CN1692586A - 在正交频分复用通信系统中生成前置序列的装置和方法 - Google Patents
在正交频分复用通信系统中生成前置序列的装置和方法 Download PDFInfo
- Publication number
- CN1692586A CN1692586A CNA2003801002235A CN200380100223A CN1692586A CN 1692586 A CN1692586 A CN 1692586A CN A2003801002235 A CNA2003801002235 A CN A2003801002235A CN 200380100223 A CN200380100223 A CN 200380100223A CN 1692586 A CN1692586 A CN 1692586A
- Authority
- CN
- China
- Prior art keywords
- preamble sequence
- data
- sqrt
- communication system
- antenna
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Images
Classifications
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04J—MULTIPLEX COMMUNICATION
- H04J11/00—Orthogonal multiplex systems, e.g. using WALSH codes
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04L—TRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
- H04L27/00—Modulated-carrier systems
- H04L27/26—Systems using multi-frequency codes
- H04L27/2601—Multicarrier modulation systems
- H04L27/2602—Signal structure
- H04L27/261—Details of reference signals
- H04L27/2613—Structure of the reference signals
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04L—TRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
- H04L1/00—Arrangements for detecting or preventing errors in the information received
- H04L1/02—Arrangements for detecting or preventing errors in the information received by diversity reception
- H04L1/06—Arrangements for detecting or preventing errors in the information received by diversity reception using space diversity
- H04L1/0618—Space-time coding
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04L—TRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
- H04L27/00—Modulated-carrier systems
- H04L27/26—Systems using multi-frequency codes
- H04L27/2601—Multicarrier modulation systems
- H04L27/2614—Peak power aspects
- H04L27/262—Reduction thereof by selection of pilot symbols
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04L—TRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
- H04L27/00—Modulated-carrier systems
- H04L27/26—Systems using multi-frequency codes
- H04L27/2601—Multicarrier modulation systems
- H04L27/2602—Signal structure
- H04L27/261—Details of reference signals
- H04L27/2613—Structure of the reference signals
- H04L27/26132—Structure of the reference signals using repetition
Landscapes
- Engineering & Computer Science (AREA)
- Computer Networks & Wireless Communication (AREA)
- Signal Processing (AREA)
- Synchronisation In Digital Transmission Systems (AREA)
- Radio Transmission System (AREA)
Abstract
一种通过至少两个天线在正交频分复用通信系统(OFDM)中生成前置序列以减少峰值-平均值功率比(PARP)的方法。所述方法包括:生成第一前置序列,其中前置序列的奇数数据变为空数据,前置序列的偶数数据变为数据,将该第一前置序列适配为将经由所述至少两个天线中的一个来发送;和生成第二前置序列,其中前置序列的偶数数据变为空数据,前置序列的奇数数据变为数据,将该第二前置序列适配为将经由所述至少两个天线中的另一个来发送。
Description
技术领域
本发明一般涉及正交频分复用(OFDM)通信系统,特别涉及用于在OFDM通信系统中生成前置序列(preamble sequence)的装置和方法。
背景技术
通常,支持无线通信服务的无线通信网络由多个结点B和多个用户设备(UE)组成。结点B和UE对于无线通信服务按照帧来发送数据。因此,结点B和UE对于传输帧的发送和接收必须获得相互的同步,并且对于同步的获取,结点B必须发送同步信号,从而UE可以检测通过结点B发送的帧的开始。UE随后通过接收由结点B发送的同步信号来检测结点B的帧定时,并根据检测的帧定时解调所接收的帧。一般地,将由结点B和UE预先指定的特定前置序列用于同步信号。
最好地,将具有较低的峰值-平均值功率比(PARP)的前置序列用于在OFDM通信系统中使用的前置序列。这是因为在OFDM通信系统中,高PAPR导致射频(RF)放大器的功率消耗的增加。
通过将长前置序列中的前导前置序列S与短前置序列P相连接来创建从结点B发送至UE的前置序列,所述前导前置序列S是执行粗同步所需要的,短前置序列P是执行细频率同步所需要的。对于从UE发送至结点B的前置,仅使用短前置序列以获得细频率同步。
OFDM通信系统通过时分多路复用一个帧,为若干用户或UE发送数据。在OFDM通信系统中,对于以帧的起始点开始的预定周期,发送指示帧的开始的帧前置。由于在一帧内数据可能会不规则地被发送至各个用户,指示数据的开始的突发前置位于每个数据块的前部(front part)。因此,UE必须接收数据帧,以便识别数据的传输起始点。UE应当与数据的起始点同步,以便接收数据,为此,UE必须获得通常由所有的系统使用的前置序列,以在接收信号之前同步。
OFDM通信系统在信源编码方案、信道编码方案、和调制方案上与非OFDM通信系统相同。虽然码分多址(CDMA)通信系统在传输之前扩展数据,OFDM通信系统在传输之前对数据进行逆快速傅里叶变换(IFFT),随后将保护间隔插入IFFT变换后的数据。因此,与CDMA通信系统相比,OFDM通信系统可以使用相对简单的硬件发送宽带信号。在OFDM通信系统中,如果在对数据进行调制之后,应用通过对多个串行比特/符号流进行并行转换所生成的并行比特/符号流作为频域IFFT输入,则输出IFFT变换后的时域信号。通过多路复用具有若干窄带副载波信号的宽带信号获得时域输出信号,对于一个OFDM符号周期经过IFFT处理来发送多个调制符号。
但是,在OFDM通信系统中,如果照原样发送IFFT变换后的OFDM符号,则在前的OFDM符号和当前的OFDM符号之间的干扰无法避免。为了消除符号间干扰,插入保护间隔。保护间隔用于对预定的周期插入空数据。但是,在为保护间隔发送空数据的方法中,如果接收机不正确地估计了OFDM符号的起始点,则在副载波之间发生干扰,使得所接收的OFDM符号中的误差概率增加。因此,已经为保护间隔提出了“循环前缀(prefix)”方案或“循环后缀(postfix)”方案。在循环后缀方案中,复制时域OFDM符号中的最后1/n比特,并将其插入到有效的OFDM符号中,在循环前缀方案中,复制时域OFDM符号中的最后1/n比特,并将其插入到有效的OFDM符号中。
接收机可以使用保护间隔的特征来获得所接收的OFDM符号的时间/频率同步,所述保护间隔是通过复制一个时域OFDM符号的一部分,即一个OFDM符号的开始部分或最终部分,随后重复地排列所复制的OFDM符号而创建的。
在任何射频(RF)系统中,由发射机发送的传输信号在通过无线电信道时产生失真,从而接收机接收失真的传输信号。接收机使用先前在发射机和接收机之间设定的前置序列获得所接收的失真的传输信号的时间/频率同步,执行信道估计,随后通过快速傅里叶变换(FFT)将信道估计的信号解调成为频域符号。在将信道估计的信号解调成频域符号之后,接收机对解调的符号执行与在发射机中应用的信道编码相对应的信道解码和信源解码,从而将解调的符号解码为信息数据。
OFDM通信系统对所有的帧定时同步、频率同步、和信道估计使用一个前置序列。除了所述的前置之外,OFDM通信系统可以使用保护间隔和导频副载波进行帧定时同步、频率同步、和信道估计。前置序列用于发送在每个帧或数据突发的开始部分的先前已知的符号,并使用有关保护间隔和导频副载波的信息更新数据传输部分的所估计的时间/频率/信道信息。
图1是图解说明用于传统OFDM通信系统的长前置序列的结构的框图。应当注意,当前OFDM通信系统在下行链路(DL)和上行链路(UP)中使用相同的前置序列。参见图1,在所述长前置序列中,长度为64的序列重复4次,长度为128的序列重复2次。根据OFDM通信系统的特性,将上述的循环前缀(CP)添加到4个重复的长度为64的序列的前部,以及2个重复的长度为128的序列的前部。在随后的描述中,由4个重复的长度为64的序列组成的序列称为“S”,由2个重复的长度为128的序列组成的序列称为“P”。
另外,如上所述,在进行IFFT之前得到的信号是频域信号,在进行IFFT之后得到的信号是时域信号。在图1中图解说明的长前置序列表示在进行IFFT之后得到的时域长前置序列。
下面举例说明了进行IFFT之前得到的频域长前置序列。
S(-100:100)={+1+j,0,0,0,+1+j,0,0,0,+1+j,0,0,0,+1-j,0,0,0,-1+j,0,0,0,+1+j,0,0,0,
+1+j,0,0,0,+1+j,0,0,0,+1-j,0,0,0,-1+j,0,0,0,+1+j,0,0,0,+1+j,0,0,0,
+1+j,0,0,0,+1-j,0,0,0,-1+j,0,0,0,+1-j,0,0,0,+1-j,0,0,0,+1-j,0,0,0,
-1-j,0,0,0,+1+j,0,0,0,-1+j,0,0,0,-1+j,0,0,0,-1+j,0,0,0,+1+j,0,0,0,
-1-j,0,0,0,
0,0,0,0,
-1-j,0,0,0,+1-j,0,0,0,+1+j,0,0,0,-1-j,0,0,0,-1+j,0,0,0,+1-j,0,0,0,
+1+j,0,0,0,-1+j,0,0,0,+1-j,0,0,0,-1-j,0,0,0,+1+j,0,0,0,-1+j,0,0,0,
-1-j,0,0,0,+1+j,0,0,0,+1-j,0,0,0,-1-j,0,0,0,+1-j,0,0,0,+1+j,0,0,0,
-1-j,0,0,0,-1+j,0,0,0,-1+j,0,0,0,-1-j,0,0,0,+1-j,0,0,0,-1+j,0,0,0,
+1+j}*sqrt(2)*sqrt(2)
P(-100:100)={-1,0,+1,0,+1,0,+1,0,+1,0,-1,0,-1,0,+1,0,-1,0,+1,0,
-1,0,-1,0,+1,0,+1,0,-1,0,+1,0,-1,0,+1,0,-1,0,+1,0,
-1,0,+1,0,+1,0,-1,0,+1,0,-1,0,-1,0,+1,0,-1,0,-1,0,
-1,0,+1,0,+1,0,-1,0,+1,0,+1,0,+1,0,-1,0,+1,0,+1,0,
-1,0,-1,0,-1,0,+1,0,+1,0,+1,0,+1,0,+1,0,+1,0,+1,0,
0,0,
-1,0,-1,0,+1,0,-1,0,-1,0,+1,0,+1,0,+1,0,-1,0,+1,0,
+1,0,+1,0,-1,0,-1,0,-1,0,-1,0,-1,0,-1,0,+1,0,-1,0,
-1,0,-1,0,-1,0,-1,0,-1,0,+1,0,+1,0,+1,0,-1,0,+1,0,
-1,0,+1,0,+1,0,-1,0,+1,0,+1,0,+1,0,-1,0,-1,0,-1,0,
-1,0,-1,0,+1,0,-1,0,-1,0,+1,0,-1,0,-1,0,+1,0,-1}
*sqrt(2)*sqrt(2)
在频域长前置序列S(-100:100)和P(-100:100)中列出的数字代表在进行IFFT时应用的副载波的位置,下文中将参考图3对其进行详细描述。S(-100:100)代表通过重复长度为64的序列4次得到的频域前置序列,P(-100:100)代表通过重复长度为128的序列2次得到的频域前置序列。
图2是图解说明用于传统OFDM通信系统的短前置序列的结构的框图。参见图2,在短前置序列中,长度为128的序列重复了两次。根据OFDM通信系统的特性,将上述循环前缀(CP)添加到2个重复的长度为128的序列的前部。另外,在图2中图解说明的短前置序列代表进行IFFT之后得到的时域短前置序列,频域短前置序列等于P(-100:100)。如图1和2所示,长前置序列的后续部分具有与短前置序列相同的结构。下文中,可以同时使用长前置序列和短前置序列的后续部分。
必须考虑后面的条件来生成上述的长前置序列。
(1)长前置序列应当具有低PAPR。
为了最大化OFDM通信系统的发射机中的功率放大器(PA)的传输效率,OFDM符号的PARP必须是低的。即,由于将IFFT变换后的信号施加到具有非线性特性的功率放大器,所以需要低PAPR。OFDM符号的PAPR在时域OFDM符号的最大功率与平均值功率的比率上必须是低的,所述时域OFDM符号对应于发射机的IFFT处理器的输出端,并且对于最大功率与平均值功率的低比率,必须提供统一的分布。换句话说,如果在发射机的IFFT处理器的输入端,即在频域中将具有低互相关性的符号相结合,则输出的PAPR变为低。
(2)长前置序列应当适合于通信初始化所需要的参数估计。
参数估计包括信道估计、频率偏移估计和时间偏移估计。
(3)长前置序列应当具有低复杂性和低开销。
(4)长前置序列应当可用于粗频率偏移估计。
下面将描述考虑上述条件生成的长前置序列的功能。
(1)将通过重复长度为64的序列4次所得到的序列用于时间偏移估计和粗频率偏移估计。
(2)将通过重复长度为128的序列2次所得到的序列用于细频率偏移估计。
结果,长前置序列在OFDM通信系统中具有下面的用处。
(1)将长前置序列用作下行链路协议数据单元(PDU)的第一前置序列。
(2)将长前置序列用于初始测距(ranging)。
(3)将长前置序列用于带宽请求测距。
此外,短前置序列在OFDM通信系统中具有下面的用处。
(1)将短前置序列用作上行链路数据前置序列。
(2)将短前置序列用于定期测距。
在OFDM通信系统中,由于通过进行初始测距和定期测距可以得到准确的同步,上行链路数据前置序列主要用于信道估计。对于信道估计,应当考虑PARP、性能和复杂性。在现有的短前置序列的情形中,PAPR显示3.5805[dB],并且使用诸如最小均方差(MMSE)算法和最小二乘方(LS)算法的各种信道估计算法。
图3是图解说明OFDM通信系统中在IFFT期间副载波和前置序列之间的映射关系的框图。在图3中假设,如果用于0FDM通信系统的所有副载波的数目是256,则该256个副载波包括-128至127副载波,并且如果实际使用的副载波的数目是200,则该200个副载波包括-100,...,-1,1,...,100副载波。在图3中,在IFFT处理器的输入端的数字代表频率分量,即副载波的唯一编号。在0副载波中插入空数据或0-数据的原因是在进行IFFT之后,0副载波代表时域中的前置序列的参考点,即代表时域中的DC(直流)分量。
除了实际使用的200个载波和0载波之外,将空数据插入-128至-101副载波这28个副载波,以及101至127副载波这27个副载波。这里,将空数据插入-128至-101副载波这28个副载波以及101至127副载波这27个副载波的原因是在频域中提供保护间隔,因为-128至-101副载波这28个副载波以及101至127副载波这27个副载波对应于频域中的高频带。结果,如果将频域前置序列S(-100:100)或P(-100:100)施加到IFFT处理器,则IFFT处理器将频域前置序列S(-100:100)或P(-100:100)映射到相应的副载波,IFFT变换映射的前置序列,并输出时域前置序列。
图4是图解说明传统的OFDM通信系统的发射机结构的方框图,所述发射机使用一个传输天线发送数据。如果在OFDM通信系统中生成将被发送的信息比特,则将该信息比特施加到符号映射器411。符号映射器411通过预设的调制方案对输入信息比特进行符号映射,随后将符号映射后的信息比特提供至串行-并行(S/P)转换器413。S/P转换器413对从符号映射器411接收到的符号进行256点(point)并行转换,并将其输出至选择器417。如上所述,256点并行转换中的“256”表示副载波的数目。前置序列生成器415在控制器(未示出)的控制下生成对应的前置序列并将所生成的前置序列提供至选择器417。对应的前置序列代表结合图1和2描述的S(-100:100)或P(-100:100)。选择器417根据对应时间的调度选择从S/P转换器413输出的信号或从前置序列生成器415输出的信号,并将所选择的信号提供至IFFT处理器419。
选择器417确定其将发送由前置序列生成器415生成的前置序列还是由S/P转换器413生成的符号。如果选择器417确定发送前置序列,则它发送由前置序列生成器415生成的前置序列。但是,如果选择器417确定发送符号,则它发送由S/P转换器413生成的符号。
IFFT处理器419对从S/P转换器413或前置序列生成器415接收的信号进行256点IFFT,并将其提供至并行-串行(P/S)转换器421。除了从IFFT处理器419输出的信号之外,将循环前缀施加到P/S转换器421。P/S转换器421对从IFFT处理器419输出的信号以及循环前缀进行串行转换,并将其输出提供至数字-模拟(D/A)转换器423。D/A转换器423对从P/S转换器421输出的信号进行模拟转换,并将模拟转换的信号提供至射频(RF)处理器425。包括滤波器的RF处理器425对从D/A转换器423输出的信号进行RF处理,从而可在空气中发送该信号,随后经由天线发送该RF信号。
在接收机中,通过从短前置序列生成的前置序列来进行信道估计。但是,短前置序列P(-100:100)是偶数副载波的短前置序列。“偶数副载波的短前置序列”是指这样一个前置序列:对于该前置序列,副载波的唯一编号是偶数,其中向该副载波的组成所述短前置序列的成份中插入数据+1或-1,而不是空数据。尽管0副载波(DC分量)是偶数副载波,但是此处由于必须在0副载波中插入空数据而将其排除在外。
如上所述,短前置序列P(-100:100)的一个主要功能是信道估计。但是,当仅使用偶数副载波的短前置序列进行信道估计时,不能估计对应于奇数副载波的信道,从而必须对偶数副载波进行信道估计。这样的估计导致性能退化。为了信道估计性能的改善,需要偶数副载波的短前置序列和奇数副载波的短前置序列。但是,现有的短前置序列P(-100:100)是偶数副载波的短前置序列,并且不存储在奇数副载波的短前置序列。
因此,需要一种具有低PAPR的奇数副载波的短前置序列。
发明内容
因此,本发明的一个目的是提供一种用于生成奇数副载波的短前置序列的装置和方法,从而在接收机天线进行正确的信道估计。
本发明的另一个目的是提供一种用于生成具有低PAPR的奇数副载波的短前置序列的装置和方法。
本发明的又一个目的是提供一种使用一个天线发送奇数副载波的短前置序列以及偶数副载波的短前置序列的装置和方法。
本发明的又一个目的是提供一种使用多个天线发送奇数副载波的短前置序列以及偶数副载波的短前置序列的装置和方法。
为了实现上述和其他的目的,提供了一种用于在具有至少一个传输天线的正交频分复用通信系统中生成前置序列的装置和方法。所述装置和方法提出了具有低峰值-平均值功率比(PARP)的奇数副载波短前置序列,从而接收机可以使用所述奇数副载波的短前置序列进行准确的信道估计。即,使用所提出的奇数副载波的短前置序列和偶数副载波的短前置序列生成一个前置序列,随后将其发送至接收机。然后接收机使用所述奇数副载波的短前置序列和偶数副载波的短前置序列进行准确的信道估计。
附图说明
结合附图,从下面的详细描述中,本发明的上述和其他目的、特征和优点将变得更加清楚,其中:
图1是图解说明用于传统OFDM通信系统的长前置序列的结构的框图;
图2是图解说明用于传统OFDM通信系统的短前置序列的结构的框图;
图3是图解说明在传统的OFDM通信系统在IFFT期间,副载波和前置序列之间的映射关系的框图;
图4是图解说明使用一个传输天线的传统OFDM通信系统的发射机结构的方框图;
图5是图解说明根据本发明实施例使用两个传输天线的OFDM通信系统的发射机结构的方框图;
图6图解说明了在根据本发明实施例的使用一个传输天线的OFDM通信系统中发送前置的前置传输规则1,以及相应的前置序列生成过程;
图7图解说明了在根据本发明实施例的使用两个传输天线的OFDM通信系统中发送前置的前置传输规则2,以及相应的前置序列生成过程;
图8图解说明了在根据本发明实施例的使用两个传输天线的OFDM通信系统中发送前置的前置传输规则3,以及相应的前置序列生成过程;
图9是图解说明在根据本发明一个实施例使用一个传输天线的OFDM通信系统中在IFFT期间,副载波和前置序列之间的映射关系的框图;和
图10是图解说明在根据本发明另一个实施例使用两个传输天线的OFDM通信系统中在IFFT期间,副载波和前置序列之间的映射关系的框图。
具体实施方式
下面将参考附图详细描述本发明的若干优选实施例。在下面的描述中,为了简明起见,已省略了并入此处的已知功能和结构的详细的描述。
图5是图解说明使用两个传输天线的OFDM通信系统的发射机结构的方框图。参见图5,如果在OFDM通信系统中生成将要发送的信息比特,则信息比特被施加到符号映射器511。符号映射器511对输入信息比特进行符号映射,随后将符号映射的信息比特提供至串行-并行(S/P)转换器513。S/P转换器513对从符号映射器511输出的符号进行256*2点并行转换。在256*2点并行转换中,“256”表示副载波的数目,“2”表示天线的数目。即,如果符号映射器511对于天线#0生成256个符号,对于天线#1生成256个符号,则S/P转换器513将从符号映射器511接收的512个符号转换成并行符号。通常,从S/P转换器513输出的符号称为“OFDM符号”。将从S/P转换器513输出的OFDM符号传送至空间-时间编码器515。
空间-时间编码器515执行下面的过程。从S/P转换器513生成的512个并行符号中的高256个OFDM符号由S0来表示,低256个OFDM符号由S1来表示。如在下面的表1中所示出的,OFDM符号S0和S1可以与OFDM符号-S1 *和S0 *相结合,并且在两个OFDM符号周期进行发送。
表1
天线#0选择器 | 天线#1选择器 | |
时间0 | S0 | S1 |
时间1 | -S1 * | S0 * |
空间-时间编码器515可以应用除了上述的符号映射方法之外的各种空间-时间编码方法。
天线#0的前置序列生成器517在控制器(未示出)的控制之下生成前置序列,并将生成的前置序列提供至选择器519。如举例说明的,在本发明的实施例中,天线#0的前置序列生成器517生成3个前置序列。所述3个前置序列包括S(-100:100)、P(-100:100)和Pg(-100:100)。下面将参考图9和10详细描述Pg(-100:100)。
即,天线#0的前置序列517根据来自控制器的控制命令生成3个前置序列中的一个。选择器519根据对应时间的调度,选择从空间-时间编码器515输出的信号或从天线#0的前置序列生成器517输出的信号,并将其输出提供至IFFT处理器521。换句话说,选择器519确定它将发送由天线#0前置序列生成器517生成的前置序列,还是由空间-时间编码器515生成的符号。如果选择器519确定发送前置序列,则它发送由天线#0前置序列生成器517生成的前置序列。相反,如果选择器519确定发送符号,则它发送由空间-时间编码器515生成的符号。
IFFT处理器521对从空间-时间编码器515或天线#0的前置序列生成器517输出的信号进行256点IFFT,并将其输出提供至并行-串行(P/S)转换器523。如上所述,256点IFFT的“256”表示256个副载波。除了从IFFT521输出的信号之外,将循环前缀施加到P/S转换器523。P/S转换器523对从IFFT521输出的信号以及循环前缀进行串行转换,并将其输出提供至数字-模拟(D/A)转换器525。D/A转换器525对从P/S转换器523输出的信号进行模拟转换,并将其输出提供至RF处理器527。包括滤波器的RF处理器527对从D/A转换器525输出的信号进行RF处理,从而可在空气中发送该信号,随后经由天线#0发送该RF信号。
天线#1的前置序列生成器529在控制器的控制下生成前置序列,并将所生成的前置序列提供至选择器531。如举例说明的,在本发明的实施例中,天线#1的前置序列生成器529生成3个前置序列。同样,所述3个前置序列包括S(-100:100)、P(-100:100)和Pg(-100:100)。
即,天线#1的前置序列生成器529根据来自控制器的控制命令生成3个前置序列中的一个。选择器531根据对应时间的调度,选择从空间-时间编码器515输出的信号或从天线#1的前置序列生成器529输出的信号,并将其输出提供至IFFT处理器533。换句话说,选择器531确定它将发送由天线#1前置序列生成器529生成的前置序列,还是由空间-时间编码器515生成的符号。如果选择器531确定发送前置序列,则它发送由天线#1前置序列生成器529生成的前置序列。相反,如果选择器531确定发送符号,则它发送由空间-时间编码器515生成的符号。
IFFT处理器533对从空间-时间编码器515或天线#1的前置序列生成器529输出的信号进行256点IFFT,并将其输出提供至P/S转换器535。除了从IFFT 533输出的信号之外,将循环前缀施加到P/S转换器535。P/S转换器535对从IFFT 533输出的信号以及循环前缀进行串行转换,并将其输出提供至D/A转换器537。D/A转换器537对从P/S转换器535输出的信号进行模拟转换,并将其输出提供至RF处理器539。包括滤波器的RF处理器539对从D/A转换器537输出的信号进行RF处理,从而可在空气中发送该信号,随后经由天线#1发送该RF信号。
至此,已经参考图5描述了使用2个传输天线发送数据或前置序列的过程。但是,也可以使用一个天线发送所述数据或前置序列。参考图4,现在将描述使用一个传输天线发送数据或前置序列的过程。
如果在OFDM通信系统中生成将要发送的信息比特,则信息比特被施加到符号映射器411。符号映射器411通过预设的调制方案对输入信息比特进行符号映射,随后将符号映射的信息比特提供至S/P转换器413。S/P转换器413对从符号映射器411接收的符号进行256点并行转换,并将其输出提供至选择器417。前置序列生成器415在控制器(未示出)的控制下生成对应的前置序列,并将所生成的前置序列提供至选择器417。
前置序列生成器415生成3个前置序列,所述3个前置序列包括S(-100:100)、P(-100:100)和Pg(-100:100)。选择器417根据对应时间的调度,选择从S/P转换器413输出的信号或从前置序列生成器415输出的信号,并将所选择的信号提供至IFFT处理器419。换句话说,选择器417确定它将发送由前置序列生成器415生成的前置序列,还是由S/P转换器413生成的符号。如果选择器417确定发送前置序列,则它发送由前置序列生成器415生成的前置序列。相反,如果选择器417确定发送符号,则它发送由S/P转换器413生成的符号。
IFFT处理器419对从S/P转换器413或前置序列生成器415接收的信号进行256点IFFT,并将其输出提供至P/S转换器421。除了从IFFT 419输出的信号之外,将循环前缀施加到P/S转换器421。P/S转换器421对从IFFT 419输出的信号以及循环前缀进行串行转换,并将其输出提供至D/A转换器423。D/A转换器423对从P/S转换器421输出的信号进行模拟转换,并将模拟转换的信号提供至RF处理器425。包括滤波器的RF处理器425对从D/A转换器423输出的信号进行RF处理,从而可在空气中发送该信号,随后经由天线发送该RF信号。
如上所述,尽管传统的前置序列生成器只生成2个前置序列S(-100:100)和P(-100:100),新的前置序列生成器可以生成3个前置序列S(-100:100)、P(-100:100)和Pg(-100:100)。Pg(-100:100)是频域中的奇数载波的短前置序列。在OFDM通信系统中,进行IFFT之前得到的信号是频域信号,进行IFFT之后得到的信号是时域信号。“奇数副载波的短前置序列”是指这样一个前置序列:对于该前置序列,副载波的唯一编号是奇数,其中向该副载波的组成所述短前置序列的成份中插入数据+1或-1,而不是空数据。
参考图9和10,将描述由前置序列生成器生成的前置序列以及在OFDM通信系统中在IFFT期间副载波和前置序列之间的映射关系。本发明提出了一种用于在OFDM通信系统生成具有最小PAPR的、奇数副载波的短前置序列的装置和方法,在所述OFDM系统中,副载波的总数是256并且实际使用的副载波的唯一编号是-100,-99,...-1,1...,99,100。将前置序列分类为长前置序列和短前置序列。在长前置序列中,长度为64的序列重复了4次,长度为128的序列重复了2次,并且根据OFDM通信系统的特性,将循环前缀添加到4个重复的长度为64的序列的前部以及2个重复的长度为128的序列的前部。此外,在短前置序列中,长度为128的序列重复了2次,并且根据OFDM通信系统的特性,将循环前缀添加到2个重复的长度为128的序列的前部。
在由前置序列生成器生成的前置序列S(-100:100)、P(-100:100)和Pg(-100:100)中,S(-100:100)和P(-100:100)与在相关技术部分描述的前置序列相同,并且给出在本发明中提出的Pg(-100:100):
Pg(-100:100)={0,-1,0,-1,0,+1,0,-1,0,+1,0,-1,0,+1,0,+1,0,-1,0,-1,
0,+1,0,+1,0,-1,0,+1,0,-1,0,+1,0,-1,0,-1,0,+1,0,+1,
0,+1,0,+1,0,-1,0,+1,0,-1,0,+1,0,-1,0,-1,0,+1,0,+1,
0,-1,0,-1,0,+1,0,-1,0,+1,0,-1,0,+1,0,+1,0,-1,0,-1,
0,-1,0,-1,0,+1,0,+1,0,+1,0,+1,0,+1,0,-1,0,+1,0,+1,
0,-1,
0,-1,0,+1,0,-1,0,+1,0,-1,0,+1,0,+1,0,-1,0,-1,0,-1,
0,-1,0,+1,0,+1,0,+1,0,+1,0,+1,0,-1,0,+1,0,+1,0,-1,
0,-1,0,+1,0,+1,0,+1,0,+1,0,+1,0,-1,0,+1,0,+1,0,-1,
0,-1,0,+1,0,+1,0,+1,0,+1,0,+1,0,-1,0,+1,0,+1,0,+1,
0,+1,0,-1,0,-1,0,-1,0,-1,0,-1,0,+1,0,-1,0,-1,0,}
*sqrt(2)*sqrt(2)
如上所指出的,图9是图解说明在根据本发明一个实施例使用一个传输天线的OFDM通信系统中在IFFT期间,副载波和前置序列之间的映射关系的框图。在图9中假设,如果用于OFDM通信系统的所有副载波的数目是256,则该256个副载波包括-128至127副载波,并且如果实际使用的副载波的数目是200,则该200个副载波包括-100,...,-1,1,...,100副载波。在图9中,在IFFT处理器的输入端的数字代表频率分量,即副载波的唯一编号。在0副载波中插入空数据或0-数据的原因是在进行IFFT之后,0副载波代表时域中的前置序列的参考点,即代表时域中的DC分量。
除了实际使用的200个载波和0载波之外,将空数据插入-128至-101副载波这28个副载波,以及101至127副载波这27个副载波。同样,将空数据插入-128至-101副载波这28个副载波以及101至127副载波这27个副载波的原因是在频域中提供保护间隔,因为-128至-101副载波这28个副载波以及101至127副载波这27个副载波对应于频域中的高频带。结果,如果将频域前置序列S(-100:100)、P(-100:100)或Pg(-100:100)施加到IFFT处理器,则IFFT处理器将频域前置序列S(-100:100)、P(-100:100)或Pg(-100:100)映射到相应的副载波,IFFT变换映射的前置序列,并输出时域前置序列。
下文中将描述在其中使用S(-100:100)、P(-100:100)和Pg(-100:100)的情况。
(1)S(-100:100)
对于长前置序列周期中的前导前置序列周期,将S(-100:100)插入到两个天线(天线#0和天线#1)的IFFT处理器的输入端,或插入到一个天线的IFFT处理器的输入端。
(2)P(-100:100)
P(-100:100)是偶数副载波的短前置序列,并将其插入到IFFT处理器的输入端。“偶数副载波的短前置序列”是指这样一个前置序列:对于该前置序列,副载波的唯一编号是偶数,其中向该副载波的组成所述短前置序列的成份中插入数据+1或-1,而不是空数据。
(3)Pg(-100:100)
Pg(-100:100)是奇数副载波的短前置序列,并将其插入到IFFT处理器的输入端。“奇数副载波的短前置序列”是指这样一个前置序列:对于该前置序列,副载波的唯一编号是奇数,其中向该副载波的组成所述短前置序列的成份中插入数据+1或-1,而不是空数据。即,这是一个在本发明中提出的奇数副载波的短前置序列。
图10是图解说明在根据本发明另一个实施例使用两个传输天线的OFDM通信系统中在IFFT期间,副载波和前置序列之间的映射关系的框图。在图10中假设,如果用于OFDM通信系统的所有副载波的数目是256,则该256个副载波包括-128至127副载波,并且如果实际使用的副载波的数目是200,则该200个副载波包括-100,...,-1,1,...,100副载波。在图10中,在IFFI处理器的输入端的数字代表频率分量,即副载波的唯一编号。同样,在0副载波中插入空数据或0-数据的原因是在进行IFFT之后,0副载波代表时域中的前置序列的参考点,即代表时域中的DC分量。
除了实际使用的200个载波和0载波之外,将空数据插入-128至-101副载波这28个副载波,以及101至127副载波这27个副载波。将空数据插入-128至-101副载波这28个副载波以及101至127副载波这27个副载波的原因是在频域中提供保护间隔,因为-128至-101副载波这28个副载波以及101至127副载波这27个副载波对应于频域中的高频带。如果将频域前置序列S(-100:100)、P(-100:100)或Pg(-100:100)施加到IFFT处理器,则IFFT处理器将频域前置序列S(-100:100)、P(-100:100)或Pg(-100:100)映射到相应的副载波,IFFT变换映射的前置序列,并输出时域前置序列。现在将描述在其中使用S(-100:100)、P(-100:100)和Pg(-100:100)的情况。
(1)S(-100:100)
对于长前置序列周期(period)中的前导前置序列周期,将S(-100:100)插入到两个天线(天线#0和天线#1)的IFFT处理器的输入端,或插入到一个天线的IFFT处理器的输入端。
(2)P(-100:100)
P(-100:100)是偶数副载波的短前置序列,并且对于天线#0或天线#1,将其插入到IFFT处理器的输入端。“偶数副载波的短前置序列”是指这样一个前置序列:对于该前置序列,副载波的唯一编号是偶数,其中向该副载波的组成所述短前置序列的成份中插入数据+1或-1,而不是空数据。
(3)Pg(-100:100)
Pg(-100:100)是奇数副载波的短前置序列,并且对于天线#1或天线#0,将其插入到IFFT处理器的输入端。“奇数副载波的短前置序列”是指这样一个前置序列:对于该前置序列,副载波的唯一编号是奇数,其中向该副载波的组成所述短前置序列的成份中插入数据+1或-1,而不是空数据。即,这是一个在本发明中提出的奇数副载波的短前置序列。
因此,与传统的技术不同,本发明提出了一种用于在使用一个或两个传输天线的OFDM通信系统生成具有低PAPR的、奇数副载波的短前置序列的装置和方法,从而改善所述OFDM通信系统的性能。
在使用2个传输天线的OFDM通信系统中,本发明中提出的奇数副载波的短前置序列具有2.7448dB的PAPR。
图6图解说明了在根据本发明实施例的使用一个传输天线的OFDM通信系统中发送前置的前置传输规则1。参照图6,将详细描述根据本发明实施例的前置传输规则1。
在步骤611,发射机确定传输信号周期是否是前置序列周期。通过如上所述的选择器确定和选择传输信号。如果传输信号周期不是前置序列周期,而是数据传输周期,则发射机继续至步骤613。在步骤613,发射机进行将数据映射至两个IFFT处理器的输入端的控制操作,并结束该过程。但是,如果在步骤611确定传输信号周期是前置序列周期,则发射机继续至步骤615。在步骤615,发射机确定前置序列周期是否是长前置序列周期中的前导前置序列周期。如果所述前置序列周期是长前置序列周期中的前导前置序列周期,则发射机继续至步骤617,在步骤617中,发射机进行将长前置序列周期中的前导前置序列S(-100:100)映射到IFFT处理器的输入端上的相应副载波的控制操作。如上所述,前置序列S(-100:100)是由前置序列生成器根据来自控制器的控制命令生成的。
但是,如果在步骤615中确定所述前置序列周期不是长前置序列周期中的前导前置序列周期,而是短前置序列周期(长前置序列周期中的后续部分周期),则发射机继续至步骤619。
在步骤619,发射机将偶数副载波的短前置序列P(-100:100)映射到IFFT处理器的输入端。偶数副载波的短前置序列与上述的相同。在步骤621,发射机在经过一个OFDM符号周期之后将奇数副载波的短前置序列Pg(-100:100)映射到IFFT处理器的输入端,随后结束该过程。奇数副载波的短前置序列也与上述的相同。
总之,在前置序列规则1中,发射机发送奇数副载波的短前置序列和偶数副载波的短前置序列,从而接收机可以容易地进行信道估计。即,传统地,只使用偶数副载波的短前置序列来估计奇数副载波的短前置序列。但是,使用传统的方法,接收机无法进行准确的信道估计。因此,使用根据本发明的前置传输规则1,发射机可以容易地进行信道估计。
图7图解说明了在根据本发明实施例的使用两个传输天线的OFDM通信系统中发送前置的前置传输规则2。在步骤711,发射机确定传输信号周期是否是前置序列周期。通过如上所述的选择器确定和选择传输信号。如果传输信号周期不是前置序列周期,而是数据传输周期,则发射机继续至步骤713。在步骤713,发射机进行将数据映射至两个IFFT处理器的输入端的控制操作,并结束该过程。
但是,如果在步骤711确定传输信号周期是前置序列周期,则发射机继续至步骤715。在步骤715,发射机确定前置序列周期是否是长前置序列周期中的前导前置序列周期。如果所述前置序列周期是长前置序列周期中的前导前置序列周期,则发射机继续至步骤717,在步骤717中,发射机进行将长前置序列周期中的前导前置序列S(-100:100)映射到IFFT处理器的输入端上的相应副载波的控制操作。如上所述,前置序列S(-100:100)是由前置序列生成器根据来自控制器的控制命令生成的。
如果在步骤715中确定所述前置序列周期不是长前置序列周期中的前导前置序列周期,而是短前置序列周期(长前置序列周期中的后续部分周期),则发射机继续至步骤719。在步骤719,对于天线#0,发射机将偶数副载波的短前置序列P(-100:100)映射到IFFT处理器的输入端,对于天线#1,发射机将奇数副载波的短前置序列Pg(-100:100)映射到IFFT处理器的输入端,随后结束该过程。“偶数副载波的短前置序列”是指这样一个前置序列:对于该前置序列,副载波的唯一编号是偶数,其中向该副载波的组成所述短前置序列的成份中插入数据+1或-1,而不是空数据。尽管0副载波(DC分量)是偶数副载波,但是此处由于必须在0副载波中插入空数据而将其排除在外。
另外,“奇数副载波的短前置序列”是指这样一个前置序列:对于该前置序列,副载波的唯一编号是奇数,其中向该副载波的组成所述短前置序列的成份中插入数据+1或-1,而不是空数据。在图7中,经由天线#0发送偶数副载波的短前置序列,经由天线#1发送奇数副载波的短前置序列。随后接收机通过偶数副载波的短前置序列和奇数副载波的短前置序列进行准确的信道估计。
图8图解说明了在根据本发明实施例的使用两个传输天线的OFDM通信系统中发送前置的前置传输规则3。在步骤811,发射机确定传输信号周期是否是前置序列周期。通过如上所述的选择器确定和选择传输信号。如果传输信号周期不是前置序列周期,而是数据传输周期,则发射机继续至步骤813。在步骤813,发射机进行将数据映射至两个IFFT处理器的输入端的控制操作,并结束该过程。
如果在步骤811确定传输信号周期是前置序列周期,则发射机继续至步骤815。在步骤815,发射机确定前置序列周期是否是长前置序列周期中的前导前置序列周期。如果所述前置序列周期是长前置序列周期中的前导前置序列周期,则发射机继续至步骤817。
在步骤817中,发射机进行将长前置序列周期中的前导前置序列S(-100:100)映射到IFFT处理器的输入端上的相应副载波的控制操作。如上所述,前置序列S(-100:100)是由前置序列生成器根据来自控制器的控制命令生成的。
如果在步骤815中确定所述前置序列周期不是长前置序列周期中的前导前置序列周期,而是短前置序列周期(长前置序列周期中的后续部分周期),则发射机继续至步骤819。在步骤819,对于天线#0,发射机将偶数副载波的短前置序列P(-100:100)映射到IFFT处理器的输入端,对于天线#1,发射机将奇数副载波的短前置序列Pg(-100:100)映射到IFFT处理器的输入端,然后继续至步骤821。
在步骤821,发射机在经过一个OFDM符号周期之后,对于天线#0将奇数副载波的短前置序列Pg(-100:100)映射到IFFT处理器的输入端,对于天线#1将偶数副载波的短前置序列Pg(-100:100)映射到IFFT处理器的输入端,随后结束该过程。
在图8中,经由天线#0和天线#1交替地发送偶数副载波的短前置序列和奇数副载波的短前置序列。然后,接收机通过接收偶数副载波的短前置序列和奇数副载波的短前置序列进行准确的信道估计。
如从上面的描述所能理解的,本发明提出了一种OFDM通信系统中的具有低PAPR的副载波的短前置序列,从而改善了前置序列的特性。另外,本发明利用一个传输天线或两个传输天线发送奇数副载波的短前置序列和偶数副载波的短前置序列,从而接收机可以进行准确的信道估计。
尽管已参照本发明的特定实施例示出和描述了本发明,但本领域的技术人员应当明白,可以在不违背如所附权利要求限定的本发明的范围和精神的情况下,在形式和细节上作出各种改变。
Claims (18)
1.一种通过至少两个天线在正交频分复用通信系统中生成前置序列以减少峰值-平均值功率比(PARP)的方法,所述正交频分复用通信系统包括逆快速傅里叶变换(IFFT)处理器,用于对频域中的多个副载波的输入前置序列进行IFFT变换,并生成对应于所述多个副载波的时域中的前置序列,所述方法包括步骤:
生成第一前置序列,其中前置序列的奇数数据变为空数据,前置序列的偶数数据变为数据,将该第一前置序列适配为将经由所述至少两个天线中的一个来发送;和
生成第二前置序列,其中前置序列的偶数数据变为空数据,前置序列的奇数数据变为数据,将该第二前置序列适配为将经由所述至少两个天线中的另一个来发送。
2.如权利要求1所述的方法,其中将所述第二前置序列定义为Pg(-100:100),其中:
Pg(-100:100)={0,-1,0,-1,0,+1,0,-1,0,+1,0,-1,0,+1,0,+1,0,-1,0,-1,
0,+1,0,+1,0,-1,0,+1,0,-1,0,+1,0,-1,0,-1,0,+1,0,+1,
0,+1,0,+1,0,-1,0,+1,0,-1,0,+1,0,-1,0,-1,0,+1,0,+1,
0,-1,0,-1,0,+1,0,-1,0,+1,0,-1,0,+1,0,+1,0,-1,0,-1,
0,-1,0,-1,0,+1,0,+1,0,+1,0,+1,0,+1,0,-1,0,+1,0,+1,
0,-1,
0,-1,0,+1,0,-1,0,+1,0,-1,0,+1,0,+1,0,-1,0,-1,0,-1,
0,-1,0,+1,0,+1,0,+1,0,+1,0,+1,0,-1,0,+1,0,+1,0,-1,
0,-1,0,+1,0,+1,0,+1,0,+1,0,+1,0,-1,0,+1,0,+1,0,-1,
0,-1,0,+1,0,+1,0,+1,0,+1,0,+1,0,-1,0,+1,0,+1,0,+1,
0,+1,0,-1,0,-1,0,-1,0,-1,0,-1,0,+1,0,-1,0,-1,0,}
*sqrt(2)*sqrt(2)。
3.如权利要求1所述的方法,其中将所述第一前置序列定义为P(-100:100),其中:
P(-100:100)={-1,0,+1,0,+1,0,+1,0,+1,0,-1,0,-1,0,+1,0,-1,0,+1,0,
-1,0,-1,0,+1,0,+1,0,-1,0,+1,0,-1,0,+1,0,-1,0,+1,0,
-1,0,+1,0,+1,0,-1,0,+1,0,-1,0,-1,0,+1,0,-1,0,-1,0,
-1,0,+1,0,+1,0,-1,0,+1,0,+1,0,+1,0,-1,0,+1,0,+1,0,
-1,0,-1,0,-1,0,+1,0,+1,0,+1,0,+1,0,+1,0,+1,0,+1,0,
0,0,
-1,0,-1,0,+1,0,-1,0,-1,0,+1,0,+1,0,+1,0,-1,0,+1,0,
+1,0,+1,0,-1,0,-1,0,-1,0,-1,0,-1,0,-1,0,+1,0,-1,0,
-1,0,-1,0,-1,0,-1,0,-1,0,+1,0,+1,0,+1,0,-1,0,+1,0,
-1,0,+1,0,+1,0,-1,0,+1,0,+1,0,+1,0,-1,0,-1,0,-1,0,
-1,0,-1,0,+1,0,-1,0,-1,0,+1,0,-1,0,-1,0,+1,0,-1}
*sqrt(2)*sqrt(2)。
4.一种在正交频分复用通信系统(OFDM)中生成前置序列以减少峰值平均值功率比(PARP)的方法,所述正交频分复用通信系统包括逆快速傅里叶变换(IFFT)处理器,用于对频域中的多个副载波的输入前置序列进行IFFT变换,并生成对应于所述多个副载波的时域中的前置序列,所述方法包括步骤:
对于一个OFDM符号周期生成第一前置序列,其中前置序列的奇数数据变为空数据,前置序列的偶数数据变为数据;和
在经过了所述一个OFDM符号周期之后,对于下一个OFDM符号周期生成第二前置序列,其中前置序列的偶数数据变为空数据,前置序列的奇数数据变为数据。
5.如权利要求4所述的方法,其中将所述第二前置序列定义为Pg(100:100),其中:
Pg(-100:100)={0,-1,0,-1,0,+1,0,-1,0,+1,0,-1,0,+1,0,+1,0,-1,0,-1,
0,+1,0,+1,0,-1,0,+1,0,-1,0,+1,0,-1,0,-1,0,+1,0,+1,
0,+1,0,+1,0,-1,0,+1,0,-1,0,+1,0,-1,0,-1,0,+1,0,+1,
0,-1,0,-1,0,+1,0,-1,0,+1,0,-1,0,+1,0,+1,0,-1,0,-1,
0,-1,0,-1,0,+1,0,+1,0,+1,0,+1,0,+1,0,-1,0,+1,0,+1,
0,-1,
0,-1,0,+1,0,-1,0,+1,0,-1,0,+1,0,+1,0,-1,0,-1,0,-1,
0,-1,0,+1,0,+1,0,+1,0,+1,0,+1,0,-1,0,+1,0,+1,0,-1,
0,-1,0,+1,0,+1,0,+1,0,+1,0,+1,0,-1,0,+1,0,+1,0,-1,
0,-1,0,+1,0,+1,0,+1,0,+1,0,+1,0,-1,0,+1,0,+1,0,+1,
0,+1,0,-1,0,-1,0,-1,0,-1,0,-1,0,+1,0,-1,0,-1,0,}
*sqrt(2)*sqrt(2)。
6.如权利要求4所述的方法,其中将所述第一前置序列定义为P(-100:100),其中:
P(-100:100)={-1,0,+1,0,+1,0,+1,0,+1,0,-1,0,-1,0,+1,0,-1,0,+1,0,
-1,0,-1,0,+1,0,+1,0,-1,0,+1,0,-1,0,+1,0,-1,0,+1,0,
-1,0,+1,0,+1,0,-1,0,+1,0,-1,0,-1,0,+1,0,-1,0,-1,0,
-1,0,+1,0,+1,0,-1,0,+1,0,+1,0,+1,0,-1,0,+1,0,+1,0,
-1,0,-1,0,-1,0,+1,0,+1,0,+1,0,+1,0,+1,0,+1,0,+1,0,
0,0,
-1,0,-1,0,+1,0,-1,0,-1,0,+1,0,+1,0,+1,0,-1,0,+1,0,
+1,0,+1,0,-1,0,-1,0,-1,0,-1,0,-1,0,-1,0,+1,0,-1,0,
-1,0,-1,0,-1,0,-1,0,-1,0,+1,0,+1,0,+1,0,-1,0,+1,0,
-1,0,+1,0,+1,0,-1,0,+1,0,+1,0,+1,0,-1,0,-1,0,-1,0,
-1,0,-1,0,+1,0,-1,0,-1,0,+1,0,-1,0,-1,0,+1,0,-1}
*sqrt(2)*sqrt(2)。
7.一种通过两个天线在正交频分复用通信系统(OFDM)中生成前置序列以减少峰值-平均值功率比(PARP)的方法,所述正交频分复用通信系统包括逆快速傅里叶变换(IFFT)处理器,用于对频域中的多个副载波的输入前置序列进行IFFT变换,并生成对应于所述多个副载波的时域中的前置序列,所述方法包括步骤:
生成第一前置序列,其中前置序列的奇数数据变为空数据,前置序列的偶数数据变为数据,将该第一前置序列适配为对于一个OFDM符号周期经由所述两个天线中的第一天线来发送,和生成第二前置序列,其中前置序列的偶数数据变为空数据,前置序列的奇数数据变为数据,将该第二前置序列适配为对于所述的一个OFDM符号周期经由所述两个天线中的第二天线来发送;
生成第一前置序列,其中前置序列的奇数数据变为空数据,前置序列的偶数数据变为数据,将该第一前置序列适配为对于经过所述一个OFDM符号周期的下一个OFDM符号周期经由所述两个天线中的第二天线来发送,和生成第二前置序列,其中前置序列的偶数数据变为空数据,前置序列的奇数数据变为数据,将该第二前置序列适配为对于所述下一个OFDM符号周期经由所述两个天线中的第一天线来发送。
8.如权利要求7所述的方法,其中将所述第二前置序列定义为Pg(-100:100),其中:
Pg(-100:100)={0,-1,0,-1,0,+1,0,-1,0,+1,0,-1,0,+1,0,+1,0,-1,0,-1,
0,+1,0,+1,0,-1,0,+1,0,-1,0,+1,0,-1,0,-1,0,+1,0,+1,
0,+1,0,+1,0,-1,0,+1,0,-1,0,+1,0,-1,0,-1,0,+1,0,+1,
0,-1,0,-1,0,+1,0,-1,0,+1,0,-1,0,+1,0,+1,0,-1,0,-1,
0,-1,0,-1,0,+1,0,+1,0,+1,0,+1,0,+1,0,-1,0,+1,0,+1,
0,-1,
0,-1,0,+1,0,-1,0,+1,0,-1,0,+1,0,+1,0,-1,0,-1,0,-1,
0,-1,0,+1,0,+1,0,+1,0,+1,0,+1,0,-1,0,+1,0,+1,0,-1,
0,-1,0,+1,0,+1,0,+1,0,+1,0,+1,0,-1,0,+1,0,+1,0,-1,
0,-1,0,+1,0,+1,0,+1,0,+1,0,+1,0,-1,0,+1,0,+1,0,+1,
0,+1,0,-1,0,-1,0,-1,0,-1,0,-1,0,+1,0,-1,0,-1,0,}
*sqrt(2)*sqrt(2)。
9.如权利要求7所述的方法,其中将所述第一前置序列定义为Pg(-100:100),其中:
P(-100:100)={-1,0,+1,0,+1,0,+1,0,+1,0,-1,0,-1,0,+1,0,-1,0,+1,0,
-1,0,-1,0,+1,0,+1,0,-1,0,+1,0,-1,0,+1,0,-1,0,+1,0,
-1,0,+1,0,+1,0,-1,0,+1,0,-1,0,-1,0,+1,0,-1,0,-1,0,
-1,0,+1,0,+1,0,-1,0,+1,0,+1,0,+1,0,-1,0,+1,0,+1,0,
-1,0,-1,0,-1,0,+1,0,+1,0,+1,0,+1,0,+1,0,+1,0,+1,0,
0,0,
-1,0,-1,0,+1,0,-1,0,-1,0,+1,0,+1,0,+1,0,-1,0,+1,0,
+1,0,+1,0,-1,0,-1,0,-1,0,-1,0,-1,0,-1,0,+1,0,-1,0,
-1,0,-1,0,-1,0,-1,0,-1,0,+1,0,+1,0,+1,0,-1,0,+1,0,
-1,0,+1,0,+1,0,-1,0,+1,0,+1,0,+1,0,-1,0,-1,0,-1,0,
-1,0,-1,0,+1,0,-1,0,-1,0,+1,0,-1,0,-1,0,+1,0,-1}
*sqrt(2)*sqrt(2)。
10.一种通过至少两个天线在正交频分复用(OFDM)通信系统中生成前置序列以减少峰值-平均值功率比(PARP)的装置,所述正交频分复用通信系统包括逆快速傅里叶变换(IFFT)处理器,用于对频域中的多个副载波的输入前置序列进行IFFT变换,并生成对应于所述多个副载波的时域中的前置序列,所述装置包括:
第一天线前置序列生成器,用于生成第一前置序列,其中前置序列的奇数数据变为空数据,前置序列的偶数数据变为数据,将该第一前置序列适配为将经由所述至少两个天线中的一个来发送;和
第二天线前置序列生成器,用于生成第二前置序列,其中前置序列的偶数数据变为空数据,前置序列的奇数数据变为数据,将该第二前置序列适配为将经由所述至少两个天线中的另一个来发送。
11.如权利要求10所述的装置,其中将所述第二前置序列定义为Pg(-100:100),其中:
Pg(-100:100)={0,-1,0,-1,0,+1,0,-1,0,+1,0,-1,0,+1,0,+1,0,-1,0,-1,
0,+1,0,+1,0,-1,0,+1,0,-1,0,+1,0,-1,0,-1,0,+1,0,+1,
0,+1,0,+1,0,-1,0,+1,0,-1,0,+1,0,-1,0,-1,0,+1,0,+1,
0,-1,0,-1,0,+1,0,-1,0,+1,0,-1,0,+1,0,+1,0,-1,0,-1,
0,-1,0,-1,0,+1,0,+1,0,+1,0,+1,0,+1,0,-1,0,+1,0,+1,
0,-1,
0,-1,0,+1,0,-1,0,+1,0,-1,0,+1,0,+1,0,-1,0,-1,0,-1,
0,-1,0,+1,0,+1,0,+1,0,+1,0,+1,0,-1,0,+1,0,+1,0,-1,
0,-1,0,+1,0,+1,0,+1,0,+1,0,+1,0,-1,0,+1,0,+1,0,-1,
0,-1,0,+1,0,+1,0,+1,0,+1,0,+1,0,-1,0,+1,0,+1,0,+1,
0,+1,0,-1,0,-1,0,-1,0,-1,0,-1,0,+1,0,-1,0,-1,0,}
*sqrt(2)*sqrt(2)。
12.如权利要求10所述的装置,其中将所述第一前置序列定义为P(-100:100),其中:
P(-100:100)={-1,0,+1,0,+1,0,+1,0,+1,0,-1,0,-1,0,+1,0,-1,0,+1,0,
-1,0,-1,0,+1,0,+1,0,-1,0,+1,0,-1,0,+1,0,-1,0,+1,0,
-1,0,+1,0,+1,0,-1,0,+1,0,-1,0,-1,0,+1,0,-1,0,-1,0,
-1,0,+1,0,+1,0,-1,0,+1,0,+1,0,+1,0,-1,0,+1,0,+1,0,
-1,0,-1,0,-1,0,+1,0,+1,0,+1,0,+1,0,+1,0,+1,0,+1,0,
0,0,
-1,0,-1,0,+1,0,-1,0,-1,0,+1,0,+1,0,+1,0,-1,0,+1,0,
+1,0,+1,0,-1,0,-1,0,-1,0,-1,0,-1,0,-1,0,+1,0,-1,0,
-1,0,-1,0,-1,0,-1,0,-1,0,+1,0,+1,0,+1,0,-1,0,+1,0,
-1,0,+1,0,+1,0,-1,0,+1,0,+1,0,+1,0,-1,0,-1,0,-1,0,
-1,0,-1,0,+1,0,-1,0,-1,0,+1,0,-1,0,-1,0,+1,0,-1}
*sqrt(2)*sqrt(2)。
13.一种在正交频分复用(OFDM)通信系统中生成前置序列以减少峰值-平均值功率比(PARP)的装置,所述正交频分复用通信系统包括逆快速傅里叶变换(IFFT)处理器,用于对频域中的多个副载波的输入前置序列进行IFFT变换,并生成对应于所述多个副载波的时域中的前置序列,所述装置包括:
前置序列生成器,对于一个OFDM符号周期生成第一前置序列,其中前置序列的奇数数据变为空数据,前置序列的偶数数据变为数据;和在经过了所述一个OFDM符号周期之后,对于下一个OFDM符号周期生成第二前置序列,其中前置序列的偶数数据变为空数据,前置序列的奇数数据变为数据。
14.如权利要求13所述的装置,其中将所述第二前置序列定义为Pg(-100:100),其中:
Pg(-100:100)={0,-1,0,-1,0,+1,0,-1,0,+1,0,-1,0,+1,0,+1,0,-1,0,-1,
0,+1,0,+1,0,-1,0,+1,0,-1,0,+1,0,-1,0,-1,0,+1,0,+1,
0,+1,0,+1,0,-1,0,+1,0,-1,0,+1,0,-1,0,-1,0,+1,0,+1,
0,-1,0,-1,0,+1,0,-1,0,+1,0,-1,0,+1,0,+1,0,-1,0,-1,
0,-1,0,-1,0,+1,0,+1,0,+1,0,+1,0,+1,0,-1,0,+1,0,+1,
0,-1,
0,-1,0,+1,0,-1,0,+1,0,-1,0,+1,0,+1,0,-1,0,-1,0,-1,
0,-1,0,+1,0,+1,0,+1,0,+1,0,+1,0,-1,0,+1,0,+1,0,-1,
0,-1,0,+1,0,+1,0,+1,0,+1,0,+1,0,-1,0,+1,0,+1,0,-1,
0,-1,0,+1,0,+1,0,+1,0,+1,0,+1,0,-1,0,+1,0,+1,0,+1,
0,+1,0,-1,0,-1,0,-1,0,-1,0,-1,0,+1,0,-1,0,-1,0,}
*sqrt(2)*sqrt(2)。
15.如权利要求13所述的装置,其中将所述第一前置序列定义为P(-100:100),其中:
P(-100:100)={-1,0,+1,0,+1,0,+1,0,+1,0,-1,0,-1,0,+1,0,-1,0,+1,0,
-1,0,-1,0,+1,0,+1,0,-1,0,+1,0,-1,0,+1,0,-1,0,+1,0,
-1,0,+1,0,+1,0,-1,0,+1,0,-1,0,-1,0,+1,0,-1,0,-1,0,
-1,0,+1,0,+1,0,-1,0,+1,0,+1,0,+1,0,-1,0,+1,0,+1,0,
-1,0,-1,0,-1,0,+1,0,+1,0,+1,0,+1,0,+1,0,+1,0,+1,0,
0,0,
-1,0,-1,0,+1,0,-1,0,-1,0,+1,0,+1,0,+1,0,-1,0,+1,0,
+1,0,+1,0,-1,0,-1,0,-1,0,-1,0,-1,0,-1,0,+1,0,-1,0,
-1,0,-1,0,-1,0,-1,0,-1,0,+1,0,+1,0,+1,0,-1,0,+1,0,
-1,0,+1,0,+1,0,-1,0,+1,0,+1,0,+1,0,-1,0,-1,0,-1,0,
-1,0,-1,0,+1,0,-1,0,-1,0,+1,0,-1,0,-1,0,+1,0,-1}
*sqrt(2)*sqrt(2)。
16.一种通过至少两个天线在正交频分复用通信系统(OFDM)中生成前置序列以减少峰值-平均值功率比(PARP)的装置,所述正交频分复用通信系统包括逆快速傅里叶变换(IFFT)处理器,用于对频域中的多个副载波的输入前置序列进行IFFT变换,并生成对应于所述多个副载波的时域中的前置序列,所述装置包括:
第一天线前置序列生成器,用于生成第一前置序列,其中前置序列的奇数数据变为空数据,前置序列的偶数数据变为数据,将该第一前置序列适配为对于一个OFDM符号周期经由所述两个天线中的第一天线来发送,和对于经过所述一个OFDM符号周期的下一个OFDM符号周期经由所述两个天线中的第二天线来发送;
第二天线前置序列生成器,用于生成第二前置序列,其中前置序列的偶数数据变为空数据,前置序列的奇数数据变为数据,将该第二前置序列适配为对于一个OFDM符号周期经由所述两个天线中的第二天线来发送,对于所述下一个OFDM符号周期经由所述两个天线中的第一天线来发送。
17.如权利要求16所述的装置,其中将所述第二前置序列定义为Pg(-100:100),其中:
Pg(-100:100)={0,-1,0,-1,0,+1,0,-1,0,+1,0,-1,0,+1,0,+1,0,-1,0,-1,
0,+1,0,+1,0,-1,0,+1,0,-1,0,+1,0,-1,0,-1,0,+1,0,+1,
0,+1,0,+1,0,-1,0,+1,0,-1,0,+1,0,-1,0,-1,0,+1,0,+1,
0,-1,0,-1,0,+1,0,-1,0,+1,0,-1,0,+1,0,+1,0,-1,0,-1,
0,-1,0,-1,0,+1,0,+1,0,+1,0,+1,0,+1,0,-1,0,+1,0,+1,
0,-1,
0,-1,0,+1,0,-1,0,+1,0,-1,0,+1,0,+1,0,1,0,-1,0,-1,
0,-1,0,+1,0,+1,0,+1,0,+1,0,+1,0,-1,0,+1,0,+1,0,-1,
0,-1,0,+1,0,+1,0,+1,0,+1,0,+1,0,-1,0,+1,0,+1,0,-1,
0,-1,0,+1,0,+1,0,+1,0,+1,0,+1,0,-1,0,+1,0,+1,0,+1,
0,+1,0,-1,0,-1,0,-1,0,-1,0,-1,0,+1,0,-1,0,-1,0,}
*sqrt(2)*sqrt(2)。
18.如权利要求16所述的装置,其中将所述第一前置序列定义为P(-100:100),其中:
P(-100:100)={-1,0,+1,0,+1,0,+1,0,+1,0,-1,0,-1,0,+1,0,-1,0,+1,0,
-1,0,-1,0,+1,0,+1,0,-1,0,+1,0,-1,0,+1,0,-1,0,+1,0,
-1,0,+1,0,+1,0,-1,0,+1,0,-1,0,-1,0,+1,0,-1,0,-1,0,
-1,0,+1,0,+1,0,-1,0,+1,0,+1,0,+1,0,-1,0,+1,0,+1,0,
-1,0,-1,0,-1,0,+1,0,+1,0,+1,0,+1,0,+1,0,+1,0,+1,0,
0,0,
-1,0,-1,0,+1,0,-1,0,-1,0,+1,0,+1,0,+1,0,-1,0,+1,0,
+1,0,+1,0,-1,0,-1,0,-1,0,-1,0,-1,0,-1,0,+1,0,-1,0,
-1,0,-1,0,-1,0,-1,0,-1,0,+1,0,+1,0,+1,0,-1,0,+1,0,
-1,0,+1,0,+1,0,-1,0,+1,0,+1,0,+1,0,-1,0,-1,0,-1,0,
-1,0,-1,0,+1,0,-1,0,-1,0,+1,0,-1,0,-1,0,+1,0,-1}
*sqrt(2)*sqrt(2)。
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
KR20020075705 | 2002-11-30 | ||
KR1020020075705 | 2002-11-30 |
Publications (1)
Publication Number | Publication Date |
---|---|
CN1692586A true CN1692586A (zh) | 2005-11-02 |
Family
ID=32291831
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CNA2003801002235A Pending CN1692586A (zh) | 2002-11-30 | 2003-11-27 | 在正交频分复用通信系统中生成前置序列的装置和方法 |
Country Status (10)
Country | Link |
---|---|
US (1) | US20040136464A1 (zh) |
EP (1) | EP1424789B1 (zh) |
JP (1) | JP2006503514A (zh) |
KR (1) | KR100557159B1 (zh) |
CN (1) | CN1692586A (zh) |
AU (1) | AU2003282443B2 (zh) |
CA (1) | CA2474233A1 (zh) |
DE (1) | DE60314713T2 (zh) |
RU (1) | RU2278474C2 (zh) |
WO (1) | WO2004051901A1 (zh) |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN101163123B (zh) * | 2006-10-13 | 2010-05-12 | 华为技术有限公司 | 前置帧的生成方法和生成前置帧的装置 |
CN101884202A (zh) * | 2007-11-02 | 2010-11-10 | 诺基亚公司 | 使用彼此之间具有预定频移的两个导频符号的ofdm同步 |
CN112364823A (zh) * | 2020-11-30 | 2021-02-12 | 金陵科技学院 | 5g新型多载波信号识别方法 |
Families Citing this family (41)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5614914A (en) * | 1994-09-06 | 1997-03-25 | Interdigital Technology Corporation | Wireless telephone distribution system with time and space diversity transmission for determining receiver location |
BRPI0413916A (pt) * | 2003-08-29 | 2006-10-24 | Sony Corp | dispositivo e método de transmissão e meio de armazenamento |
US7864661B2 (en) * | 2004-01-12 | 2011-01-04 | Texas Instruments Incorporated | Time-switched preamble generator, method of generating and multiple-input, multiple-output communication system employing the generator and method |
ES2885101T3 (es) | 2004-01-29 | 2021-12-13 | Neo Wireless Llc | Procedimientos y aparatos para superponer señales de espectro ensanchado de secuencia directa y de múltiples portadoras en un sistema de comunicación inalámbrica de banda ancha |
US20050169397A1 (en) * | 2004-01-29 | 2005-08-04 | Texas Instruments Incorporated | Scalable data reception gain control for a multiple-input, multiple-output (MIMO) communications system |
KR20050081244A (ko) * | 2004-02-12 | 2005-08-18 | 삼성전자주식회사 | 직교주파수분할다중화 기반의 통신 시스템을 위한 시간동기화 방법 |
US8102925B2 (en) * | 2004-02-13 | 2012-01-24 | Qualcomm Incorporated | Low peak-to-average ratio preamble, and associated method, for packet radio communication system |
ES2667012T3 (es) * | 2004-05-04 | 2018-05-09 | Sony Corporation | Asignaciones de secuencia central para transmisiones MIMO |
JP2006014321A (ja) * | 2004-06-21 | 2006-01-12 | Samsung Electronics Co Ltd | 広帯域無線接続通信システムにおける動作モード情報を送受信する方法 |
US7324602B2 (en) * | 2004-07-07 | 2008-01-29 | Texas Instruments Incorporated | Scalable time-orthogonal preamble supplement generator, method of generating and multiple-input, multiple-output communication system employing the generator and method |
US7382832B2 (en) * | 2004-07-30 | 2008-06-03 | Texas Instruments Incorporated | Scalable time-switched preamble supplement generator, method of generating and multiple-input, multiple-output communication system employing the generator and method |
EP1779552A4 (en) * | 2004-08-16 | 2009-07-08 | Zte San Diego Inc | FAST CELL SEARCH AND PRECISE SYNCHRONIZATION IN WIRELESS COMMUNICATIONS |
KR100856249B1 (ko) * | 2004-08-26 | 2008-09-03 | 삼성전자주식회사 | 무선 통신 시스템에서 초기 동작 모드 검출 방법 |
US20060104380A1 (en) * | 2004-11-17 | 2006-05-18 | Texas Instruments Incorporated | Time-switched preamble generation to enhance channel estimation signal-to-noise ratio in MIMO communication systems |
PL2363987T3 (pl) | 2004-12-23 | 2014-03-31 | Electronics & Telecommunications Res Inst | Urządzenie do nadawania i odbierania danych do zapewnienia szybkiej komunikacji danych oraz stosowny sposób |
US8045599B2 (en) | 2005-02-17 | 2011-10-25 | Sony Corporation | Selection of training sequences for multiple-in multiple-out transmissions |
KR100965672B1 (ko) | 2005-07-06 | 2010-06-24 | 삼성전자주식회사 | 이동 통신 시스템에서 기지국과 이동국간의 상태 동기화를 위한 시스템 및 방법 |
JP4866690B2 (ja) * | 2006-09-11 | 2012-02-01 | 富士通株式会社 | プリアンブル受信装置 |
US8265178B2 (en) | 2006-11-07 | 2012-09-11 | Qualcomm Incorporated | Methods and apparatus for signal and timing detection in wireless communication systems |
US8130867B2 (en) | 2007-01-05 | 2012-03-06 | Qualcomm Incorporated | Pilot design for improved channel and interference estimation |
KR101017970B1 (ko) * | 2007-02-06 | 2011-03-02 | 삼성전자주식회사 | 광대역 무선통신 시스템에서 프리앰블 의사 잡음 코드 할당장치 및 방법 |
KR101422014B1 (ko) | 2007-05-10 | 2014-07-23 | 엘지전자 주식회사 | 기본 코드 반복 방식에 의한 긴 코드 생성 방법 및 이를이용한 제어 정보 전송 방법 |
US9037750B2 (en) | 2007-07-10 | 2015-05-19 | Qualcomm Incorporated | Methods and apparatus for data exchange in peer to peer communications |
US8331480B2 (en) | 2007-07-13 | 2012-12-11 | Industrial Technology Research Institute | Method of and generator for generating preamble sequences in communication systems |
US8532201B2 (en) | 2007-12-12 | 2013-09-10 | Qualcomm Incorporated | Methods and apparatus for identifying a preamble sequence and for estimating an integer carrier frequency offset |
US8537931B2 (en) | 2008-01-04 | 2013-09-17 | Qualcomm Incorporated | Methods and apparatus for synchronization and detection in wireless communication systems |
US8208522B2 (en) * | 2008-03-07 | 2012-06-26 | Nokia Corporation | System and methods for receiving OFDM symbols having timing and frequency offsets |
KR101475523B1 (ko) * | 2008-04-28 | 2014-12-22 | 삼성전자주식회사 | 디지털 비디오 방송 시스템에서 프리앰블 신호의 피크 전력대 평균 전력비 저감 장치 및 방법 |
US8160166B2 (en) * | 2008-10-01 | 2012-04-17 | Harris Corporation | Orthogonal frequency division multiplexing (OFDM) communications device and method that incorporates low PAPR preamble with circuit for measuring frequency response of the communications channel |
US8189697B2 (en) * | 2008-10-01 | 2012-05-29 | Harris Corporation | Orthogonal frequency division multiplexing (OFDM) communications device and method that incorporates low PAPR preamble and receiver channel estimate circuit |
US8175178B2 (en) * | 2008-10-01 | 2012-05-08 | Harris Corporation | Orthogonal frequency division multiplexing (OFDM) communications device and method that incorporates low PAPR preamble and variable number of OFDM subcarriers |
US8165232B2 (en) * | 2008-10-01 | 2012-04-24 | Harris Corporation | Low peak-to-average power ratio (PAPR) preamble for orthogonal frequency division multiplexing (OFDM) communications |
US8160165B2 (en) * | 2008-10-01 | 2012-04-17 | Harris Corporation | Orthogonal frequency division multiplexing (OFDM) communications device and method that incorporates low PAPR preamble and frequency hopping |
US8446967B2 (en) * | 2009-01-08 | 2013-05-21 | Qualcomm Incorporated | Preamble sequences for wireless communication systems |
JP5321659B2 (ja) * | 2011-08-29 | 2013-10-23 | 富士通株式会社 | プリアンブル受信装置 |
KR101929516B1 (ko) * | 2011-12-26 | 2018-12-17 | 한국전자통신연구원 | 직교 주파수 분할 다중 방식의 신호 송신 방법 및 이에 적용되는 장치 |
JP6260127B2 (ja) * | 2013-07-09 | 2018-01-17 | アイコム株式会社 | プリアンブル生成装置、プリアンブル生成方法およびプログラム |
JP6194680B2 (ja) * | 2013-07-31 | 2017-09-13 | アイコム株式会社 | プリアンブル生成装置、プリアンブル生成方法およびプログラム |
KR101736167B1 (ko) * | 2014-02-12 | 2017-05-17 | 한국전자통신연구원 | 기지국 장치 및 그의 신호 송신 방법 |
US9692484B2 (en) | 2015-03-16 | 2017-06-27 | Texas Instruments Incorporated | Optimized PHY frame structure for OFDM based narrowband PLC |
EP3334058B1 (en) * | 2015-09-02 | 2020-02-05 | Huawei Technologies Co., Ltd. | Method and device for transmitting or receiving a signal |
Family Cites Families (14)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5748676A (en) * | 1995-05-01 | 1998-05-05 | Norand Corporation | Network utilizing modified preambles that support antenna diversity |
US5732113A (en) * | 1996-06-20 | 1998-03-24 | Stanford University | Timing and frequency synchronization of OFDM signals |
JP2968962B1 (ja) * | 1998-08-19 | 1999-11-02 | 日本電信電話株式会社 | Ofdm用プリアンブル生成方法及びofdm用変調回路 |
EP1705852B1 (en) * | 1999-01-08 | 2010-02-10 | Sony Deutschland Gmbh | Synchronisation symbol structure for OFDM system |
KR100335443B1 (ko) * | 1999-06-15 | 2002-05-04 | 윤종용 | 직교주파수분할다중변조 신호의 심볼 타이밍 및 주파수 동기 장치 및 방법 |
EP1061705B1 (en) * | 1999-06-16 | 2004-12-22 | Sony International (Europe) GmbH | Optimized synchronization preamble structure for OFDM system |
US6985434B2 (en) * | 2000-09-01 | 2006-01-10 | Nortel Networks Limited | Adaptive time diversity and spatial diversity for OFDM |
US7233625B2 (en) * | 2000-09-01 | 2007-06-19 | Nortel Networks Limited | Preamble design for multiple input—multiple output (MIMO), orthogonal frequency division multiplexing (OFDM) system |
US6959050B2 (en) * | 2001-06-15 | 2005-10-25 | Motorola, Inc. | Method and apparatus for synchronizing an OFDM signal |
US7269127B2 (en) * | 2001-10-04 | 2007-09-11 | Bae Systems Information And Electronic Systems Integration Inc. | Preamble structures for single-input, single-output (SISO) and multi-input, multi-output (MIMO) communication systems |
US7548506B2 (en) * | 2001-10-17 | 2009-06-16 | Nortel Networks Limited | System access and synchronization methods for MIMO OFDM communications systems and physical layer packet and preamble design |
US7274759B2 (en) * | 2001-12-21 | 2007-09-25 | Koninklijke Philips Electronics N.V. | Antenna switching based on a preamble MSE metric |
US7327800B2 (en) * | 2002-05-24 | 2008-02-05 | Vecima Networks Inc. | System and method for data detection in wireless communication systems |
US7260054B2 (en) * | 2002-05-30 | 2007-08-21 | Denso Corporation | SINR measurement method for OFDM communications systems |
-
2003
- 2003-11-27 JP JP2004556951A patent/JP2006503514A/ja active Pending
- 2003-11-27 KR KR1020030085176A patent/KR100557159B1/ko not_active IP Right Cessation
- 2003-11-27 WO PCT/KR2003/002590 patent/WO2004051901A1/en active Application Filing
- 2003-11-27 CN CNA2003801002235A patent/CN1692586A/zh active Pending
- 2003-11-27 RU RU2004123461/09A patent/RU2278474C2/ru not_active IP Right Cessation
- 2003-11-27 AU AU2003282443A patent/AU2003282443B2/en not_active Ceased
- 2003-11-27 CA CA002474233A patent/CA2474233A1/en not_active Abandoned
- 2003-11-28 EP EP03027287A patent/EP1424789B1/en not_active Expired - Lifetime
- 2003-11-28 DE DE60314713T patent/DE60314713T2/de not_active Expired - Fee Related
- 2003-12-01 US US10/724,666 patent/US20040136464A1/en not_active Abandoned
Cited By (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN101163123B (zh) * | 2006-10-13 | 2010-05-12 | 华为技术有限公司 | 前置帧的生成方法和生成前置帧的装置 |
CN101884202A (zh) * | 2007-11-02 | 2010-11-10 | 诺基亚公司 | 使用彼此之间具有预定频移的两个导频符号的ofdm同步 |
CN101884202B (zh) * | 2007-11-02 | 2013-03-27 | 诺基亚公司 | 使用彼此之间具有预定频移的两个导频符号的ofdm同步 |
CN112364823A (zh) * | 2020-11-30 | 2021-02-12 | 金陵科技学院 | 5g新型多载波信号识别方法 |
CN112364823B (zh) * | 2020-11-30 | 2023-09-19 | 金陵科技学院 | 5g多载波信号识别方法 |
Also Published As
Publication number | Publication date |
---|---|
CA2474233A1 (en) | 2004-06-17 |
RU2278474C2 (ru) | 2006-06-20 |
KR100557159B1 (ko) | 2006-03-03 |
US20040136464A1 (en) | 2004-07-15 |
KR20040047699A (ko) | 2004-06-05 |
EP1424789B1 (en) | 2007-07-04 |
AU2003282443A1 (en) | 2004-06-23 |
AU2003282443B2 (en) | 2006-07-20 |
EP1424789A1 (en) | 2004-06-02 |
WO2004051901A1 (en) | 2004-06-17 |
JP2006503514A (ja) | 2006-01-26 |
DE60314713D1 (de) | 2007-08-16 |
DE60314713T2 (de) | 2008-07-17 |
RU2004123461A (ru) | 2006-01-20 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN1692586A (zh) | 在正交频分复用通信系统中生成前置序列的装置和方法 | |
US8681764B2 (en) | Frequency division multiple access schemes for wireless communication | |
CN1309204C (zh) | 多载波cdma无线电传输系统中信道估测方法以及装置 | |
CN1278504C (zh) | 多载波发送装置、多载波接收装置及多载波无线通信方法 | |
CN1310459C (zh) | 多载波发射分集系统中的信道估计 | |
CN1838656A (zh) | 上行链路载波频率同步和天线加权向量估计的装置和方法 | |
CN1630283A (zh) | 在多入多出正交频分复用系统中为同步而发射前导的方法 | |
CN1849761A (zh) | 降低正交频分复用通信系统中峰均功率比的装置和方法 | |
US20040066740A1 (en) | Apparatus and method for generating preamble sequence in a OFDM communication system | |
CN1797988A (zh) | 无线通信装置和无线通信方法 | |
CN1747461A (zh) | 在正交频分复用通信系统中发送和接收前导序列的方法 | |
CN1674572A (zh) | 正交频分多路复用通信系统中的副载波分配的设备和方法 | |
CN1465150A (zh) | 多载波发送装置,多载波接收装置,以及多载波无线通信方法 | |
US20040114504A1 (en) | Apparatus and method for generating a preamble sequence in an OFDM communication system | |
CN1747462A (zh) | 一种正交频分复用系统信号发送及接收方法 | |
JP4943749B2 (ja) | 無線装置およびそれを利用した通信システム | |
CN1534910A (zh) | 正交频分复用无线通信系统与信道补偿方法 | |
CN101064955A (zh) | 指配信道资源的设备和方法 | |
CN1819574A (zh) | 交织ofdma上行链路系统的载波频偏估计方法 | |
CN1649333A (zh) | 选频单载波分块传输系统中的比特加载方法 | |
JP2007082187A (ja) | 無線装置および通信システム | |
CN1617530A (zh) | 一种选频方式的单载波分块传输方法 | |
CN1885844A (zh) | 基于正交复用多载波传输降低峰均比的装置及其方法 | |
CN1535509A (zh) | 多载波发射分集系统中的信道估算 | |
CN101057443A (zh) | 用于确定残余频率偏移的方法、通信系统、用于发射消息的方法、发射机、用于处理消息的方法以及接收机 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
C06 | Publication | ||
PB01 | Publication | ||
C10 | Entry into substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
C02 | Deemed withdrawal of patent application after publication (patent law 2001) | ||
WD01 | Invention patent application deemed withdrawn after publication |
Open date: 20051102 |