驱动器的非线性。下一步骤是处理等式16这个已调整的函数fα(r),确定反函数(校正因子)fα -1(r)。有可以找出校准因子的多种不同方法。这里所用的方法是在r值范围内估计已调整的函数,等式16。r值和fα(r)值是颠倒的,使用一个最小平方法使得另外一个多项式适合它的反向关系式。1980年,加利福尼亚州,Monterey,Brooks/Cole PublishingCompany,Ward Cheney和David Kincaid, Numerical Mathematics and Computing,讨论了所用的最小平方的方法。在一个优选实施例中,10阶多项式适合于该反函数。
使用校正因子来确定等式(5)中已校准的驱动信号,用以施加给驱动器104。根据在没有校准的命令信号上估计反函数来确定已校准的驱动信号。然后,将已校准的命令信号用于驱动器104。图7示出了在Coriolis流量计中的导管振动,在该流量计中驱动信号没有校准。在大约125Hz处的第一尖峰701表示在第一弯曲振动模式中的振动。第一尖峰701表示在本发明的一个优选实施例中的期望的振动模式。702和703表示由非线性激励器所引起的振动部分。这些部分分别处于250和375Hz。图6是表示在优选的典型实施例中当已将理想驱动信号施加给驱动器104时,导管103A-103B振动的曲线图。可以看到,在振动频率范围内,只有尖峰601出现在大约125Hz处,该尖峰是第一弯曲振动模式,该振动模式是本发明的优选实施例中的期望的振动模式。
图8示出了在第二实施例中由施加给驱动器104的已校准的驱动信号引起的导管103A-103B振动的曲线图。在这个实施例中,已校准驱动信号没有使期望振动模式的所有谐波消失。替代的,已校准的驱动信号使最终的谐波信号减少大于50dB的因子。
尖峰801是表示以期望的振动模式即第一弯曲振动模式振动的尖峰。尖峰802-807表示在期望振动模式的谐波处的振动。比较图8和图6,很明显,已校准的驱动信号使导管在多个谐波处振动,和没有经校准的信号驱动导管相比,该谐波的数目要多。然而,每个谐波的水平减少大于50dB,这与多于100dB因子的减少相一致,并且能很容易的从接收到的信号中滤掉。
振动用于Coriolis流量计5的驱动信号的方法-图9
图9示出了完成用于Coriolis流量计5的驱动信号的校准步骤的方法900的流程图。方法900开始于振动导管103A-103B的步骤901。正如上面提到的,在解释校准过程的内容中,在优选的典型实施例中,通过将杂乱噪声施加给驱动器104来振动导管103A-103B。在步骤902中,根据振动的导管来测量导管103A-103B的振动。在步骤903中接收测量值。测量值包括来自加速计190和传感器105-105’的数据。在步骤904中将测量数据存储在存储器或其它存储装置中,用于以后的驱动信号的校准。
在步骤905中根据步骤903中获得的测量值来生成Coriolis流量计5的动态模型。可以仅使用来自步骤903的测量值来生成动态模型,或者使用在步骤903中接收到的和已存储的测量数据来生成动态模型。在步骤906中,在步骤905中生成的Coriolis流量计5的动态模型用来确定施加给驱动器104的合适的驱动信号,以便以期望的振动模式来振动导管。在步骤907中,配置驱动电路使得将期望的驱动信号用于驱动器104。改变驱动信号的一种方法是改变驱动电路中的参考电压。换句话说,数字信号处理器能够给存储器存储适当的电压,并在需要时将该电压用于驱动器104。
在决定步骤908中,确定方法900是否周期性的重复。假如没有周期性的重复方法900以用于重新校准驱动信号,则方法900结束。否则,又从步骤901开始重复方法900。周期性的重复方法900的想法是要周期性的校准驱动信号,目的是调整驱动信号用于补偿由Coriolis流量计5内的元件损耗而在系统的动态中引起的任何变化。
由数字处理器完成校准的过程-图10
图10示出了由例如处理单元400或数字信号处理器500的处理器为完成图9所示方法900而进行的步骤的过程1000。在与处理器连接的存储器中存储的指令包括由处理器执行的用于完成过程1000的步骤的指令。编写用于完成过程1000的步骤的可执行应用程序留给本领域的技术人员。
过程1000从生成驱动信号的步骤1001开始。正如上面提到的,在优选实施例中,产生的驱动信号是杂乱噪声。在步骤1002中,存储生成的信号,用来在产生Coriolis流量计5的结构动态模型中使用。随后,在步骤1003中发送生成的驱动信号给驱动器104。驱动器104根据收到的驱动信号振动导管103A-103B。加速计190和传感器105-105’根据驱动器104振动流量管来测量导管103A-103B的振动,并将测量的数据发给发送器。
在步骤1004中,处理器接收来自加速计190和传感器105-105’的测量数据。在步骤1005中,处理器响应接收的测量数据,将数据存储在与之连接的存储器中。Coriolis流量计5的结构动态的一个模型是根据在步骤1004中接收到的测量数据在步骤1006中生成。可以仅根据在步骤1004中接收到的数据来生成动态模型,或者可以根据在步骤1004中接收到的数据和在存储器中存储的先前测量的数据来生成动态模型。
在步骤1006中,在步骤1005中生成的动态模型被用来确定用于驱动器104的合适的驱动信号,使得驱动器104以期望的振动模式振动导管103A-103B。下面提供一种用于确定合适的驱动信号的可能的典型过程。在步骤1007中改变驱动电路,用于提供如在步骤1006中确定的合适的驱动信号。一种能够改变驱动信号的方法是改变驱动电路中的参考电压。换句话说,数字信号处理器能够给存储器存储适当的电压,并在需要时将该电压用于驱动器104。
在决定步骤1008中,确定过程1000是否周期性的重复。假如没有周期性的重复过程1000以用于重新校准驱动信号,则过程1000结束。否则,在步骤1010中处理器启动计数器,并等待达到预定的时间量。在预定的时间量到达之后,过程1000又重新从步骤1001开始。周期性的重复过程1000的想法是要周期性的校准驱动信号,目的是调整驱动信号用于补偿由于Coriolis流量计5内的元件损耗而在系统的动态中引起的任何变化。
确定合适的驱动信号的典型过程或方法-图11
图11进一步揭示了元件906和1007的细节,并且示出了一个正如上面描述的确定合适的驱动信号的典型过程1100或方法,这个合适的驱动信号用于驱动器104,使之以期望的振动模式来振动导管103A-103B。过程1100开始于步骤1101,在该步骤中,根据振动测量数据生成的动态模型用于计算多项式函数的系数,该函数根据驱动信号模拟施加给导管103A-103B的力。一旦确定了多项式函数的系数,就可以在步骤1102中使用在步骤1101中确定的力的系数来确定反函数的系数。在步骤1103中将驱动命令信号加入表示反函数的多项式中以便确定适当的驱动命令用于驱动器104。在步骤1103之后结束过程1100。
总结
正如所描述的,本发明涉及对Coriolis流量计的校准,尤其是,涉及对相关的驱动信号的校准。
Coriolis流量计包括至少一个导管,图1所示的Coriolis流量计的例子包括了两个导管,如导管103A和103B。由施加给固定在导管上的驱动器的驱动信号来振动导管。驱动器是可以包括磁铁和反作用线圈的物理结构。驱动信号110是例如正弦波的周期波形状,并且是由电子测量仪20提供的,也见图1。尽管也可以使用驱动信号的其它周期波形状,但所描述的实施例的驱动信号是频率为125赫兹(Hz)的正弦波。关于流经流量计的物质的测量值,例如质量流率、质量密度、和其它等,是从导管发出的传感器信号中得到的。当物质流经流量计时,根据驱动信号的频率偏差和相位偏差来确定测量值。
对于要被校准的驱动信号来说,对流经流量计的物质作精确测量是必需的。然而,由于导管中的和穿过单个流量计的驱动器中的结构变化,使得存在不精确测量。结构变化产生不想要的、非线性的响应,例如驱动信号谐波。驱动信号谐波提高了噪声层,并且以不曾预料的方式振动导管,这样产生了不精确的测量。
所描述的发明通过将输出的先验信息用于驱动信号的新颖方法解决了不想要的驱动信号谐波的问题。首先,通过给Coriolis流量计的驱动器施加一个测试驱动信号来表征Coriolis流量计,这是一个实际的物理结构。然后,加速计收集关于由测试驱动信号在流量管中产生振动的数据。这个系统可以被表征为一个单一输入-单一输出系统,有一个等同于输入分配输出的传递函数。Coriolis流量计系统的状态空间等式可以被写成包括输入、输出、和每一单个流量计的结构特征。这个状态空间等式可以写成:
x · = Ax + B f α ( r )
y=Cx+Dfα(r),
其中A,B,C和D是构成表示每一单个流量计结构参数的系数的状态空间矩阵,fA(r)是表示驱动信号的多项式函数,正如前面的等式1和2所示。
可以通过从原始信号构造多个输入为预定数目的多项式的项来形成从单一输入-单一输出系统到多输入-单一输出系统的转换。例如,从例如正弦形式的单信号中产生包括高阶部分的多输入信号,
fA(r)=αsin(2πft),
其中α是标量,f是频率,t是时间,多项式的阶数必须是预先确定。该系统的多个输入是由所需多项式的项的数目来产生,例如
fA(r)=αsin(2πft)+α2sin(2πft)23sin(2πft)3+…+αnsin(2πft)n.
尽管可以选择任何多项式的阶数,但是对于本发明的目的来讲,可以确定,五阶多项式就足够了,因为更高阶的部分对整个系统的影响可以忽略。因为现在,由多个输入信号所表征的输入和Coriolis流量计系统的输出信号是已知的,所以该系统可由它的传递函数来表征。可以通过将传递函数转换成它的可控制的规范形式来解决状态空间矩阵A,B,C和D。类似的技术对本领域的技术人员来讲是众所周知的,并且可以在如早先提到的Lennart Lijing的参考资料等这样的参考资料中找到。
一旦系统被它的传递函数表征,状态空间矩阵A,B,C和D被构造成可控制的规范形式,这对本领域的技术人员来讲是众所周知的。从可控制的规范形式中,B矩阵的系数用作构造一个信号补偿器。这个信号补偿器被重新写成如下的形式:
x · = Ax + B ( β 0 + β 1 r + β 2 r 2 + β 3 r 3 + β 3 r 4 + β 3 r 5 )
y=Cx+D(β01r+β2r23r33r43r5),
其中,现在,β系数是由先前提到的可控制的规范形式的B矩阵的系数来表示,r仍然是输入信号。
一旦确定了β系数,驱动信号就被输入到系统中。输出产生了一套新的数据。新的输出数据是使用最小平方算法所拟合的曲线,这对本领域的技术人员来讲也是众所周知的。最小平方曲线拟合产生一个预定阶数的多项式。一旦产生多项式,就可以计算该多项式的反向式,并且对反向的多项式估计一个非测试驱动信号。
为了说明,对Coriolis流量计输入一个由宽带噪声组成的测试信号。预先确定一个二阶系统,这对一个例子来说足够了。当将传递函数写成可控制的规范形式时,可以产生状态空间矩阵A,B,C和D:
A = 1.403 - . 9844 1 0
B = 1 0
C=[1 0]
D=0
将由具有信噪比(SNR)40分贝(dB)的125Hz正弦波组成的驱动信号用于系统中。将驱动信号安排成多项式函数的格式,形式如下:
fA(r)=r+0.5r2+0.3r3
其中r是驱动信号,如等式11所示。信号的系数是在具有非线性谐波部分的实际流量计输出的试探数据的基础上,并且在这里仅作为一个例子使用。将上述函数用于已知的Coriolis流量计的状态空间结构参数,如等式1和2所示。表示加速计的输出数据的功率谱显示(PSD)揭示了最终的驱动信号谐波,如图7所示。输出数据是使用五阶多项式函数形式的最小平方算法所拟合的曲线。最小平方算法生成多项式函数:
fA(r)=.9987*r+.5002*r2+.2998*r3-.0003*r4+0.0000*r5
如等式8所示。计算上述拟合曲线fA(r)的多项式反函数。多项式反函数存储在位于电子测量仪里的存储器中,例如图1中的电子测量仪20。通过用驱动信号的采样值估算多项式反函数,将多项式反函数用于驱动信号。例如,将驱动信号的采样输入到多项式反函数中,结果是一个表示已经补偿的驱动信号采样的输出样值。整个过程使得驱动信号谐波的幅度减少,正如图8的PSD所示。
先前,驱动信号谐波有足够的幅度,以致可以无法预料的振动Coriolis流量管。而这个如所教导的新颖方法基本上减少了对几乎可忽略的点处的驱动信号谐波的幅度。尽管结果可以不同,但上面的例子有效的减少驱动信号谐波大于20dB,并且没有谐波大于0dB。

Claims (24)

1.一种用来校准施加给驱动器的驱动信号的方法,该驱动信号使所述驱动器振荡流量测量设备里的至少一个流量管,该流量测量设备用于测量在所述至少一个流量管里流动的物质的特性,该方法包括以下步骤:
利用所述驱动器振动所述至少一个流量管;
对振动所述流量管作出响应,测量所述至少一个流量管的振动;其特征在于,包括下列步骤:
根据所述已测量的所述至少一个流量管的振动来检测所述设备和所述驱动器的物理特性;根据所述物理特性的检测结果来确定用于所述驱动器的驱动信号,和
将所述已确定的驱动信号用于所述驱动器,使其以所要求的振动模式来振荡所述至少一个流量管。
2.根据权利要求1的方法,其中所述流量测量设备是一个流量计,并且该方法用来校准将要施加给所述流量计的驱动器的驱动信号,所述方法的特征在于,包括以下步骤:
施加一个第一信号给所述驱动器以便振动所述至少一个流量管;
当对所述驱动器施加所述第一信号时,对振动所述至少一个流量管作出响应,测量所述至少一个流量管和所述驱动器的振动;
当对所述驱动器施加所述第一信号时,根据对所述至少一个流量管的所述振动测量值,确定物理振动特性,该物理振动特性包括了所述流量计的任何不期望的物理特性,该流量计具有所述流量管和所述驱动器;
确定所述已确定的物理振动特性的校正因子;
利用所述已确定的物理振动特性和所述校正因子,确定将要施加给所述驱动器的驱动信号;和
给所述驱动器施加所述已确定的驱动信号以便以期望的振动模式振荡所述至少一个流量管,该振动模式会补偿所述不期望的物理振动特性。
3.根据权利要求1的方法,还包括步骤:
存储所述至少一个流量管的所述振动的测量值。
4.根据权利要求3的方法,其中检测所述设备的所述物理特性的所述步骤还包括步骤:
结合当前的振动测量值和所述已存储的振动测量值以便确定所述物理特性。
5.根据权利要求1的方法,还包括步骤:响应于确定的所述驱动信号,在驱动信号电路中设置参考电压,以使所述驱动信号电路产生所述驱动信号。
6.根据权利要求1的方法,还包括步骤:周期性的重复用于校准所述驱动信号的所述方法。
7.根据权利要求1的方法,其中检测所述驱动器和设备的物理特性的所述步骤包括步骤:根据所述已测量的振动来模拟所述驱动器和设备的动态。
8.根据权利要求1的方法,还包括步骤:改变驱动电路以便产生所述驱动信号。
9.根据权利要求1的方法,其中确定所述驱动信号的所述步骤包括以下步骤:
计算表示驱动信号和对所述至少一个流量管施加的力之间关系的函数多项式的系数;
确定表示所述驱动信号和所述力之间关系的所述函数的反函数多项式的系数;和
将所述驱动信号的命令电平加入所述反函数中以便确定所述驱动信号。
10.用于测量物质特性的流量测量设备的电子测量仪,所述设备有至少一个用于接收物质的流量管,一个用于振动所述至少一个流量管的驱动器,多个用于在沿所述流量管的各点处测量所述至少一个流量管振动的传感器,所述电子测量仪包括用于给所述驱动器施加驱动信号以使所述驱动器振荡至少一个流量管的驱动电路,和用于测量流过所述至少一个流量管的物质的特性的电路,所述电子测量仪还包括:
第一电路,用于接收从所述传感器输出的信号,并根据所述已测量的所述至少一个流量管的振动来检测所述设备和所述驱动器的物理特性;和
响应收到所述信号的第二电路,用于根据所述设备和所述驱动器的物理特性来确定使所述驱动器以期望的振动模式振荡所述至少一个流量管的驱动信号。
11.根据权利要求10的电子测量仪,还包括:一个用于存储所述至少一个流量管的振动测量值的存储器。
12.根据权利要求11的电子测量仪,其中所述第一电路还包括:用于结合当前的振动测量值和所述已存储的振动测量值以用来确定所述物理特性的电路。
13.根据权利要求10的电子测量仪,还包括:在驱动信号电路中设置的参考电压,该参考电压被设置成一个用来产生所述驱动信号的电平作为对确定所述驱动信号的响应,以使所述驱动信号电路产生所述驱动信号。
14.根据权利要求10的电子测量仪,还包括:用于周期性重复所述驱动信号校准的定时电路。
15.根据权利要求10的电子测量仪,其中所述第一电路包括:用于根据所述已测量的振动来模拟所述设备和驱动器的动态的模拟电路。
16.根据权利要求10的电子测量仪,其中所述第二电路包括:
用于计算表示驱动信号和对所述至少一个流量管施加的力之间关系的函数多项式的系数的电路;
用于确定表示所述驱动信号和所述力之间关系的所述函数的反函数多项式的系数的电路;和
用于将所述当前驱动信号的命令信号加入所述反函数中以便确定所述驱动信号的电路。
17.一种用于校准施加给驱动器以使所述驱动器振荡一个流量测量设备中的至少一个流量管的驱动信号的产品,其中流量测量设备用来测量流经所述至少一个流量管的物质的特性,所述产品包括:
指令,用于指示处理器作以下动作:
接收从固定在所述至少一个流量管的传感器输出的测量所述至少一个流量管振动的信号,和
根据所述已测量的所述至少一个流量管的振动来检测所述设备和驱动器的物理特性,和
根据所述设备和所述驱动器的物理特性来确定使所述驱动器以期望的振动模式振荡所述至少一个流量管的驱动信号;和
可由所述处理器读取的媒介,用于存储所述指令。
18.根据权利要求17的产品,其中所述指令还包括:
用于指示所述处理器施加所述驱动信号给所述驱动器使之以期望的振动模式振荡所述至少一个流量管的指令。
19.根据权利要求17的产品,其中所述指令还包括:
用于指示所述处理器将所述至少一个流量管的所述振动测量值存储在存储器中的指令。
20.根据权利要求19的产品,其中指示处理器检测所述设备和驱动器的所述物理特性的所述指令还包括:
用于指示所述处理器从所述存储器读取所述测量值,并且指示处理器结合当前的振动测量值和所述已存储的振动测量值以用来确定所述物理特性的指令。
21.根据权利要求17的产品,其中所述指令还包括:
用于指示所述处理器给出一个响应确定的所述驱动信号的驱动信号电路参考电压,使所述驱动信号电路产生所述驱动信号的指令。
22.根据权利要求17的产品,其中所述指令还包括:
用于指示所述处理器周期性重复所述驱动信号校准的指令。
23.根据权利要求17的产品,其中用于检测所述设备和驱动器的所述物理特性的所述指令包括:
用于指示所述处理器根据所述已测量的振动来模拟所述设备和驱动器的动态的指令。
24.根据权利要求17的产品,其中用于指示所述处理器确定所述驱动信号的指令包括:
用于指示所述处理器计算表示驱动信号和对所述至少一个流量管施加的力之间关系的函数多项式的系数,确定表示所述驱动信号和所述力之间关系的所述函数的反函数多项式的系数,和将所述驱动信号的命令信号加入所述反函数以确定所述驱动信号的指令。
CNB018131727A 2000-07-21 2001-07-20 一种用于校准Coriolis流量计的驱动信号的系统 Expired - Lifetime CN100443863C (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US09/620,750 2000-07-21
US09/620,750 US6378354B1 (en) 2000-07-21 2000-07-21 System for calibrating a drive signal in a coriolis flowmeter to cause the driver to vibrate a conduit in a desired mode of vibration

Publications (2)

Publication Number Publication Date
CN1701217A true CN1701217A (zh) 2005-11-23
CN100443863C CN100443863C (zh) 2008-12-17

Family

ID=24487234

Family Applications (1)

Application Number Title Priority Date Filing Date
CNB018131727A Expired - Lifetime CN100443863C (zh) 2000-07-21 2001-07-20 一种用于校准Coriolis流量计的驱动信号的系统

Country Status (8)

Country Link
US (1) US6378354B1 (zh)
EP (1) EP1301761B1 (zh)
JP (2) JP4789170B2 (zh)
CN (1) CN100443863C (zh)
AR (1) AR029860A1 (zh)
AU (1) AU2001277063A1 (zh)
HK (1) HK1083533A1 (zh)
WO (1) WO2002008703A1 (zh)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103512625A (zh) * 2012-06-18 2014-01-15 克洛纳测量技术有限公司 用于运行共振测量系统的方法及其相关共振测量系统
WO2015143613A1 (zh) * 2014-03-24 2015-10-01 西安东风机电有限公司 一种科里奥利质量流量计的测量状态监测方法及装置
CN105115575A (zh) * 2015-09-11 2015-12-02 重庆川仪自动化股份有限公司 质量流量计流速模拟方法及系统
CN108139261A (zh) * 2015-10-21 2018-06-08 高准公司 原地换能器校准
CN108541301A (zh) * 2016-01-13 2018-09-14 高准公司 多相科里奥利测量设备和方法
CN112534364A (zh) * 2018-08-02 2021-03-19 西门子股份公司 同步方法,运行工业设施的方法、装置、计算机程序产品和计算机可读介质
US11029183B2 (en) * 2013-06-14 2021-06-08 Micro Motion, Inc. Vibratory flowmeter and method for meter verification

Families Citing this family (28)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6311136B1 (en) * 1997-11-26 2001-10-30 Invensys Systems, Inc. Digital flowmeter
US7404336B2 (en) 2000-03-23 2008-07-29 Invensys Systems, Inc. Correcting for two-phase flow in a digital flowmeter
US20030216874A1 (en) * 2002-03-29 2003-11-20 Henry Manus P. Drive techniques for a digital flowmeter
US8447534B2 (en) 1997-11-26 2013-05-21 Invensys Systems, Inc. Digital flowmeter
US7124646B2 (en) 1997-11-26 2006-10-24 Invensys Systems, Inc. Correcting for two-phase flow in a digital flowmeter
US7784360B2 (en) 1999-11-22 2010-08-31 Invensys Systems, Inc. Correcting for two-phase flow in a digital flowmeter
US8467986B2 (en) * 1997-11-26 2013-06-18 Invensys Systems, Inc. Drive techniques for a digital flowmeter
US6836238B1 (en) * 2001-10-09 2004-12-28 Escort Inc. Police radar/laser detector with integral vehicle parameter display using a vehicle interface
US6516651B1 (en) * 1999-07-22 2003-02-11 Analog Devices, Inc. Coriolis effect transducer
JP2003528306A (ja) 2000-03-23 2003-09-24 インベンシス システムズ インコーポレイテッド ディジタル流量計における二相流に対する修正
US6378354B1 (en) * 2000-07-21 2002-04-30 Micro Motion, Inc. System for calibrating a drive signal in a coriolis flowmeter to cause the driver to vibrate a conduit in a desired mode of vibration
US6505135B2 (en) * 2001-03-13 2003-01-07 Micro Motion, Inc. Initialization algorithm for drive control in a coriolis flowmeter
US7059199B2 (en) 2003-02-10 2006-06-13 Invensys Systems, Inc. Multiphase Coriolis flowmeter
US6997032B2 (en) * 2003-04-08 2006-02-14 Invensys Systems, Inc. Flowmeter zeroing techniques
US7013740B2 (en) 2003-05-05 2006-03-21 Invensys Systems, Inc. Two-phase steam measurement system
US7072775B2 (en) 2003-06-26 2006-07-04 Invensys Systems, Inc. Viscosity-corrected flowmeter
US7299705B2 (en) * 2003-07-15 2007-11-27 Cidra Corporation Apparatus and method for augmenting a Coriolis meter
US7065455B2 (en) 2003-08-13 2006-06-20 Invensys Systems, Inc. Correcting frequency in flowtube measurements
US7055366B2 (en) * 2004-05-21 2006-06-06 Upchurch Scientific, Inc. Flow sensor calibration methods and apparatus
US20060271321A1 (en) * 2005-05-24 2006-11-30 Visteon Global Technologies, Inc. Initiating calibration mode of electronic control module
US7337084B2 (en) * 2005-06-21 2008-02-26 Invensys Systems, Inc. Switch-activated zero checking feature for a Coriolis flowmeter
US7617055B2 (en) 2006-08-28 2009-11-10 Invensys Systems, Inc. Wet gas measurement
WO2010068202A1 (en) * 2008-12-10 2010-06-17 Micro Motion, Inc. Method and apparatus for vibrating a flow tube of a vibrating flow meter
WO2012170020A1 (en) * 2011-06-08 2012-12-13 Micro Motion, Inc. Method and apparatus for determining and controlling a static fluid pressure through a vibrating meter
JP5974518B2 (ja) * 2012-02-06 2016-08-23 横河電機株式会社 コリオリ質量流量計
CN105588620A (zh) * 2015-12-13 2016-05-18 北京工业大学 物联网水表检定系统
CN107884018B (zh) * 2017-10-26 2019-06-21 西北工业大学 一种科里奥利质量流量计驱动方法
EP3811038B1 (en) * 2018-06-21 2023-04-12 Micro Motion Inc. Method of proving multiple coriolis flow meters integrated on a common platform

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0450628A (ja) * 1990-06-12 1992-02-19 Nkk Corp 周波数応答関数計測のための機械構造物の加振方法
US5231884A (en) * 1991-07-11 1993-08-03 Micro Motion, Inc. Technique for substantially eliminating temperature induced measurement errors from a coriolis meter
JPH05164652A (ja) * 1991-12-18 1993-06-29 Mita Ind Co Ltd 実験モーダル解析装置
DE4423168C2 (de) * 1994-07-04 1998-09-24 Krohne Ag Massendurchflußmeßgerät
US5594180A (en) * 1994-08-12 1997-01-14 Micro Motion, Inc. Method and apparatus for fault detection and correction in Coriolis effect mass flowmeters
US6199022B1 (en) * 1997-07-11 2001-03-06 Micro Motion, Inc. Drive circuit modal filter for a vibrating tube flowmeter
GB2332519B (en) * 1997-12-19 2002-08-07 Abb Kent Taylor Ltd Coriolis flow meter
US6378354B1 (en) * 2000-07-21 2002-04-30 Micro Motion, Inc. System for calibrating a drive signal in a coriolis flowmeter to cause the driver to vibrate a conduit in a desired mode of vibration

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103512625A (zh) * 2012-06-18 2014-01-15 克洛纳测量技术有限公司 用于运行共振测量系统的方法及其相关共振测量系统
CN103512625B (zh) * 2012-06-18 2018-04-20 克洛纳测量技术有限公司 用于运行共振测量系统的方法及其相关共振测量系统
US11029183B2 (en) * 2013-06-14 2021-06-08 Micro Motion, Inc. Vibratory flowmeter and method for meter verification
WO2015143613A1 (zh) * 2014-03-24 2015-10-01 西安东风机电有限公司 一种科里奥利质量流量计的测量状态监测方法及装置
CN104981684A (zh) * 2014-03-24 2015-10-14 西安东风机电有限公司 一种科里奥利质量流量计的测量状态监测方法及装置
CN104981684B (zh) * 2014-03-24 2018-06-05 西安东风机电股份有限公司 一种科里奥利质量流量计的测量状态监测方法及装置
CN105115575A (zh) * 2015-09-11 2015-12-02 重庆川仪自动化股份有限公司 质量流量计流速模拟方法及系统
CN108139261A (zh) * 2015-10-21 2018-06-08 高准公司 原地换能器校准
CN108541301A (zh) * 2016-01-13 2018-09-14 高准公司 多相科里奥利测量设备和方法
CN108541301B (zh) * 2016-01-13 2020-07-07 高准公司 多相科里奥利测量设备和方法
CN112534364A (zh) * 2018-08-02 2021-03-19 西门子股份公司 同步方法,运行工业设施的方法、装置、计算机程序产品和计算机可读介质

Also Published As

Publication number Publication date
JP2011158482A (ja) 2011-08-18
JP4789170B2 (ja) 2011-10-12
AR029860A1 (es) 2003-07-16
WO2002008703A1 (en) 2002-01-31
HK1083533A1 (en) 2006-07-07
AU2001277063A1 (en) 2002-02-05
EP1301761B1 (en) 2014-02-26
EP1301761A1 (en) 2003-04-16
CN100443863C (zh) 2008-12-17
JP2004505237A (ja) 2004-02-19
US6378354B1 (en) 2002-04-30
WO2002008703A9 (en) 2003-07-03

Similar Documents

Publication Publication Date Title
CN1701217A (zh) 一种用于校准Coriolis流量计的驱动信号的系统
CN1199034C (zh) 用于振动导管传感器信号的多速率数字信号处理器
CN100335867C (zh) 使用标准模态分析的科里奥利质量流量计校准
CN1178048C (zh) 科里奥利质量流量/密度计
CN1860350A (zh) 用于科里奥利流量计的诊断装置及方法
CN1137372C (zh) 测量流过流管的流体材料特性的装置及方法
CN100345183C (zh) 主动控制振动噪声的装置和方法,及具有该装置的车辆
CN1720428A (zh) 过程测量仪表
CN1192213C (zh) 利用声压测量管道中的流体参数的装置和方法
CN1083102C (zh) 一种用于测定管中液体流率的装置
US6651513B2 (en) Vibration meter and method of measuring a viscosity of a fluid
CN1549918A (zh) 确定科里奥利流量计内流管和流体的特性
CN1217161C (zh) 多相流量和浓度的同时确定
CN101052896A (zh) 改进的地震检波器校准技术
CN1795369A (zh) 流量传感器信号转换
RU2210745C2 (ru) Схема возбуждения и способ возбуждения колебаний трубки измерителя с вибрирующей трубкой
CN1371470A (zh) 直管科里奥利流量计
CN1650149A (zh) 测量管道中流动的具有悬浮在蒸气中液滴的混合物的参数的装置及方法
CN101048645A (zh) 用于流量设备的校准的系统和方法
CN1190461A (zh) 用于科里奥利质量流量计测量的自适应线性增强方法和装置
CN1311853A (zh) 产生补偿的质量流量估计的振动管道及其方法
CN1160662C (zh) 坐标输入装置及其控制方法
CN1419648A (zh) 在低温下操作科里奥利流量计的方法及其装置
CN101036037A (zh) 科里奥利流量计中左和右本征矢量的流动中确定
CN1894561A (zh) 科里奥利质量流量测量仪表

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
REG Reference to a national code

Ref country code: HK

Ref legal event code: DE

Ref document number: 1083533

Country of ref document: HK

C14 Grant of patent or utility model
GR01 Patent grant
REG Reference to a national code

Ref country code: HK

Ref legal event code: GR

Ref document number: 1083533

Country of ref document: HK

CX01 Expiry of patent term

Granted publication date: 20081217

CX01 Expiry of patent term