WO2015143613A1 - 一种科里奥利质量流量计的测量状态监测方法及装置 - Google Patents

一种科里奥利质量流量计的测量状态监测方法及装置 Download PDF

Info

Publication number
WO2015143613A1
WO2015143613A1 PCT/CN2014/073978 CN2014073978W WO2015143613A1 WO 2015143613 A1 WO2015143613 A1 WO 2015143613A1 CN 2014073978 W CN2014073978 W CN 2014073978W WO 2015143613 A1 WO2015143613 A1 WO 2015143613A1
Authority
WO
WIPO (PCT)
Prior art keywords
output
coriolis mass
permanent magnet
drive coil
coil
Prior art date
Application number
PCT/CN2014/073978
Other languages
English (en)
French (fr)
Inventor
张鹏
郁周
王瑞
任建新
尹忠奇
Original Assignee
西安东风机电有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 西安东风机电有限公司 filed Critical 西安东风机电有限公司
Priority to CN201480006429.XA priority Critical patent/CN104981684B/zh
Priority to RU2015151900A priority patent/RU2656294C2/ru
Priority to PCT/CN2014/073978 priority patent/WO2015143613A1/zh
Publication of WO2015143613A1 publication Critical patent/WO2015143613A1/zh

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01FMEASURING VOLUME, VOLUME FLOW, MASS FLOW OR LIQUID LEVEL; METERING BY VOLUME
    • G01F1/00Measuring the volume flow or mass flow of fluid or fluent solid material wherein the fluid passes through a meter in a continuous flow
    • G01F1/76Devices for measuring mass flow of a fluid or a fluent solid material
    • G01F1/78Direct mass flowmeters
    • G01F1/80Direct mass flowmeters operating by measuring pressure, force, momentum, or frequency of a fluid flow to which a rotational movement has been imparted
    • G01F1/84Coriolis or gyroscopic mass flowmeters
    • G01F1/8409Coriolis or gyroscopic mass flowmeters constructional details
    • G01F1/8436Coriolis or gyroscopic mass flowmeters constructional details signal processing
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01FMEASURING VOLUME, VOLUME FLOW, MASS FLOW OR LIQUID LEVEL; METERING BY VOLUME
    • G01F25/00Testing or calibration of apparatus for measuring volume, volume flow or liquid level or for metering by volume
    • G01F25/10Testing or calibration of apparatus for measuring volume, volume flow or liquid level or for metering by volume of flowmeters

Definitions

  • the invention relates to the field of monitoring of a flow meter, and particularly relates to a method and a device for monitoring the measurement state of a Coriolis mass flow meter.
  • Coriolis mass flow meter (hereinafter referred to as mass flow meter) is a meter that can directly measure the mass flow of liquid. It is widely used in various fields of national production. In order to ensure the accuracy and reliability of the mass flowmeter measurement data, the general practice is to perform periodic calibration.
  • the verification period of the mass flowmeter specified in the Regulations of the People's Republic of China for Metrological Verification is 0.5 years/second and 2 years. / Times, whether the actual measurement status of the qualified instrument in the actual engineering application can be guaranteed, only when the verification validity period is over, it can be accurately judged back to the verification device. At present, it is not possible to quickly make an accurate online judgment.
  • the on-site working conditions are complex, and there are many factors affecting the measurement accuracy of the flowmeter.
  • the installation of the flowmeter, the failure of the flow sensor, and the influence of the external environment (impact, vibration) will measure the flowmeter. Make an impact.
  • the measurement state of the flowmeter is difficult to judge.
  • the current general judgment method is to detach the flowmeter from the pipeline and perform manual calibration in the laboratory to determine whether the flowmeter is in an abnormal working state. This method is mature and accurate, but it consumes a lot of manpower, material resources and financial resources, which increases the parking time of equipment and seriously affects production efficiency.
  • the calibration fee for each quality flowmeter put into use in China every year is 2,000 to 3,000 yuan.
  • the monitoring method proposed by the invention can effectively monitor the measurement state of the flowmeter, and the monitoring flowmeter does not need to be detached from the pipeline, and the monitoring process is convenient and fast. Czech.
  • the US Micro Motion Corporation's patents CN 1860350A and CN 101622519A propose an online diagnostic method and system for vibrating pipes.
  • the main basis for diagnosis is the variation of the vibration pipe stiffness during the operation of the flow meter, There is a lack of consideration for the effects of fluids in the flow vibrating conduit.
  • the object of the present invention is to propose a new measurement state monitoring method and device for a Coriolis mass flowmeter, which solves the technical problem of wasting time and wasting manpower, material resources and financial resources caused by traditional offline monitoring.
  • a method for monitoring a measurement state of a Coriolis mass flow meter which is characterized by the following steps:
  • the first analog drive coil with symmetry about the axis of vibration of the vibrating tube is fixed at the position of the equivalent driving force F determined on the vibrating tube according to step 1]
  • the permanent magnet and the second analog drive coil are fixed to the corresponding positions of the outer casing of the Coriolis mass flow meter such that the first permanent magnet extends into the interior of the first analog drive coil, and the second permanent magnet extends into the interior of the second analog drive coil;
  • one of the vibrating tubes is fixed with a first analog driving coil symmetrically about the axis of the vibration tube, and an equivalent driving force F is determined according to the step 1]
  • the second permanent magnet is fixed on the other vibration tube. a permanent magnet extends; an analog drive coil interior, the second permanent magnet extends into the interior of the second analog drive coil;
  • the output of the flow transmitter provides a normal working drive signal for the Coriolis mass flow meter, and the output of the flow transmitter is sequentially connected to the first analog drive through a phase shifting circuit, an amplitude control circuit, and a power amplifying circuit. a coil and a second analog drive coil;
  • the phase shift circuit includes an operational amplifier, a feedback resistor R1, a resistor R2, a resistor Rx, and a capacitor c.
  • the positive input terminal of the operational amplifier is connected to the output of the flow transmitter through the resistor Rx.
  • the positive input terminal of the operational amplifier is grounded through the capacitor c.
  • the negative input terminal of the operational amplifier is connected to the output of the flow transmitter through the resistor R2.
  • the negative input terminal of the operational amplifier is also connected to the output terminal of the operational amplifier through the feedback resistor R1, and the output of the operational amplifier is connected.
  • the input to the amplitude control circuit is also connected to the output terminal of the operational amplifier through the feedback resistor R1, and the output of the operational amplifier is connected.
  • the power amplifying circuit comprises a triangular wave generator, a sine wave synthesizer, a comparator circuit, a bridge output stage circuit and a low pass filter circuit, and the output of the triangular wave generator and the sine wave synthesizer is connected to The input end of the comparator circuit, the output end of the comparator circuit is connected to the low-pass filter circuit through the bridge output stage circuit, and the output of the low-pass filter circuit is respectively connected to the first drive analog coil and the second drive analog coil, and the sine wave synthesizer is connected The output of the amplitude control circuit.
  • the amplitude control circuit comprises a filter circuit and a potentiometer which are sequentially connected in series at the output end of the phase shift circuit, and the output of the potentiometer is connected to the input of the sine wave synthesizer.
  • a measurement state monitoring device for a Coriolis mass flowmeter which is special in that: an application device including an equivalent driving force F, the effect of the equivalent driving force F is the same as that of the Coriolis force Fc, etc.
  • the apparatus for applying the equivalent driving force F includes a first analog driving coil, a second analog driving coil, a first permanent magnet, a second permanent magnet, a phase shifting circuit, an amplitude control circuit, and a power amplifying circuit;
  • the Coriolis mass flowmeter has a first analog drive coil and a second permanent magnet fixed symmetrically about the vibration tube, and the first permanent magnet and the second analog drive coil are fixed on the Coriolis mass flowmeter.
  • the relative position of the outer casing causes the first permanent magnet to protrude into the interior of the first analog drive coil, and the second permanent magnet extends into the interior of the second analog drive coil;
  • the double tube type Coriolis mass flowmeter one of the vibrations a first analog driving coil and a second permanent magnet symmetrically symmetric about the vibration tube are fixed on the tube, and the first permanent magnet and the first fixed magnet are fixed at the relative positions of the other vibration tube
  • Two analog drive coils the first permanent magnet extends into the interior of the first analog drive coil, and the second permanent magnet extends into the interior of the second analog drive coil
  • one output of the flow transmitter is coupled to the drive coil of the vibration sensor to provide a normal operating drive
  • the signal, the other output of the flow transmitter is sequentially connected to the first analog driving coil and the second analog driving coil through a phase shifting circuit, an amplitude control circuit, and a power amplifying circuit, respectively, the first analog driving coil and the second analog driving coil
  • the input signal is connected in the opposite direction.
  • the phase shifting circuit includes an operational amplifier, a feedback resistor R1, a resistor R2, a resistor Rx, and a capacitor c.
  • the positive input terminal of the operational amplifier is connected to the output of the flow transmitter through the resistor Rx, and the positive input terminal of the operational amplifier is grounded through the capacitor c.
  • the negative input of the amplifier is connected to the output of the flow transmitter through a resistor R2.
  • the negative input of the operational amplifier is also connected to the output of the operational amplifier through a feedback resistor R1, and the output of the operational amplifier is connected to the input of the amplitude control circuit.
  • the power amplifying circuit comprises a triangular wave generator, a sine wave synthesizer, a comparator circuit, a bridge output stage circuit and a low pass filter circuit, wherein the output of the triangular wave generator and the sine wave synthesizer is connected to the input end of the comparator circuit, The output end of the circuit is connected to the low-pass filter circuit through the bridge output stage circuit, and the output of the low-pass filter circuit is respectively connected to the first drive analog coil and the second drive analog coil, and the sine wave synthesizer is connected to the output of the amplitude control circuit.
  • the amplitude control circuit includes a filter circuit and a potentiometer connected in series at the output end of the phase shifting circuit, and the output of the potentiometer is connected to the input of the sine wave synthesizer.
  • the invention has the advantages that: the method and the device of the invention can well serve the regular inspection and maintenance of the mass flowmeter, can effectively monitor the measurement state of the flowmeter, and improve the online monitoring efficiency of the mass flowmeter, and operate Workers can quickly determine whether the flowmeter is in an abnormal working state on the spot.
  • the monitoring process is convenient and fast, avoiding unnecessary disassembly costs, unreliable problems caused by offline reloading, and influences of installation stress, reducing monitoring costs, saving manpower and material resources. Actually There are significant engineering implications in use.
  • FIG. 1 is a schematic view of a modified double c-tube Coriolis mass flowmeter sensor according to the present invention; wherein 101 and 201 are respectively two vibration tubes of the flow meter; 102 and 202 are respectively a first permanent magnet and a first analog driving coil; 104 and 204 are the second analog drive coil and the second permanent magnet; 103 and 203 are the left detection coil and the left permanent magnet, 105 and 205 are the right permanent magnet and the right detection coil; 106 and 206 are the drive coils of the vibration tube; And drive the permanent magnet.
  • Figure 2a is a vibration diagram of the mass flowmeter flow tube
  • Figure 2b is a deflection diagram of the mass flowmeter flow tube
  • Figure 3a is a schematic diagram of liquid flow of a double C-tube mass flow meter
  • Figure 3b is a schematic diagram of the vibration force distribution of the double C-shaped tube mass flowmeter
  • FIG. 4 is a schematic block diagram of a monitoring device in the present invention.
  • Figure 5 shows the transfer of various parameters during the operation of the mass flow meter
  • Figure 6 is a phase shift circuit diagram designed in the present invention.
  • Fig. 7 is a basic topology of a power amplifying circuit in the present invention.
  • the basic principle of mass flow meter measurement is the Coriolis effect of the liquid in the vibrating tube.
  • the drive coil 106 of the own vibrating tube interacts with the drive permanent magnet 206 to apply a driving force to the vibrating tube to vibrate the vibrating tube at a certain frequency.
  • the points on the vibrating tube vibrate in the same phase, as shown in Figure 2a.
  • the vibrating tube is subjected to the Coriolis force generated by the liquid (Fc in Fig. 2b), and the Coriolis force causes the vibrating tube to produce different phases at various points, as shown in Fig. 2b.
  • the AC section and the BD section are subjected to the same Coriolis force in the opposite direction (eg The Fc direction shown in Figure 2b).
  • the left detecting coil 103 and the right detecting coil 205 are placed at two different points on both sides of the driving coil 106 with respect to the axis of symmetry for detecting the vibration signals of the two points.
  • the phase difference ⁇ t of the two signals received from the left detecting coil 103 and the right detecting coil 205 is calculated in unit time.
  • the phase difference of the signal between the two detection coils is proportional to the mass flow rate of the liquid flowing through the vibration tube.
  • gP : q m KA t
  • K is the meter factor of the flow meter, which is the basic formula for mass flow meter to measure mass flow.
  • the essence of flow measurement is that the Coriolis force is generated when the liquid passes through the pipe, and the Coriolis force in the opposite direction on both sides of the pipe causes the pipe to be twisted and deformed.
  • the equivalent driving force F instead of the Coriolis force Fc generated by the liquid through the pipe, it is ensured that the equivalent driving force F and the Coriolis force Fc have the same effect, and the liquid can be realized without flowing the liquid.
  • the phase difference is generated on both sides of the sensor vibrating tube, and the flow transmitter displays the mass flow value when the liquid flows through uninterrupted detection and calculation. If it is possible to further determine the correspondence between the magnitude of the applied equivalent driving force F and the assumed liquid flow value, by changing the magnitude of the equivalent driving force F, the flow value q m ' displayed by the transmitter is compared with the assumed flow rate. The difference between the two can be used to monitor the operating state of the flow meter without the liquid.
  • the monitoring process of the Coriolis mass flow meter and the transfer of the various parameters can be illustrated by the flow of Figure 5.
  • the present invention includes the following steps:
  • a method for monitoring a measurement state of a Coriolis mass flow meter comprising the following steps: 1] selecting and recording 5-10 flow values qm dispersed in the Coriolis mass flow meter range ; The flow rate value, respectively, determines the action position and action direction of the measured liquid of each flow value on the equivalent driving force F of the Coriolis force Fc generated by the Coriolis mass flowmeter vibrating tube, and calculates and records the equivalent driving force F size;
  • step 1 Apply the equivalent driving force F corresponding to a certain water flow value to the vibrating tube of the Coriolis mass flowmeter for a total of N times, 5 N 2 , and record the display of each display instrument.
  • value q m ' find the average value of q m ' ⁇ 7, if the value of -100% is less than 1%, continue to judge its q flow value, : 100% of the value is less than 1%, if each flow value ,
  • step 1 the determination of the action position, action direction and size of the equivalent driving force F can be achieved by the following two methods: A. Theoretical calculation; B. Pre-line simulation. A. Theoretical calculation
  • is the angle between the direction of the angular velocity ⁇ and the direction of the liquid flow velocity in the pipe, as shown in Fig. 3a, the length of the vibrating pipe through which the liquid flows during the time interval, and the mass of the segment liquid is dm,
  • L is the length of the straight pipe segment and R is the radius of the pipe segment.
  • d is the distance from the point of action of the equivalent driving force to the axis of symmetry of the C-tube (dotted line in Figure 3a).
  • the required dimensional parameters can be obtained by reference to the factory specification or directly measured to determine the equivalent driving force F. size.
  • the method of calculating the equivalent driving force F by integrating the Coriolis force moment is the method adopted by the present invention, and other methods of converting the Coriolis force into the equivalent driving force can also be employed.
  • the driving force of the simulated Coriolis force may be plural.
  • the application position may be in the curved pipe section in which the Coriolis force acts, or in the straight pipe section in which the Coriolis force is applied, and the specific application is performed.
  • the invention adopts the main vibration driving signal with the vibration angular velocity of ⁇ as the driving modulation signal source of the equivalent driving force, and the equivalent driving force vibration phases on both sides are opposite.
  • Other methods that produce equivalent driving forces for cyclical alternation can also be used.
  • the first analog drive coil with respect to the axis of symmetry of the vibrating tube is fixed at the position of the equivalent driving force F determined on the vibrating tube according to step 1] a second permanent magnet, the first permanent magnet and the second analog drive coil are fixed on the outer casing of the Coriolis mass flowmeter, the first permanent magnet extends into the interior of the first analog drive coil, and the second permanent magnet extends into the second simulation Driving the inside of the coil;
  • one of the vibrating tubes is fixed at the position corresponding to the axis of symmetry of the vibration tube according to the equivalent driving force F determined according to the step 1]
  • An analog drive coil and a second permanent magnet are fixed on the other vibration tube with a first permanent magnet and a second analog drive coil symmetrically about the vibration tube, and the first permanent magnet extends into the first analog drive coil, The second permanent magnet extends into the interior of the second analog drive coil; the combination of the permanent magnet and the drive coil
  • N the coil winding number
  • B the magnetic field strength of the permanent magnet
  • I the current passed through the coil size
  • L the length of the current supply conductor
  • the output of the flow transmitter provides a normal working drive signal for the Coriolis mass flowmeter, and the drive output signal of the flow transmitter is sequentially connected to the first phase through the phase shifting circuit, the amplitude control circuit, and the power amplifying circuit.
  • the principle block diagram of the monitoring device of the Coriolis mass flowmeter of the present invention is shown in Fig. 4.
  • the device for applying the equivalent driving force F has the same effect as the Coriolis force Fc.
  • the apparatus for applying the equivalent driving force F includes a first analog driving coil, a second analog driving coil, a first permanent magnet, a second permanent magnet, a phase shifting circuit, a power amplifying circuit, and an amplitude control circuit;
  • the Rioli mass flowmeter has a first analog drive coil and a second permanent magnet fixed symmetrically about the vibration tube, and the first permanent magnet and the second analog drive coil are fixed to the Coriolis mass flowmeter.
  • the first permanent magnet extends into the interior of the first analog drive coil
  • the second permanent magnet extends into the interior of the second analog drive coil
  • one of the vibrating tubes is fixed a first analog drive coil and a second permanent magnet symmetrically symmetric about the vibration tube, and a first permanent magnet and a second analog drive coil symmetrically symmetric about the vibration tube, the first permanent magnet is fixed on the other vibration tube Extending into the interior of the first analog drive coil, the second permanent magnet extends into the interior of the second analog drive coil
  • the drive output of the flow transmitter is driven by the vibration sensor
  • the coil provides a driving signal for normal operation, and the signal output is sequentially connected to the first analog driving coil and the second analog driving coil through a phase shifting circuit, an amplitude control circuit, and a power amplifying circuit, respectively, the first analog driving coil and the second analog
  • the input signals of the drive coils are connected in opposite directions to ensure that the sides of the vibrating tube are properly simulated by the opposite Coriolis
  • the first permanent magnet 102 and the second analog driving coil 104 are respectively fixed at the midpoints of the two curved pipe segments on one of the vibrating tubes 101 of the double C-tube Coriolis mass flowmeter, and the other is
  • the first analog driving coil 202 and the second permanent magnet are respectively fixed at the midpoints of the two curved pipe sections of the vibrating pipe 201 Iron 204, as shown in Figure 1.
  • the first permanent magnet and the second permanent magnet are fixed by the permanent magnet bracket; the first analog driving coil and the second analog driving coil are fixed by the coil bracket, and the permanent magnet bracket and the coil bracket are welded on the respective vibrating tubes, and other reliable The fixing method; the welding of the permanent magnet bracket and the coil bracket is maintained during welding, so that the mass of the two vibrating pipes can be balanced.
  • a first analog drive coil and a second permanent magnet symmetrically symmetric about the vibration tube are fixed at the position of the equivalent driving force F determined on the vibration tube according to the step 1]
  • the first permanent magnet and the second analog drive coil are fixed to the outer casing of the Coriolis mass flowmeter, the first permanent magnet extends into the interior of the first analog drive coil, and the second permanent magnet extends into the interior of the second analog drive coil.
  • the vibration frequency and the vibration phase of the first analog drive coil and the second analog drive coil are controlled to be generated by the first analog drive coil and the second analog drive coil.
  • the equivalent driving force F can be the same as the frequency and phase of the Coriolis force generated by the actual liquid; secondly, the amplitude of the equivalent driving force F is accurately controlled, and the current of the applying device that controls the equivalent driving force F is further controlled.
  • the input signals of the driving signals of the first analog driving coil and the second analog driving coil are directly introduced by the driving signal of the vibrating tube, and the driving signal of the vibrating tube and the signal of the applying device of the equivalent driving force F are ensured at the vibration frequency. Consistent.
  • the drive signal of the flow transmitter has a phase deviation from the Coriolis force, and the device of the present invention moves the phase through the phase shift circuit, as shown in FIG.
  • the function of the phase shifting circuit is to produce a fixed phase offset of the drive signal to conform to the phase relationship of the vibrating tube drive signal and the Coriolis force.
  • the phase shifting circuit of the present invention comprises an operational amplifier, a feedback resistor R1, a resistor R2, a resistor Rx, a capacitor c, an operational amplifier
  • the positive input terminal is connected to the output of the flow transmitter through the resistor Rx.
  • the positive input terminal of the operational amplifier is grounded through the capacitor c.
  • the negative input terminal of the operational amplifier is connected to the output of the flow transmitter through the resistor R2, and the negative input terminal of the operational amplifier is further The output terminal of the operational amplifier is connected through a feedback resistor R1, and the operational amplifier outputs a phase-shifted voltage signal to the amplitude control circuit.
  • Other phase shifting circuits that meet the requirements can also be used.
  • the amplitude control circuit includes a filter circuit and a potentiometer which are sequentially connected in series at the output end of the phase shift circuit, and the output of the potentiometer is connected to the input of the sine wave synthesizer.
  • the amplitude control circuit is for controlling the magnitude of the current in the first drive analog coil and the second drive analog coil.
  • the power amplifying circuit comprises a triangular wave generator, a sine wave synthesizer, a comparator circuit, a bridge output stage circuit and a low pass filter circuit, and an output of the triangular wave generator and the sine wave synthesizer is connected to an input end of the comparator circuit, the comparator The output end of the circuit is connected to the low-pass filter circuit through the bridge output stage circuit, and the output of the low-pass filter circuit is respectively connected to the first drive analog coil and the second drive analog coil, and the sine wave synthesizer of the power amplifier circuit is connected to the amplitude control circuit. Output.
  • the function of the power amplifying circuit is to improve the driving ability of the driving system to the vibrating tube, and its basic topology is shown in FIG. The monitoring accuracy of the present invention is verified below:
  • the unit of the table below is kg/h.
  • the first drive analog coil turns and the first drive analog coil have a number of turns of 159 ⁇ , a resistance of 11.2 ⁇ , a wire diameter of 9.6 mm, and a permanent magnet magnetic field strength of 3200 Gs.
  • Applied current I error theoretical flow q m theoretical applied force F shows flow q m '
  • the monitoring error of the test results is within 1%, indicating that the monitoring device is used to judge that the Correol mass flowmeter is in normal working condition.
  • the method and apparatus can realize on-line monitoring of the working state of the Coriolis mass flow meter.
  • the monitoring error of the test results is within 1%, indicating that the Coriolis mass flowmeter monitored by the monitoring device of the present invention is in a normal working state. Therefore, the monitoring method and monitoring device can be used for online monitoring of the working state of the Coriolis mass flow meter.

Landscapes

  • Physics & Mathematics (AREA)
  • Fluid Mechanics (AREA)
  • General Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Signal Processing (AREA)
  • Measuring Volume Flow (AREA)

Abstract

一种科里奥利质量流量计的测量状态监测方法及装置,通过施加等效驱动力F来代替液体通过振动管道(101,201)产生的科氏力Fc,保证等效驱动力F和科氏力Fc的作用效果相同,实现在不流通该液体的情况下,在传感器振动管(101,201)的两侧产生相位差,流量变送器通过不间断的检测和解算显示出流通该液体时的质量流量值。通过改变等效驱动力F的大小,对比变送器显示的流量值q m'与假设的流量q m的差值,就能实现在不流通该液体的情况下对流量计的工作状态进行监测。该装置包括等效驱动力F的施加装置,等效驱动力F的作用效果与科氏力Fc的作用效果相同,等效驱动力F的施加位置及大小满足力矩条件2F·d=T。

Description

一种科里奥利质量流量计的测量状态监测方法及装置 技术领域
本发明涉及流量仪表的监测领域, 具体涉及一种科里奥利质量流量计的 测量状态监测方法及装置。
背景技术
科里奥利质量流量计 (以下简称质量流量计) 是一种能够直接测量液体 质量流量的仪表, 目前在国民生产的各个领域应用广泛。 为了保证质量流量 计测量数据的准确度和可靠性, 普遍的做法是进行周期性的校准, 《中华人民 共和国计量检定章程》 中规定质量流量计的检定周期为 0. 5年 /次一 2年 /次, 检定合格的仪表在实际的工程应用中的实际测量状态是否能保证, 只有等到 检定有效期结束, 回到检定装置才能准确判断, 目前还无法快速现场在线进 行准确判断。
对于已经投入使用中的流量计, 现场工况复杂, 影响流量计测量精度的 因素很多, 如流量计的安装、 流量传感器的故障、 外界复杂环境 (冲击、 振 动) 影响, 都会对流量计的测量造成影响。 在流量计的校准周期中, 流量计 的测量状态难以判断。 目前的通用的判断方法是将流量计拆离管线, 在实验 室中进行人工标定, 判断流量计是否处于异常工作状态。 这种方式成熟、 准 确, 但是耗费较多的人力、 物力和财力资源, 增加了设备的停车时间, 严重 影响生产效率。 据统计, 我国每年投入使用的质量流量计每台次标定检测费 用在 2000至 3000元千人民币。 而本发明提出的监测方法能对流量计的测量 状态进行有效的在线监测, 监测过程流量计无需拆离管线, 监测过程方便快 捷。目前公开的专利中,美国微动公司公开号为 CN 1860350A和 CN 101622519A 的专利中, 提出了振动管道的在线诊断方法和系统, 诊断的主要依据是流量 计工作过程中振动管道刚度的变化, 其中均缺乏对流量振动管道中流体的影 响的考虑。
发明内容
本发明目的在于: 提出一种全新的科里奥利质量流量计的测量状态监测 方法及装置, 解决了传统离线监测带来的浪费时间与浪费人力、 物力和财力 的技术问题。
本发明的技术解决方案是:
一种科里奥利质量流量计的测量状态监测方法, 其特殊之处在于: 包括 以下歩骤:
1 ]选择并记录 5-10个散布在科里奥利质量流量计量程内的流量值 qm; 根据选择的流量值 , 分别确定各个流量值的测量液体对科里奥利质量 流量计振动管产生的科氏力 Fc的等效驱动力 F的作用位置及作用方向, 计算 并记录等效驱动力 F的大小; 等效驱动力 F的作用效果与科氏力 Fc的作用效 果相同;
2】关闭现场科里奥利质量流量计两侧的阀门, 确保现场科里奥利质量流 量计的振动管中充满测量液体且测量液体处于完全静止状态, 启动变送器;
3】在科里奥利质量流量计的振动管上施加歩骤 1】 中的记录的其中- -水 流量值对应的等效驱动力 F共 N次, 5 N 2, 记录每一次显示仪表显示的流
:值 qm '; 求出 qm '的平均值 ^,
Figure imgf000004_0001
100%的值小于 1%, 继续判断 q 其他流量值下, ^^χ100%的值是否小于 1%; 如果各个流量值下,
q qm - qr
100%的值都小于 1%, 则科里奥利质量流量计的测量状态为正常, 否 q
则为异常。
上述歩骤 3】 中施加等效驱动力 F的具体方法是:
3. 1】对于单管型的科里奥利质量流量计, 振动管上根据歩骤 1】确定的 等效驱动力 F施加位置处固定有关于振动管对称轴对称的第一模拟驱动线圈
Figure imgf000005_0001
永磁铁和第二模拟驱动线圈固定于科里奥利质量流量计 的外壳的对应位置, 使得第一永磁铁伸入第一模拟驱动线圈内部, 第二永磁 铁伸入第二模拟驱动线圈内部; 对于双管型的科里奥利质量流量计, 其中一 根振动管上根据歩骤 1】确定的等效驱动力 F施加位置处固定有关于该振动管 对称轴对称的第一模拟驱动线圈和第二永磁铁, 另一根振动管上固定有关于
Figure imgf000005_0002
永磁铁伸入; 一模拟驱动线圈内部, 第二永磁铁伸入第二模拟驱动线圈内部;
流量变送器的输出为科里奥利质量流量计提供正常工作的驱动信号, 流 量变送器的输出还依次经过移相电路、 幅值控制电路、 功率放大电路后分别 接入第一模拟驱动线圈和第二模拟驱动线圈;
3. 2】通电, 电流大小 I与线圈的绕线匝数以及等效驱动力 F的大小满足 关系 I=F/NBL,其中, N为线圈的绕线匝数, B为永磁铁的磁场强度, I为线圈 中通入的电流大小, L为通电导线的长度。
上述歩骤 3. 1】 中, 移相电路包括运算放大器、 反馈电阻 Rl、 电阻 R2、 电阻 Rx、 电容 c, 运算放大器的正输入端通过电阻 Rx接流量变送器的输出, 运算放大器的正输入端通过电容 c接地, 运算放大器的负输入端通过电阻 R2 接流量变送器的输出, 运算放大器的负输入端还通过反馈电阻 R1接运算放大 器的输出端, 运算放大器输出接幅值控制电路的输入。
上述歩骤 3. 1】中, 功率放大电路包括三角波发生器、 正弦波合成器、 比 较器电路、 桥式输出级电路以及低通滤波电路, 三角波发生器和正弦波合成 器的输出端连接至比较器电路的输入端, 比较器电路的输出端通过桥式输出 级电路与低通滤波电路连接, 低通滤波电路输出分别连接第一驱动模拟线圈 和第二驱动模拟线圈, 正弦波合成器接幅值控制电路的输出。
上述歩骤 3. 1】中, 幅值控制电路包括依次串联在移相电路输出端的滤波 电路和电位器, 电位器的输出与正弦波合成器的输入连接。
一种科里奥利质量流量计的测量状态监测装置, 其特殊之处在于: 包括 等效驱动力 F的施加装置, 等效驱动力 F的作用效果与科氏力 Fc的作用效果 相同, 等效驱动力 F的施加位置及大小满足力矩条件 2F = r, 其中 d为等 效驱动力的作用点到振动管的对称轴的距离, T为科氏力偶矩。
上述等效驱动力 F的施加装置包括第一模拟驱动线圈、 第二模拟驱动线 圈、 第一永磁铁、 第二永磁铁、 移相电路、 幅值控制电路以及功率放大电路; 对于单管型的科里奥利质量流量计, 振动管上固定有关于振动管对称轴对称 的第一模拟驱动线圈和第二永磁铁, 第一永磁铁和第二模拟驱动线圈固定在 科里奥利质量流量计外壳的相对位置上, 使得第一永磁铁伸入第一模拟驱动 线圈内部, 第二永磁铁伸入第二模拟驱动线圈内部; 对于双管型的科里奥利 质量流量计, 其中一根振动管上固定有关于该振动管对称轴对称的第一模拟 驱动线圈和第二永磁铁, 另一根振动管的相对位置上固定有第一永磁铁和第 二模拟驱动线圈, 第一永磁铁伸入第一模拟驱动线圈内部, 第二永磁铁伸入 第二模拟驱动线圈内部; 流量变送器的一路输出连接至振动传感器的驱动线 圈提供正常工作的驱动信号, 流量变送器的另一路输出依次通过移相电路、 幅值控制电路、 功率放大电路分别与第一模拟驱动线圈和第二模拟驱动线圈 连接, 第一模拟驱动线圈和第二模拟驱动线圈的输入信号接入方向相反。
上述移相电路包括运算放大器、反馈电阻 Rl、 电阻 R2、 电阻 Rx、 电容 c, 运算放大器的正输入端通过电阻 Rx接流量变送器的输出, 运算放大器的正输 入端通过电容 c接地, 运算放大器的负输入端通过电阻 R2接流量变送器的输 出, 运算放大器的负输入端还通过反馈电阻 R1接运算放大器的输出端, 运算 放大器输出接幅值控制电路的输入。
上述功率放大电路包括三角波发生器、 正弦波合成器、 比较器电路、 桥 式输出级电路以及低通滤波电路, 三角波发生器和正弦波合成器的输出端连 接至比较器电路的输入端, 比较器电路的输出端通过桥式输出级电路与低通 滤波电路连接, 低通滤波电路输出分别连接第一驱动模拟线圈和第二驱动模 拟线圈, 正弦波合成器接幅值控制电路的输出。
上述幅值控制电路包括依次串联在移相电路输出端的滤波电路和电位 器, 电位器的输出与正弦波合成器的输入连接。
本发明的优点是: 本发明的方法及装置能很好的为质量流量计的定期检 测维护服务, 能对流量计的测量状态进行有效的在线监测, 提高了质量流量 计的在线监测效率, 操作工人可以在现场快速判断流量计是否处于异常工作 状态, 监测过程方便快捷, 避免不必要的拆卸成本以及离线重装产生的不可 靠、 安装应力影响等问题, 降低监测成本, 节约人力、 物力资源, 在实际应 用中有重大的工程意义。
附图说明
图 1为本发明改进的双 c形管科里奥利质量流量计传感器示意图; 其中 101和 201分别为流量计的两根振动管; 102和 202分别为第一永磁 铁和第一模拟驱动线圈; 104和 204分别为第二模拟驱动线圈和第二永磁铁; 103和 203为左检测线圈和左永磁铁, 105和 205为右永磁铁和右检测线圈; 106和 206为振动管的驱动线圈和驱动永磁铁。
图 2a为质量流量计流量管振动图;
图 2b为质量流量计流量管挠曲变形图;
图 3a为双 C形管质量流量计液体流动示意图;
图 3b为双 C形管质量流量计振动受力分布示意图;
图 4为本发明中监测装置原理框图;
图 5为质量流量计工作过程中各个参量的传递;
图 6为本发明中设计的移相电路图;
图 7为本发明中的功率放大电路的基本拓扑结构。
具体实施方式
质量流量计测量的基本原理是振动管中液体的科里奥利效应。 在典型的 质量流量计应用中, 自身的振动管的驱动线圈 106和驱动永磁铁 206相互作 用向振动管施加驱动力, 使振动管以一定频率振动。 没有液体流经振动管时, 振动管上各点以相同的相位振动, 如图 2a。 当有液体流过振动管时, 振动管 受到液体产生的科氏力 (图 2b中的 Fc ) 的作用, 科氏力使得振动管各点产生 不同的相位, 如图 2b。 AC段和 BD段所受的科氏力大小相同, 方向相反 (如 图 2b中所示的 Fc方向)。 将左检测线圈 103和右检测线圈 205放置在驱动线 圈 106两侧关于对称轴对称的两个不同点上, 用来检测两点的振动信号。 在 单位时间中计算从该左检测线圈 103和右检测线圈 205接收到的两个信号的 相位差△ t。 两个检测线圈之间信号的相位差与流经该振动管的液体的质量流 量成正比。 gP : qm=K A t , K为流量计的仪表系数, 这就是质量流量计测量质 量流量的基本公式。 流量测量的本质是液体通过管道时产生科氏力, 管道两 侧方向相反的科氏力使管道发生扭转形变。
基于以上分析, 通过施加等效驱动力 F来代替液体通过管道产生的科氏 力 Fc, 保证等效驱动力 F和科氏力 Fc的作用效果相同, 就可以实现在不流通 该液体的情况下, 在传感器振动管的两侧产生相位差, 流量变送器通过不间 断的检测和解算显示出流通该液体时的质量流量值。 若能进一歩确定外加等 效驱动力 F的大小和假设的液体流量值 之间的对应关系, 通过改变等效驱 动力 F的大小, 对比变送器显示的流量值 qm '与假设的流量 的差值, 就能实 现在不通该液体的情况下对流量计的工作状态进行监测。 科里奥利质量流量 计的监测过程及各个参量的传递可以由图 5的流程来说明。
因此, 本发明包括以下歩骤:
1、 一种科里奥利质量流量计的测量状态监测方法, 包括以下歩骤: 1 ]选择并记录 5-10个散布在科里奥利质量流量计量程内的流量值 qm; 根据选择的流量值 , 分别确定各个流量值的测量液体对科里奥利质量 流量计振动管产生的科氏力 Fc的等效驱动力 F的作用位置及作用方向, 计算 并记录等效驱动力 F的大小;
2】关闭现场科里奥利质量流量计两侧的阀门, 确保现场科里奥利质量流 :计的振动管中充满测量液体且测量液体处于完全静止状态, 启动变送器;
3】根据歩骤 1】 中的记录, 在科里奥利质量流量计的振动管上施加某水 流量值对应的等效驱动力 F共 N次, 5 N 2, 记录每一次显示仪表显示的流
:值 qm '; 求出 qm '的平均值 Ϊ7, 如果- 100%的值小于 1%, 继续判断其 q 他流量值下, : 100%的值是否小于 1%, 如果各个流量值下,
q
Figure imgf000010_0001
: 100%的值都小于 1%, 则科里奥利质量流量计的测量状态为正常, 否 q 则为异常(
上述歩骤 1】中, 等效驱动力 F的作用位置、 作用方向以及大小的确定可 以通过以下两种方法实现: A.理论计算; B.线下提前模拟。 A.理论计算
1. 11等效驱动力 F的作用位置及大小的确定
以双 C形管质量流量计为例, 测量液体流量时的受力简图如图 3a所示。 当液体流动方向如图 3a中所示, E点的驱动力沿纸面向外时, 角速度 ω的方 向水平向左, 传感器的直管部分的液体速度 V与角速度 ω平行,
dFc = 2dm .
Figure imgf000010_0002
e , 因为 = 0, 所以直管段液体不会产生科氏力。 在弯管段 管道受到液体科氏力的作用, 而且弯管段 ^角是不断变化的, 所以科氏力也是 不断变化的。在 C点处, 旋转角速度和液体速度 V的夹角 ^ = 90。, 此处科氏力 dFc = dm · a k为液体微元的科氏加速度, 其表达式为:
Figure imgf000011_0001
其中 ^为角速度 ω的方向与管道中液体流速方向的夹角, 如图 3a所 /」、 在 时间间隔内液体流过的振动管的长度为 , 段液体的质量为 dm,
dm
假设液体速度恒定, 则 = , q, 于是式(υ变成:
dt
dFc - 2dm
Figure imgf000011_0002
图 3a中左边的弯管段受到的科氏力偶矩为:
T = (2R sin 0 + L) * dFc = 2qm oR sin 0{2R sin Θ + L)d0
Figure imgf000011_0003
公式 (4 ) 中, L为直管段的长度, R为弯管段的半径
在质量流量计上选定要施加等效驱动力 F 的作用点, 需满足力矩条件 1 ά = Τ 。 其中 d为等效驱动力的作用点到 C形管的对称轴 (图 3a中的点划 线) 的距离, 需要的尺寸参数可以参考出厂说明书或直接测量得到, 从而确 定等效驱动力 F的大小。 通过积分计算科氏力力偶矩确定等效驱动力 F的大 小是本发明采用的方法, 其他将科氏力换算成等效驱动力的方法也可以采用。
因 此 , 在 C 点 及 F 点 , 效 驱 动 力 的 大 小 均 为 ),等效驱动力 F 的大小
Figure imgf000011_0004
与流量 的关系得到确定。
模拟科氏力的驱动力施加位置除了 C点及 F点, 也可以有多个, 施加位 置可以在科氏力作用的弯管段, 也可以在非科氏力作用的直管段, 具体的施 加要求应满足力矩条件 2F = r, 即施加等效力的合力偶矩要等于科氏力的 力偶矩。
1. 2】等效驱动力 F的作用方向分析: 当液体在处于振动状态的振动管中 流动时, 振动管除了以自激振荡频率为 ω作主振动之外, 由于科氏力的存在, 同一振动管进出口两侧受到的科氏力大小相同、 方向相反, 振动管产生同一 频率下的强制扭转振动。 在科氏力作用下, 此时, 振动管实际处于同一频率 的主振动与扭转振动的复合振动之中。 要准确的模拟科氏力, 需要考虑振动 管两侧的科氏力作用方向相反, 且作用方向变化的频率和驱动信号方向变化 的频率相同。 本发明采用振动角速度为 ω的主振动驱动信号作为等效驱动力 的驱动调制信号源, 两侧等效驱动力振动相位相反。 其他能产生周期交变的 等效驱动力的方法也可以使用。
Β.线下提前模拟:
1. 1】对双 C形管科里奥利质量流量计进行校准;
1. 2】使双 C形管科里奥利质量流量计的振动管中充满与现场液体相同的 既定静止液体, 启动变送器, 在科里奥利质量流量计的振动管上关于振动管 的对称轴对称的两侧分别施加大小相等、 方向关于振动管的对称轴对称的两 个等效驱动力 F, 调整两个等效驱动力 F使显示仪表显示流量为 qm, 记录此 时等效驱动力 F的作用位置及大小。
调整两个等效驱动力 F使显示仪表显示流量为 的方法有两种: 第一种: 通过固定两个等效驱动力 F 的大小, 调整两个等效驱动力 F的 作用位置, 使显示仪表显示流量为 。
第二种: 通过固定两个等效驱动力 F 的作用位置, 调整两个等效驱动力 F 的大小使显示仪表显示流量为 , 记录一组对应的 和等效驱动力。 这种 方法工程实践中便于实现。
上述歩骤 3】中施加的等效驱动力 F的方式有多种, 包括但不限于本发明 采用的如下方法:
3. 1】对于单管型的科里奥利质量流量计, 振动管上根据歩骤 1】确定的 等效驱动力 F施加位置处固定有关于振动管对称轴对称的第一模拟驱动线圈 和第二永磁铁, 第一永磁铁和第二模拟驱动线圈固定于科里奥利质量流量计 的外壳上, 第一永磁铁伸入第一模拟驱动线圈内部, 第二永磁铁伸入第二模 拟驱动线圈内部; 对于双管型的科里奥利质量流量计, 其中一根振动管上根 据歩骤 1】确定的等效驱动力 F施加位置处固定有关于该振动管对称轴对称的 第一模拟驱动线圈和第二永磁铁, 另一根振动管上固定有关于该振动管对称 轴对称的第一永磁铁和第二模拟驱动线圈, 第一永磁铁伸入第一模拟驱动线 圈内部, 第二永磁铁伸入第二模拟驱动线圈内部; 使用永磁铁和驱动线圈的 组合实现力的施加, 原理为通电导线在磁场中受到力的作用, 即安培力的产 生原理:
F ¾=NBIL (5) 其中, N为线圈的绕线匝数, B为永磁铁的磁场强度, I为线圈中通入的 电流大小, L为通电导线的长度;
流量变送器的输出为科里奥利质量流量计提供正常工作的驱动信号, 流 量变送器的驱动输出信号还依次经过移相电路、 幅值控制电路、 功率放大电 路后分别接入第一模拟驱动线圈和第二模拟驱动线圈;
3. 2】通电, 电流大小 I与线圈的绕线匝数以及等效驱动力 F的大小满足 关系 I=F/NBL,其中, N为线圈的绕线匝数, B为永磁铁的磁场强度, I为线圈 中通入的电流大小, L为通电导线的长度; 通过改变第一模拟驱动线圈和第二 模拟驱动线圈的线圈匝数 N及通入的电流大小 I来改变等效驱动力 F的大小。
本发明科里奥利质量流量计的监测装置的原理框图如图 4所示, 包括等 效驱动力 F的施加装置, 等效驱动力 F的作用效果与科氏力 Fc的作用效果相 同。 等效驱动力 F的施加位置及大小需要满足前面分析的力矩条件 2F = r。
等效驱动力 F的施加装置包括 第一模拟驱动线圈、 第二模拟驱动线圈、 第一永磁铁、 第二永磁铁、 移相电路、 功率放大电路以及幅值控制电路; 对 于单管型的科里奥利质量流量计, 振动管上固定有关于振动管对称轴对称的 第一模拟驱动线圈和第二永磁铁, 第一永磁铁和第二模拟驱动线圈固定于科 里奥利质量流量计的外壳上, 第一永磁铁伸入第一模拟驱动线圈内部, 第二 永磁铁伸入第二模拟驱动线圈内部; 对于双管型的科里奥利质量流量计, 其 中一根振动管上固定有关于该振动管对称轴对称的第一模拟驱动线圈和第二 永磁铁, 另一根振动管上固定有关于该振动管对称轴对称的第一永磁铁和第 二模拟驱动线圈, 第一永磁铁伸入第一模拟驱动线圈内部, 第二永磁铁伸入 第二模拟驱动线圈内部; 流量变送器的驱动输出为振动传感器的驱动线圈提 供正常工作的驱动信号, 取出该信号输出依次通过移相电路、 幅值控制电路、 功率放大电路分别与第一模拟驱动线圈和第二模拟驱动线圈连接, 第一模拟 驱动线圈和第二模拟驱动线圈的输入信号接入方向相反, 以保证正确模拟振 动管两侧受到相反科氏力的作用特点。
本发明在双 C形管科里奥利质量流量计的其中一根振动管 101上两个弯 管段的中点处分别固定有第一永磁铁 102和第二模拟驱动线圈 104,另一根振 动管 201的两个弯管段的中点处分别固定第一模拟驱动线圈 202和第二永磁 铁 204, 如图 1。 第一永磁铁和第二永磁铁通过永磁铁支架固定; 第一模拟驱 动线圈和第二模拟驱动线圈通过线圈支架固定, 永磁铁支架和线圈支架焊接 在各自的振动管上, 也可以采用其他可靠的固定方式; 焊接时保持永磁铁支 架和线圈支架交叉焊接, 这样可以使两振动管道的质量平衡。
对于单管型的科里奥利质量流量计, 振动管上根据歩骤 1】确定的等效驱 动力 F施加位置处固定有关于振动管对称轴对称的第一模拟驱动线圈和第二 永磁铁, 第一永磁铁和第二模拟驱动线圈固定于科里奥利质量流量计的外壳 上, 第一永磁铁伸入第一模拟驱动线圈内部, 第二永磁铁伸入第二模拟驱动 线圈内部。
使用本发明的装置进行科氏力的模拟时, 首先是对第一模拟驱动线圈和 第二模拟驱动线圈的振动频率和振动相位的控制, 使第一模拟驱动线圈和第 二模拟驱动线圈产生的等效驱动力 F能够与实际液体产生的科氏力的频率及 相位同歩; 其次再对等效驱动力 F的幅值准确控制, 进一歩控制通过等效驱 动力 F的施加装置的电流, 实现等效力大小控制, 就能完整的模拟出该液体 产生的科氏力对振动管道的作用效果。
因此, 第一模拟驱动线圈和第二模拟驱动线圈驱动信号的输入信号由振 动管的驱动信号直接引入, 保证了振动管的驱动信号和等效驱动力 F的施加 装置的信号在振动频率上的一致。
流量变送器的驱动信号与科氏力存在相位上的偏差, 本发明的装置通过 移相电路来移动相位, 如图 6所示。 移相电路的作用是使驱动信号产生固定 相位的偏移, 以符合振动管驱动信号和科氏力的相位关系。 本发明中的移相 电路包括运算放大器、 反馈电阻 Rl、 电阻 R2、 电阻 Rx、 电容 c, 运算放大器 的正输入端通过电阻 Rx接流量变送器的输出, 运算放大器的正输入端通过电 容 c接地, 运算放大器的负输入端通过电阻 R2接流量变送器的输出, 运算放 大器的负输入端还通过反馈电阻 R1接运算放大器的输出端, 运算放大器输出 移相过的电压信号给幅值控制电路。 其他满足要求的移相电路也可以采用。 幅值控制电路包括依次串联在移相电路输出端的滤波电路和电位器, 电 位器的输出与正弦波合成器的输入连接。 幅度控制电路用于控制第一驱动模 拟线圈和第二驱动模拟线圈中电流的大小。 功率放大电路包括三角波发生器、 正弦波合成器、 比较器电路、 桥式输 出级电路以及低通滤波电路, 三角波发生器和正弦波合成器的输出端连接至 比较器电路的输入端, 比较器电路的输出端通过桥式输出级电路与低通滤波 电路连接, 低通滤波电路输出分别连接第一驱动模拟线圈和第二驱动模拟线 圈, 功率放大电路的正弦波合成器接幅值控制电路的输出。 功率放大电路的 作用是提高驱动系统对振动管的驱动能力, 其基本拓扑结构如图 7示。 以下对本发明的监测准确度进行验证:
1.理论计算法 取一台正常的双 c形管科里奥利质量流量计, 在弯管段的中点段施加等 效驱动力 F, F=T/2d=4 m^( T? + L) /2d, 振动管实际参数: " =1. 78rad/s,
R=0. 0955m, L=0. 23m, d= R+^l=0. 2105m,所以 F=0. 6128 qm ( qm的单位是 kg/s),
2
下表 ^的单位为 kg/h。第一驱动模拟线圈匝数和第一驱动模拟线圈匝数为 159 匝, 电阻 11.2Ω , 绕线直径 = 9.6mm, 永磁体磁场强度 3200Gs。 施加电流 I 误差 理论流量 qm 理论施加力 F 显示流量 qm'
( A)
(kg ) ( Λ (kg )
300 0. 0511 0. 0523 302 0. 6%
400 0. 0682 0. 0755 397 0. 75%
500 0. 0853 0. 0868 497 0. 6%
600 0. 1020 0. 1044 602 0. 3%
1000 0. 1701 0. 1679 991 0. 9%
1100 0. 1874 0. 1862 1098 0. 18%
1200 0. 2402 0. 2057 1189 0. 9%
1400 0. 2383 0. 2441 1388 0. 8%
1500 0. 2553 0. 2615 1490 0. 6% 试验结果的监测误差均在 1%范围内, 说明使用本监测装置判断该型科里 奥利质量流量计处于正常的工作状态。 该方法及装置可以实现科里奥利质量 流量计工作状态的在线监测。
2.线下模拟法
选用一台正常的双 C形管科里奥利质量流量计, 选取振动管两侧弯管段 中点位置固定第一、 第二模拟驱动线圈, 通过改变等效驱动力 F 的大小, 模 拟不同大小的质量流量 。 模拟的数据和实际显示质量流量如下:
Figure imgf000017_0001
由上表得出试验结果的监测误差均在 1%范围内, 说明使用本发明的监测 装置监测的科里奥利质量流量计处于正常工作状态。 所以该监测方法及监测 装置可以用于科里奥利质量流量计工作状态的在线监测。

Claims

权利要求书
1、 一种科里奥利质量流量计的测量状态监测方法, 其特征在于: 包括以 下歩骤:
1 ]选择并记录 5-10个散布在科里奥利质量流量计量程内的流量值 qm; 根据选择的流量值 , 分别确定各个流量值的测量液体对科里奥利质量 流量计振动管产生的科氏力 Fc的等效驱动力 F的作用位置及作用方向, 计算 并记录等效驱动力 F的大小; 等效驱动力 F的作用效果与科氏力 Fc的作用效 果相同;
2】关闭现场科里奥利质量流量计两侧的阀门, 确保现场科里奥利质量流
:计的振动管中充满测量液体且测量液体处于完全静止状态, 启动变送器;
3】在科里奥利质量流量计的振动管上施加歩骤 1】 中的记录的其中- -水 流量值对应的等效驱动力 F共 N次, 5 N 2, 记录每一次显示仪表显示的流
:值 qm '; 求出 qm '的平均值 Ϊ7, 如果
Figure imgf000018_0001
:100%的值小于 1%, 继续判断其 他流量值下, :100%的值是否小于 1%; 如果各个流量值下,
q
Figure imgf000018_0002
:100%的值都小于 1%, 则科里奥利质量流量计的测量状态为正常, 否 q 则为异常。
2、根据权利要求 1所述的一种科里奥利质量流量计的测量状态监测方法, 其特征在于: 歩骤 3】 中施加等效驱动力 F的具体方法是:
3. 1】对于单管型的科里奥利质量流量计, 振动管上根据歩骤 1】确定的 等效驱动力 F施加位置处固定有关于振动管对称轴对称的第一模拟驱动线圈
Figure imgf000018_0003
永磁铁和第二模拟驱动线圈固定于科里奥利质量流量计 的外壳的对应位置, 使得第一永磁铁伸入第一模拟驱动线圈内部, 第二永磁 铁伸入第二模拟驱动线圈内部; 对于双管型的科里奥利质量流量计, 其中一 根振动管上根据歩骤 1】确定的等效驱动力 F施加位置处固定有关于该振动管 对称轴对称的第一模拟驱动线圈和第二永磁铁, 另一根振动管上固定有关于 该振动管对称轴对称的第一永磁铁和第二模拟驱动线圈, 第一永磁铁伸入第 一模拟驱动线圈内部, 第二永磁铁伸入第二模拟驱动线圈内部;
流量变送器的输出为科里奥利质量流量计提供正常工作的驱动信号, 流 量变送器的输出还依次经过移相电路、 幅值控制电路、 功率放大电路后分别 接入第一模拟驱动线圈和第二模拟驱动线圈;
3. 2】通电, 电流大小 I与线圈的绕线匝数以及等效驱动力 F的大小满足 关系 I=F/NBL,其中, N为线圈的绕线匝数, B为永磁铁的磁场强度, I为线圈 中通入的电流大小, L为通电导线的长度。
3、根据权利要求 2所述的一种科里奥利质量流量计的测量状态监测方法, 其特征在于: 歩骤 3. 1】 中, 移相电路包括运算放大器、 反馈电阻 Rl、 电阻 R2、 电阻 Rx、 电容 c, 运算放大器的正输入端通过电阻 Rx接流量变送器的输 出, 运算放大器的正输入端通过电容 c接地, 运算放大器的负输入端通过电 阻 R2接流量变送器的输出, 运算放大器的负输入端还通过反馈电阻 R1接运 算放大器的输出端, 运算放大器输出接幅值控制电路的输入。
4、 根据权利要求 2或 3所述的一种科里奥利质量流量计的测量状态监测 方法, 其特征在于: 歩骤 3. 1】中, 功率放大电路包括三角波发生器、 正弦波 合成器、 比较器电路、 桥式输出级电路以及低通滤波电路, 三角波发生器和 正弦波合成器的输出端连接至比较器电路的输入端, 比较器电路的输出端通 过桥式输出级电路与低通滤波电路连接, 低通滤波电路输出分别连接第一驱 动模拟线圈和第二驱动模拟线圈, 正弦波合成器接幅值控制电路的输出。
5、 根据权利要求 4所述的一种科里奥利质量流量计的测量状态监测方 法, 其特征在于: 歩骤 3. 1】中, 幅值控制电路包括依次串联在移相电路输出 端的滤波电路和电位器, 电位器的输出与正弦波合成器的输入连接。
6、 一种科里奥利质量流量计的测量状态监测装置, 其特征在于: 包括等 效驱动力 F的施加装置, 等效驱动力 F的作用效果与科氏力 Fc的作用效果相 同, 等效驱动力 F的施加位置及大小满足力矩条件 2F = r, 其中 d为等效 驱动力的作用点到振动管的对称轴的距离, T为科氏力偶矩。
7、 根据权利要求 6所述的科里奥利质量流量计的测量状态监测装置, 其 特征在于: 等效驱动力 F的施加装置包括第一模拟驱动线圈、 第二模拟驱动 线圈、 第一永磁铁、 第二永磁铁、 移相电路、 幅值控制电路以及功率放大电 路; 对于单管型的科里奥利质量流量计, 振动管上固定有关于振动管对称轴 对称的第一模拟驱动线圈和第二永磁铁, 第一永磁铁和第二模拟驱动线圈固 定在科里奥利质量流量计外壳的相对位置上, 使得第一永磁铁伸入第一模拟 驱动线圈内部, 第二永磁铁伸入第二模拟驱动线圈内部; 对于双管型的科里 奥利质量流量计, 其中一根振动管上固定有关于该振动管对称轴对称的第一 模拟驱动线圈和第二永磁铁, 另一根振动管的相对位置上固定有第一永磁铁 和第二模拟驱动线圈, 第一永磁铁伸入第一模拟驱动线圈内部, 第二永磁铁 伸入第二模拟驱动线圈内部; 流量变送器的一路输出连接至振动传感器的驱 动线圈提供正常工作的驱动信号, 流量变送器的另一路输出依次通过移相电 路、 幅值控制电路、 功率放大电路分别与第一模拟驱动线圈和第二模拟驱动 线圈连接, 第一模拟驱动线圈和第二模拟驱动线圈的输入信号接入方向相反。
8、根据权利要求 6或 7所述的科里奥利质量流量计的测量状态监测装置, 其特征在于:所述移相电路包括运算放大器、反馈电阻 Rl、 电阻 R2、 电阻 Rx、 电容 c, 运算放大器的正输入端通过电阻 Rx接流量变送器的输出, 运算放大 器的正输入端通过电容 c接地, 运算放大器的负输入端通过电阻 R2接流量变 送器的输出, 运算放大器的负输入端还通过反馈电阻 R1接运算放大器的输出 端, 运算放大器输出接幅值控制电路的输入。
9、 根据权利要求 8所述的科里奥利质量流量计的测量状态监测装置, 其 特征在于: 所述功率放大电路包括三角波发生器、 正弦波合成器、 比较器电 路、 桥式输出级电路以及低通滤波电路, 三角波发生器和正弦波合成器的输 出端连接至比较器电路的输入端, 比较器电路的输出端通过桥式输出级电路 与低通滤波电路连接, 低通滤波电路输出分别连接第一驱动模拟线圈和第二 驱动模拟线圈, 正弦波合成器接幅值控制电路的输出。
10、 根据权利要求 9所述的科里奥利质量流量计的测量状态监测装置, 其特征在于: 所述幅值控制电路包括依次串联在移相电路输出端的滤波电路 和电位器, 电位器的输出与正弦波合成器的输入连接。
PCT/CN2014/073978 2014-03-24 2014-03-24 一种科里奥利质量流量计的测量状态监测方法及装置 WO2015143613A1 (zh)

Priority Applications (3)

Application Number Priority Date Filing Date Title
CN201480006429.XA CN104981684B (zh) 2014-03-24 2014-03-24 一种科里奥利质量流量计的测量状态监测方法及装置
RU2015151900A RU2656294C2 (ru) 2014-03-24 2014-03-24 Способ и устройство для отслеживания состояния измерения кориолисового массового расходомера
PCT/CN2014/073978 WO2015143613A1 (zh) 2014-03-24 2014-03-24 一种科里奥利质量流量计的测量状态监测方法及装置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2014/073978 WO2015143613A1 (zh) 2014-03-24 2014-03-24 一种科里奥利质量流量计的测量状态监测方法及装置

Publications (1)

Publication Number Publication Date
WO2015143613A1 true WO2015143613A1 (zh) 2015-10-01

Family

ID=54193856

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2014/073978 WO2015143613A1 (zh) 2014-03-24 2014-03-24 一种科里奥利质量流量计的测量状态监测方法及装置

Country Status (3)

Country Link
CN (1) CN104981684B (zh)
RU (1) RU2656294C2 (zh)
WO (1) WO2015143613A1 (zh)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107131905B (zh) * 2016-02-26 2021-07-27 高准公司 检测两个或更多计量组件
KR20200063992A (ko) * 2018-11-28 2020-06-05 가부시끼 가이샤 구보다 수확기 및 유량 산출 방법

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5773727A (en) * 1994-10-18 1998-06-30 Fuji Electric Co., Ltd. Mass flow meter
CN1701217A (zh) * 2000-07-21 2005-11-23 微动公司 一种用于校准Coriolis流量计的驱动信号的系统
US20060058971A1 (en) * 2004-09-15 2006-03-16 Paul Logue Coriolis flowmeter
CN101840212A (zh) * 2010-05-27 2010-09-22 北京航空航天大学 一种用于科氏质量流量计的副振动反馈控制装置
EP2386838A1 (en) * 2010-05-13 2011-11-16 Yokogawa Electric Corporation Coriolis flow meter
CN103097866A (zh) * 2010-09-10 2013-05-08 恩德斯+豪斯流量技术股份有限公司 检测科里奥利流量测量装置中堵塞的方法

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
BRPI0318552B1 (pt) * 2003-10-22 2016-05-31 Micro Motion Inc aparelhos e métodos de diagnóstico para um medidor de fluxo coriolis
CN102128666B (zh) * 2011-02-11 2012-08-08 合肥工业大学 一种科里奥利质量流量计的标定方法

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5773727A (en) * 1994-10-18 1998-06-30 Fuji Electric Co., Ltd. Mass flow meter
CN1701217A (zh) * 2000-07-21 2005-11-23 微动公司 一种用于校准Coriolis流量计的驱动信号的系统
US20060058971A1 (en) * 2004-09-15 2006-03-16 Paul Logue Coriolis flowmeter
EP2386838A1 (en) * 2010-05-13 2011-11-16 Yokogawa Electric Corporation Coriolis flow meter
CN101840212A (zh) * 2010-05-27 2010-09-22 北京航空航天大学 一种用于科氏质量流量计的副振动反馈控制装置
CN103097866A (zh) * 2010-09-10 2013-05-08 恩德斯+豪斯流量技术股份有限公司 检测科里奥利流量测量装置中堵塞的方法

Also Published As

Publication number Publication date
RU2656294C2 (ru) 2018-06-04
CN104981684B (zh) 2018-06-05
CN104981684A (zh) 2015-10-14
RU2015151900A (ru) 2017-06-08

Similar Documents

Publication Publication Date Title
CA2539640C (en) Detection and measurement of two-phase flow
JP5851601B2 (ja) 振動式フローメータ及びゼロチェック方法
CN102652253B (zh) 用于运行科里奥利质量流量计的方法以及科里奥利质量流量计
RU2573611C2 (ru) Способ и устройство для определения и контроля статического давления флюида с помощью вибрационного измерителя
JP2006227010A (ja) 質量流量計の操作方法
JP2012047740A (ja) コリオリ質量流量測定器を用いて媒体の粘度を検出するための方法
EP2507595B1 (en) Vibratory flowmeter friction compensation
JP5842065B2 (ja) 振動流量計における処理システムの交換を容易にするための現場使用デバイスおよび方法
CA2892592C (en) Detection of a change in the cross - sectional area of a fluid tube in a vibrating meter by determining a lateral mode stiffness
JP2010133959A (ja) 共振測定システムの作動方法および共振測定システム
CN110073177A (zh) 根据科里奥利原理的质量流量计和用于确定质量流量的方法
US9666347B2 (en) Magnet keeper assembly method
WO1998052000A3 (de) Verfahren und einrichtung zur erkennung und kompensation von nullpunkteinflüssen auf coriolis-massedurchflussmesser
JP2017510806A (ja) 振動式流量計における非対称な流れを検出するための装置及び方法
CN114829883A (zh) 操作磁感应流量计的方法
WO2015143613A1 (zh) 一种科里奥利质量流量计的测量状态监测方法及装置
JP6117213B2 (ja) 導電性流体の質量流量又は体積流量の非接触式測定方法及び装置
CN204514403U (zh) 一种差压涡街质量流量计
CN204649252U (zh) 一种锥形涡街质量流量计
CN211373738U (zh) 质量流量计
CN110709678B (zh) 最小化振动仪表中的多音调驱动信号中的波峰
WO2013097190A1 (zh) 一种基于弯曲振动结构的流动流体粘度的测量方法
CN101419085A (zh) 污水流量恒流检测系统
CN204514404U (zh) 一种改进型锥形涡街质量流量计
JP7317199B2 (ja) 合計検定時間の決定方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14887176

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2015151900

Country of ref document: RU

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

32PN Ep: public notification in the ep bulletin as address of the adressee cannot be established

Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC - FORM 1205A (24.01.2017)

122 Ep: pct application non-entry in european phase

Ref document number: 14887176

Country of ref document: EP

Kind code of ref document: A1