CN1688513A - 有机废水的处理方法及其装置 - Google Patents

有机废水的处理方法及其装置 Download PDF

Info

Publication number
CN1688513A
CN1688513A CNA038242850A CN03824285A CN1688513A CN 1688513 A CN1688513 A CN 1688513A CN A038242850 A CNA038242850 A CN A038242850A CN 03824285 A CN03824285 A CN 03824285A CN 1688513 A CN1688513 A CN 1688513A
Authority
CN
China
Prior art keywords
groove
organic waste
waste water
denitrogenation
nitrated
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CNA038242850A
Other languages
English (en)
Other versions
CN1326786C (zh
Inventor
高田一贵
赤司昭
长谷川进
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shinko Pantec Co Ltd
Original Assignee
Kobelco Eco Solutions Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kobelco Eco Solutions Co Ltd filed Critical Kobelco Eco Solutions Co Ltd
Publication of CN1688513A publication Critical patent/CN1688513A/zh
Application granted granted Critical
Publication of CN1326786C publication Critical patent/CN1326786C/zh
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F3/00Biological treatment of water, waste water, or sewage
    • C02F3/30Aerobic and anaerobic processes
    • C02F3/302Nitrification and denitrification treatment
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F3/00Biological treatment of water, waste water, or sewage
    • C02F3/30Aerobic and anaerobic processes
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F3/00Biological treatment of water, waste water, or sewage
    • C02F3/02Aerobic processes
    • C02F3/12Activated sludge processes
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F3/00Biological treatment of water, waste water, or sewage
    • C02F3/02Aerobic processes
    • C02F3/12Activated sludge processes
    • C02F3/1205Particular type of activated sludge processes
    • C02F3/1221Particular type of activated sludge processes comprising treatment of the recirculated sludge
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02WCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
    • Y02W10/00Technologies for wastewater treatment
    • Y02W10/10Biological treatment of water, waste water, or sewage

Landscapes

  • Life Sciences & Earth Sciences (AREA)
  • Biodiversity & Conservation Biology (AREA)
  • Microbiology (AREA)
  • Hydrology & Water Resources (AREA)
  • Engineering & Computer Science (AREA)
  • Environmental & Geological Engineering (AREA)
  • Water Supply & Treatment (AREA)
  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Treatment Of Sludge (AREA)
  • Purification Treatments By Anaerobic Or Anaerobic And Aerobic Bacteria Or Animals (AREA)
  • Activated Sludge Processes (AREA)

Abstract

本发明涉及通过生物消化来处理污水、屎尿、从食品工厂、化学工厂的制造过程中排出的有机废水的方法及装置,并以提供能够大幅度减少排出到处理系统外的剩余污泥量的同时,使排放到处理系统外的处理水中含有较少的含氮有机成分或含氮无机成分的有机废水的处理方法及其装置作为课题。本发明的有机废水的处理方法的特征在于,对于将有机废水进行硝化及脱氮处理后由硝化及脱氮处理产生的污泥,进行可溶化处理。另外,本发明的有机废水的处理方法的特征在于,具有:对有机废水进行硝化及脱氮的装置、以及对由硝化、脱氮产生的污泥进行可溶化处理的装置。

Description

有机废水的处理方法及其装置
技术领域
本发明涉及通过生物处理方法处理含有有机性物质的废水,例如污水、粪尿、食品工厂、化学工厂等的制造过程中排放的有机废水的方法及装置。
背景技术
以往,作为这种有机废水的处理方法,采用生物消化有机性污泥中的有机成分的方法,所述方法是通过叫做活性污泥法的好氧性处理法、厌氧性甲烷消化法等的好氧性或厌氧性微生物来进行。所述方法中,对于由通过将有机物转变为二氧化碳、沼气等气体成分的同时经生物消化而生成的微生物生物量和未处理的残留污泥构成的剩余污泥,一方面用沉淀槽等进行固液体成分离来适当处理处理液,另一方面,通常将剩余污泥通过海洋投弃和陆地填埋来处理。
然而,海洋投弃,也涉及到环境破坏,因此在地球环境保护呼声越来越高的近来,这处于被禁止的趋向。另外,在陆地填埋中,填埋处理地的确保也年年变得困难。
因此,本专利申请人,作为减少生物学处理有机废水而产生的剩余污泥量的方法,申请了日本国特开平9-10791号公报记载的发明专利。
所述发明是,将从有机废水贮存装置送出的有机废水用曝气装置好氧性生物处理后,在固液体成分离装置中将所述废水固液体成分离为处理水和污泥,并将在固液体成分离装置中分离的污泥的一部分送回曝气装置,再使用热交换机在固液体成分离装置中对分离的污泥的剩余污泥进行热交换后,使用可溶化装置在高温下可溶化,并将可溶化的处理水送回曝气装置的方法。
但是,一般在生物学的处理方法产生的污泥里含有蛋白质,因此,存在从可溶化装置返送到曝气装置的废水中的氨之类的氮化合物随着固液体成分离装置排出的处理水一同被排放到外部的问题。另外,因为生物学的处理方法产生的污泥中一般含有磷成分,所以还存在从可溶化装置向曝气装置排出的废水中的磷化合物与从固液体成分离装置排出的处理水一起排放到外部的问题。
发明内容
本发明是为解决这样的问题点而作出的,目的在于提供一种有机废水的处理方法及其装置,其能够大幅度减少排出到处理系统外的剩余污泥量的同时,并能够减少排放到处理系统外的处理水中的含氮有机成分或含氮无机成分。
本发明,是以一种生物学的方法处理有机废水的方法,为了达到这样的目的,提供在硝化及脱氮处理有机废水后,可溶化由硝化及脱氮处理产生的污泥的有机废水的处理方法。
另外,本发明提供一种以生物学的方法处理有机废水的装置,并提供一种处理有机废水的方法,其具备硝化及脱氮有机废水的装置、对由硝化、脱氮产生的污泥进行可溶化的可溶化槽。
这样,本发明中,在对有机废水进行硝化及脱氮处理后,对由硝化及脱氮处理产生的污泥进行可溶化处理,因此,能够减少硝化及脱氮处理产生的污泥,从而,具有比以往大幅度降低排放到处理系统外的处理水中的含氮有机成分或含氮无机成分的效果。
有机废水的硝化及脱氮处理是例如在反应槽中间歇式进行。
在这种情况下的硝化处理是通过例如曝气来进行,通过停止曝气来进行脱氮。优选的是,在停止曝气前30分~3小时前将可溶化处理液返送到反应槽,更优选的是,在30分~1小时前进行返送。
在这样间歇式进行通过曝气进行的硝化、脱氮处理的硝化工序,并在停止其曝气的规定时间前,将可溶化处理液送回反应槽的情况下,能够将含于可溶化处理污泥中的有机物作为脱氮处理时的质子源(BOD源)有效利用,并能够促进脱氮。从而,能够减少一般作为质子源使用的甲醇等药品量,因此,具有能够降低其药品量伴随的成本的效果。
另外,有机废水的硝化及脱氮处理的其他方式,是通过厌氧性处理工序、一次曝气工序、无氧槽中的脱氮工序、二次曝气工序来进行。在这种情况下,在二次曝气工序之后固液体成分分离出的污泥被进行可溶化处理。
进而,有机废水的硝化及脱氮处理的其他方式,是通过无氧槽中的脱氮工序、厌氧性处理工序、在交换槽中的处理工序、在无氧槽中的脱氮工序、曝气工序来进行。在这种情况下,在曝气工序之后固液体成分分离出的污泥被进行可溶化处理。另外,硝化在曝气工序中进行,并将硝化后的硝化液将被返送到脱氮工序。
进而,有机废水的硝化及脱氮处理的其他方式,是通过厌氧性处理工序、在无氧槽中的脱氮工序,曝气工序来进行的同时,通过降低溶解于可溶化处理后的处理水中的氧气来进行。在这种情况下,硝化也在曝气工序中进行。硝化后的硝化液将被返送到脱氮工序。
进而,有机废水的硝化及脱氮处理的其他方式是通过厌氧性处理工序、在无氧槽中的脱氮工序、曝气工序来进行。
作为这些硝化及脱氮处理,在包含厌氧性处理工序或曝气处理等好氧性处理工序的情况下,在硝化及脱氮处理产生的污泥等里即使含有磷成分,也可用厌氧性处理来除磷,用好氧性处理来结合磷。
另外,本发明的另外的目的在于提供能够减少排放到处理体系外的处理水中的磷成分的有机废水的处理方法及其装置。
为了达到以上所述的目的,本发明提供配备如上所述的具有去除由硝化及脱氮处理产生的污泥中的磷的装置的、有机废水的处理方法及其装置。而且,通过设置除磷装置,具有适宜地防止磷成分向系统外排出的效果。
附图说明
图1是表示作为一个实施方式的有机废水的处理装置的概略方框图。
图2是在如图1所示的处理装置中进行间歇式处理工序的方框图。
图3是在如图1所示的处理装置中进行其他例的间歇式处理工序的方框图。
图4是表示其他实施方式中的有机废水的处理装置的概略方框图。
图5是表示其他实施方式中的有机废水的处理装置的概略方框图。
图6是表示其他实施方式中的有机废水的处理装置的概略方框图。
图7是表示其他实施方式中的有机废水的处理装置的概略方框图。
图8是表示其他实施方式中的有机废水的处理装置的概略方框图。
图9是表示其他实施方式中的有机废水的处理装置的概略方框图。
图10是表示其他实施方式中的有机废水的处理装置的概略方框图。
图11是表示其他实施方式中的有机废水的处理装置的概略方框图。
图12是表示其他实施方式中的有机废水的处理装置的概略方框图。
图13是表示其他实施方式中的有机废水的处理装置的概略方框图。
图14是表示其他实施方式中的有机废水的处理装置的概略方框图。
图15是表示其他实施方式中的有机废水的处理装置的概略方框图。
图16是在如图15所示的处理装置中进行间歇式处理工序的方框图。
图17是表示其他实施方式中的有机废水的处理装置的概略方框图。
图18是表示其他实施方式中的有机废水的处理装置的概略方框图。
具体实施方式
下面,基于附图对本发明的实施方式进行说明。
(实施方式1)
本实施方式的有机废水的处理装置,如图1所示,是由反应槽1和可溶化槽2构成。其中在反应槽1中间歇式进行有机废水的处理。作为原水的有机废水,在本实施方式中使用污水。
本实施方式中,将原水的流入、反应、沉淀、排水、排泥等作为1个循环来进行处理。更具体来说,如图2所示,在原水的流入接收装置中循环通过曝气、搅拌、曝气、搅拌、曝气、曝气停止进行的沉淀、固液体成分离、可溶化处理的工序来进行。在这种情况下,曝气是好氧性处理,搅拌是厌氧性处理。在反应槽1中进行重复曝气和搅拌的工序、沉淀、固液体成分离的工序,在可溶化槽2中进行可溶化处理的工序。可调整各工序的处理时间在1天内进行数次(例如2~4次)的从接收原水的流入到排出处理水的一连串的废水处理的间歇式处理,但也可以根据废水的性质和量等调整各工序的处理时间在1天内进行1次左右,或3天进行2次左右的间歇式处理也无妨。
本实施方式中,在曝气工序中通过硝化菌来进行硝化处理,在停止曝气的搅拌工序中通过脱氮菌来进行脱氮处理。其后,停止曝气,污泥被沉淀、分离。排放上面的澄清液,而将沉淀的污泥的一部分为下次间歇式处理而保存在反应槽1中,并将剩余污泥的一部分供给到可溶化槽2进行可溶化处理。优选的是,将在可溶化槽2可溶化处理过的废水,如图2所示,返送到第1步骤的搅拌工序。还有,优选的是,在硝化工序中,为了维持硝化菌的硝化反应,取pH为7以上,尤其优选的是,取pH为7.0~8.0。另外,优选的是,设定温度为15℃~35℃,更优选的是,设定为25℃~35℃。在停止第1步骤的曝气前的30分钟至3小时前将可溶化处理液返送到反应槽1,优选的是,在30分钟至1小时前进行。循环次数取决于反应槽的BOD-SS负荷。一般,优选的是,高负荷运行(BOD-SS负荷:0.2~0.4kgBOD/kgSS·天)时,以循环3~4次的、进行曝气及搅拌的硝化脱氮处理的方式来运行。另外,优选的是,低负荷运行(BOD-SS负荷:0.03~0.05kgBOD/kgSS·天)时,以循环2~3次的、进行硝化脱氮处理的方式来运行。
可溶化槽2,如上所述,是用于可溶化从反应槽1供给的污泥,且所述可溶化是由蛋白酶等可溶化酶来进行。所述可溶化酶是由嗜热菌,诸如杆菌( Bacillus)属细菌等好氧性嗜热菌产生。这样的好氧菌是预先保存在可溶化槽2中,或预先包含在供给给可溶化槽2的污泥中,或在可溶化槽2另行添加也可以。
作为杆菌(Bacillus)属细菌,可以使用嗜热脂肪芽孢杆菌(Bacillusstearothermophilus),好高温度性杆菌(Bacillus thermoleovorans)等,优选的是,使用杆菌(Bacillus)SPT2-1[FERM P-15395]、杆菌(Bacillus)SPT3[FERM P-19226]、GeobacillusSPT4[FERM P-08452]、GeobacillusSPT5[FERM P-08453]、GeobacillusSPT6[FERM P-08454]、GeobacillusSPT7[FERM P-08455]等。
在可溶化槽2中,污泥就这样地被好氧菌分解,但是,也可以配合以往所公知的诸如臭氧分解,电解,热碱分解,酶分解(例如,单独或组合添加蛋白酶、脂肪酶、糖苷酶之类)等各种方法来实施。
在可溶化槽2中,在生物学的高温条件下进行厌氧性或好氧性有机性污泥的可溶化。在这种情况下,使用于高温下的厌氧性或好氧性微生物接种菌体(嗜热菌)是,例如,由以往的厌氧性或好氧性处理槽中培养微生物而得之物。另外,在可溶化槽2的最适宜温度,优选的是,大约在50~90℃温度范围内的条件下操作,但根据嗜热菌的种类不同而不同,而所述嗜热菌分解含于高温处理对象的污泥中的有机性固态物,例如,若是从污水的剩余污泥分离的嗜热菌时,就在温度为55~75℃的范围的高温条件下操作,优选的是,在60~70℃下,使得通过微生物(嗜热菌)进行的可溶化反应和根据热的物理化学性热分解这两个作用同时有效地充分发挥。
无论哪一个,优选的是,根据微生物的种类,将温度范围设定为50~90℃,以使通过微生物(嗜热菌)进行的可溶化反应和通过热进行的物理化学热分解这两个作用同时有效地充分发挥。优选的是,尤其在采用好氧性嗜热菌的杆菌属细菌时,将温度范围设定为55~70℃,尤其优选的是,60~65℃。另外,优选的是,采用好氧性嗜热菌的Geobacillus时,将温度范围设定为55~65℃。
另外,根据微生物的种类设定pH,将pH范围设定在6~9的范围,优选的是,7~8的范围。这是为了使可溶化处理液对硝化或脱氮处理不产生坏的影响。进而,优选的是,为了一定程度上分解(硝化)掉由污泥的分解产生的氨,可溶化处理进行好氧性处理。
本实施方式中,在停止曝气处理30分钟~3小时前,优选的是,在30分钟~1小时前,将可溶化处理污泥返送到第一个(最先的)曝气处理工序中的反应槽。由此,可将含于可溶化处理污泥的有机物作为脱氮处理时的质子源(BOD源)有效利用,从而促进脱氮。从而,能够减少一般作为质子源的甲醇等药品量,因此,能够降低其药品量伴随的成本。
优选的是,在这种情况下的可溶化处理时间为12~72小时,更优选的是,18~48小时,尤其优选的是,20~36小时。还有,可溶化处理时间是因为根据进行废水的硝化及脱氮处理的废水处理系统与污泥可溶化的组合方法来设定,所以下面也按各实施方式进行说明。
另外,嗜热菌的污泥的可溶化将生成氨,但是含于可溶化处理污泥的氨是在曝气工序中氧化到能够脱氮的亚硝酸态氮和硝酸态氮。结果,恰好完全进行脱氮处理,有害的氮成分不至于排放到系统外。
在本实施方式中的曝气工序中,保留有机物,由于将氨氧化到亚硝酸和硝酸的步骤非常重要,因此,设定将可溶化处理污泥返送到第一个曝气处理工序中的反应槽的时机及可溶化处理时间至关重要。
(实施方式2)
本实施方式,是与上述第1实施方式相同的间歇式处理方法,处理装置由反应槽1和可溶化槽2构成、以及在原水的流入接收中循环通过曝气、搅拌、曝气、搅拌、曝气、曝气停止进行的沉淀、固液体成分离、可溶化处理的工序来进行的这一点与实施方式1相同。从而,本实施方式中,也在曝气工序中进行通过硝化菌进行的硝化处理,在停止曝气的搅拌工序中进行通过脱氮菌进行的脱氮处理。
但是,本实施方式中,如图3所示,将可溶化处理后的处理水返送到第一个(最先的)搅拌工序,在这点与在实施方式1中返送到曝气工序的情况不同。
本实施方式中,将可溶化处理液返送到脱氮工序中的反应槽1,因此,将含于可溶化处理液的有机物作为脱氮处理时的质子源有效利用,从而促进脱氮。在这种情况下,优选的是,为了减少含于可溶化处理的氨,在可溶化处理中将所述氨氧化至亚硝酸态氮和硝酸态氮,具体来说,可考虑比实施方式1还长的可溶化处理时间,优选的是,24~72小时,更优选的是36~72小时。
尤其,本实施方式中,将作为质子源的有机物直接返送到脱氮处理工序,因此,能够减少一般使用的甲醇等药品量,从而,具有降低伴随药品量的成本的效果。如上所述,能够通过将废水的硝化及脱氮处理组合于污泥可溶化处理,或者,通过在组合时最适当地设定各处理工序,可以大幅度减少剩余污泥的生成量的同时,具有保持良好处理水质的效果。
还有,作为产生对污泥进行可溶化的可溶化酶的微生物,优选的是,使用嗜热菌,尤其使用在实施方式1中公开的各种杆菌属细菌(Bacillus)和Geobacillus属细菌。
另外,希望将可溶化处理时的温度设置为与实施方式1相同的50~90℃,优选的是,在使用杆菌这样的好氧性嗜热菌的情况下,设定温度范围为55~70℃,更优选的是,尤其60~65℃的范围。另外,设定可溶化处理时的pH为与实施方式1相同的pH6~9的范围,优选的是,设定为7~8的范围。
另外,硝化工序的温度,pH等也与实施方式1相同。
(实施方式3)
本实施方式中的有机废水的处理装置,如图4所示,具有:发酵液贮存槽3、厌氧槽4、一次曝气槽5、无氧槽6、二次曝气槽7、沉淀槽8、及可溶化槽2。本实施方式中,作为贮存于发酵液贮存槽3的待处理液,使用对从食品工厂排出的剩饭进行气体分解(甲烷发酵)并发酵而得的酸发酵液。除上述待处理液之外,还有污水等被供给到厌氧槽。
厌氧槽4具有对污水及从上述发酵液贮存槽1供给的酸发酵液进行厌氧性消化的同时,当送回的污泥或酸发酵液中的污泥含有磷时,排放污泥中的磷于废水中的功能。
一次曝气槽5,用于通过曝气搅拌对上述厌氧槽4中厌氧性处理过的处理液进行好氧性生物处理,氧化分解经厌氧性处理的处理水中的有机物,或硝化流入的氨。所述一次曝气槽5关键在于具备曝气装置,其曝气装置不用多问,可以使用诸如空气扩散管之类。优选的是,为了允许好氧性消化分解,在0.1~0.5vvm的通气量的室温下曝气处理,但也可以根据负荷,在超过所述通气量,且更高温的条件下进行处理。调节待处理液的pH为,优选的是,5.0~8.0,更优选的是,调节pH为7.0~8.0。
无氧槽6,是为将在上述一次曝气槽5中好氧性处理过的处理液脱氮处理而做成的。
二次曝气槽7,是为将在上述无氧槽6中脱氮处理的处理液好氧性生物处理而做成的。所述二次曝气槽7,其构造与上述一次曝气槽3相同,并同样通过曝气搅拌进行生物处理。在这种情况下的二次曝气槽7具有硝化及BOD去除的两方面的功能。还有,作为二次曝气槽7中处理液的硝化液的一部分,虽然未图示,但被返送到无氧槽6中,在这里硝化液中的硝酸或亚硝酸将被脱氮。
沉淀槽8,是为固液体成分离在上述二次曝气槽7中生物处理的处理液而做成的。分离出的液体部分作为处理液再利用或被排放,将分离沉淀的固态部分的污泥的一部分,供给到其次的可溶化槽2的同时,将剩余的一部分返送到厌氧槽4。
下面,根据上述构成的处理装置,对污水和食品工厂排出的剩饭两个方面进行处理的的处理方法的实施方式进行说明。
首先,对从食品工厂排出的剩饭进行气体分解。所述气体分解是通过诸如酸发酵和甲烷发酵来进行。由这样的气体分解得到酸发酵液,并把其酸发酵液贮存在发酵贮存槽3中。将酸发酵液从所述发酵液贮存槽3供给到厌氧槽4。另外,也向厌氧槽4供给污水。
还有,将厌氧性处理的处理水供给到下一个工序的一次曝气槽5,进行曝气搅拌的同时进行好氧性处理。通过进行所述的经曝气搅拌的好氧性处理来进行硝化处理。
其次,将在一次曝气槽5中处理的处理液供给到无氧槽6。然后,在无氧槽6中进行脱氮处理。
另外,将酸发酵液从发酵液贮存槽3供给到无氧槽6。这是为了将酸发酵液作为脱氮时的质子源(BOD源)有效利用,从而促进脱氮。
将在无氧槽6中脱氮处理的处理液供给到二次曝气槽7,进行曝气搅拌的同时,进行好氧性处理。在所述的二次曝气槽7中通过曝气处理进行硝化,去除BOD。
其次,将在二次曝气槽7中曝气处理过的处理液供给到沉淀槽8。在所述的沉淀槽8中进行固液体成分离,而所被分离的液体成分将作为处理液再利用或被排放,并将分离、沉淀的固态部分的污泥的一部分供给到可溶化槽2,污泥在这里被嗜热菌好氧性可溶化。
还有,将沉淀的污泥中剩余的一部分作为返送污泥返送到厌氧槽4。
将在可溶化槽2中可溶化处理的污泥返送到所述无氧槽6中进行再次处理。然后,将反复循环以下处理:在无氧槽6中的脱氮处理;在二次曝气槽7中的曝气处理;在沉淀槽8中的固液体成分分离;在可溶化槽中的可溶化处理。
本实施方式中,使用连续式进行污泥的可溶化,而不使用上述实施方式1那样的间歇式处理,但是,在使用这样的连续式进行污泥的可溶化的情况下,能够基于流入水量和反应槽的有效容量求得HRT。即,基于HRT(水力学中的停留时间)=V/Q(V:反应槽容量、Q:流入水量)的公式算出HRT。
无需多论,为了达到希望程度的可溶化,缩小反应槽的容积即可缩短HRT。从而,根据HRT确定可溶化时间,避免冗长的可溶化时间。
优选的是,根据嗜热菌的生成及分泌量为最大的HRT来选择HRT。若这样设定HRT,则能有效地利用生成及分泌的污泥可溶化酶进行反应。通常,优选的是,HRT设定为12~72小时,从氧化可溶化液中的氨的观点来看,更优选的是,设定为24~72小时,从保持可溶化装置的紧凑化及提高处理水质的两者来看,最优选的是,设定为36~48小时。
另外,可溶化槽2以外的HRT,在厌氧槽4中为0.5~1.5小时、在一次曝气槽5中为2~6小时、在无氧槽6中为0.5~3小时、在二次曝气槽7中为0.5~2小时,优选的是,在厌氧槽4中为0.5~1小时、在一次曝气槽5中为3~5小时、在无氧槽6中为1~2小时、在二次曝气槽7中为0.5~1.5小时。
还有,作为产生对污泥进行可溶化的可溶化酶的微生物,使用嗜热菌,优选的是,使用尤其在实施方式1中公开的各种杆菌(Bacillus)属细菌和Geobacillus属细菌。
另外,希望的是,将可溶化处理时的温度设置为与实施方式1相同的50~90℃,在使用杆菌这样的好氧性嗜热菌的情况下,优选的是,设定温度范围为55~70℃,更优选的是,尤其60~65℃。另外,设定可溶化处理时的pH为与实施方式1相同的pH6~9的范围,优选的是,设定为7~8的范围。
另外,设定与实施方式1相同的硝化工序的温度、pH等。
(实施方式4)
本实施方式中,如图5所示,在沉淀槽8与可溶化槽2之间,即,在从沉淀槽8流入可溶化槽2的通路中设置有浓缩机9。
本实施方式中,将从沉淀槽8中分离的污泥供给到浓缩机9。在浓缩机9中,例如,由于重力沉淀,污泥被浓缩。作为浓缩法,除了采用重力沉淀法之外,也可以采用浮起浓缩、蒸发浓缩、膜浓缩、絮凝剂添加、转筒筛型浓缩、或利用离心力的浓缩法。从提高嗜热菌的污泥可溶化率,紧凑化可溶化槽的观点来说,污泥的浓缩率优选是浓缩到含水率为99重量%以下(污泥浓度为1重量%以上)。浓缩后的浓缩液将被供给到可溶化槽2。但是,此时的污泥浓度,优选的是,不超过5重量%。因为,一旦超过5重量%,用泵向外排出会变得困难的同时,在可溶化槽中好氧性处理时污泥中气泡会显著增多。
在厌氧槽4中的厌氧性处理、在一次曝气槽5中的曝气处理、在无氧槽6中的脱氮处理、在二次曝气槽7中的曝气处理、在沉淀槽8中的固液体成分离、在可溶化槽5中的可溶化处理与实施方式3相同,故省略说明。
还有,作为产生对污泥进行可溶化的可溶化酶的微生物,使用嗜热菌,优选的是,使用尤其在实施方式1中公开的各种杆菌(Bacillus)属细菌和Geobacillus属细菌。
另外,希望的是,将可溶化处理时的温度设置为与实施方式1相同的50~90℃,在使用杆菌这样的好氧性嗜热菌的情况下,优选的是,设定温度范围为55~70℃,更优选的是,尤其60~65℃。另外,设定可溶化处理时的pH为与实施方式1相同的pH6~9的范围,优选的是,设定为7~8的范围。
(实施方式5)
本实施方式中,如图6所示,在可溶化槽2与无氧槽6之间,即从可溶化槽2向无氧槽6流入的通路上设置有硝化槽10。通过设置有这样的硝化槽10,将含于污泥可溶化液中的氨转化至亚硝酸或硝酸。
另外,本实施方式中,将污泥的一部分从沉淀槽8返送到厌氧槽4之外,也将剩余的污泥经由可溶化槽2供给到硝化槽10。
本实施方式中的可溶化槽的HRT,优选的是,根据污泥可溶化酶的生成及分泌量最大时的HRT进行选择,其中所述污泥可溶化酶是由嗜热菌分泌。这样设定HRT时,能够有效利用生成及分泌的污泥可溶化酶来进行反应。通常,将HRT设定为12~72小时,但在本实施方式中,因为在可溶化槽后面的步骤才有硝化槽10,所以可在可溶化处理液中残留有氨的状态下就将可溶化处理液注入到硝化槽10中,出于以上考虑,优选的是,将HRT设定为18~48小时,最优选的是,设定为20~36小时。
另外,硝化槽10的运行条件,优选的是,25~35℃下,pH为7.0~8.0的范围。将含于污泥可溶化废水中的氨氧化至亚硝酸及硝酸,以及有必要保留有机物在其次的工序的脱氮处理中作为质子源,出于以上这几点考虑,硝化槽10的HRT,优选的是,30分~3小时。
厌氧槽4中的厌氧性处理、一次曝气槽5中的曝气处理、无氧槽6中的脱氮处理、二次曝气槽7中的曝气处理、沉淀槽8中的固液体成分离、可溶化槽2中的可溶化处理与实施方式3相同,故省略说明。
另外,作为产生对污泥进行可溶化的可溶化酶的微生物,使用嗜热菌,优选的是,使用尤其在实施方式1中公开的各种杆菌( Bacillus)属细菌或Geobacillus属细菌。
进而,希望的是,将可溶化处理时的温度设置为与实施方式1相同的50~90℃,在使用杆菌这样的好氧性嗜热菌的情况下,优选的是,设定温度范围为55~70℃,更优选的是,尤其60~65℃。另外,设定可溶化处理时的pH为与实施方式1相同的pH6~9的范围,优选的是,设定为7~8的范围。
(实施方式6)
本实施方式中,设置有2个无氧槽,而曝气槽只设置有1个,在这点,与实施方式3至5无区别。
即,本实施方式的处理装置,如图7所示,具有:在先无氧槽11、厌氧槽4、交换槽12、无氧槽6、曝气槽13、沉淀槽8、浓缩机9、及可溶化槽2。
本实施方式中,将流入厌氧槽4的原水供给到交换槽12。
所述交换槽12,能够起根据流入的污水的脱氮程度改变从曝气槽13返送污泥及处理水(硝化液)的路径的功能。例如在夏季等需要脱氮的程度大的时期,其作为厌氧槽使用来促进返送污泥的除磷反应,在冬季等需要脱氮程度低的时期,其作为无氧槽使用来促进从原水及曝气槽13返送到无氧槽11或交换槽12的硝化液的脱氮反应。
这样,在交换槽12中进行处理后,原水被供给到无氧槽6中进行脱氮处理,进而,被供给到曝气槽13通过曝气搅拌进行好氧性生物处理。其次,从曝气槽13被供给到沉淀槽8,并在沉淀槽8中进行固液体成分离,然后将分离出的液体部分适当排放。另外,将分离、沉淀的固态部分的污泥供给到浓缩机9,然后供给到可溶化槽2。这种情况下,曝气槽13具有去除BOD和硝化的功能。曝气槽13的处理液即硝化液的一部分被返送到在先无氧槽11,优选的是,返送到(未图示)无氧槽6。
进而,将在可溶化槽2中进行过可溶化处理的污泥返送到交换槽12、从而,在交换槽12、无氧槽6、曝气槽13、沉淀槽8、浓缩机9、可溶化槽2中循环。还有,在沉淀槽8中分离的污泥除供给到浓缩机9之外,还供给到在先无氧槽11中。另外,从厌氧槽4或交换槽12也向在先无氧槽11返送污泥。
优选的是,设定可溶化槽2的HRT为与实施方式3相同的12~72小时,更优选的是,设定为24~72小时,最优选的是,设定为36~48小时。
可溶化槽2以外的HRT,优选的是,在在先无氧槽11中为0.5~1.5小时、在厌氧槽4中为0.5~2小时、在交换槽12中为0.5~1小时、在无氧槽6中为1~3小时、曝气槽13中为3~6小时,更优选的是,在无氧槽11中为0.5~1小时、在厌氧槽4中为0.5~1小时、在交换槽12中为0.5~1小时、在无氧槽6中为1~2小时、曝气槽13中为3.5~5小时。
另外,作为产生对污泥进行可溶化的可溶化酶的微生物,使用嗜热菌,优选的是,使用尤其在实施方式1中公开的各种杆菌(Bacillus)属细菌或Geobacillus属细菌。
另外,希望的是,将可溶化处理时的温度设置为与实施方式1相同的50~90℃,在使用杆菌属细菌这样的好氧性嗜热菌的情况下,优选的是,设定温度范围为55~70℃,更优选的是,尤其60~65℃范围。另外,设定可溶化处理时的pH为与实施方式1相同的pH6~9的范围,优选的是,设定为7~8的范围。
还有,本实施方式中的处理装置配备了浓缩机9,然而,配备浓缩机9是本发明必要的条件。
(实施方式7)
本实施方式中,如图8所示,可溶化槽2后面的步骤设置有硝化槽10,在这点上,与所述实施方式6相同。
即,本实施方式中,在可溶化槽2中进行过可溶化处理的污泥被供给到硝化槽10,并且在硝化槽10中将污泥中的氨转换为亚硝酸或硝酸之后返送到交换槽12。还有,从沉淀槽8中分离的污泥除与实施方式6相同地被供给到浓缩机9和返送到在先无氧槽11之外,在本实施方式中,还直接供给到硝化槽10。
其他的构成及处理步骤与实施方式6相同,故省略说明。
还有,可溶化槽2的HRT,优选的是,设置为与实施方式5相同的12~72小时,更优选的是,设定为18~48小时,最优选的是,设定为20~36小时。
另外,作为产生对污泥进行可溶化的可溶化酶的微生物,使用嗜热菌,优选的是,使用尤其在实施方式1中公开的各种杆菌( Bacillus)属细菌或Geobacillus属细菌。
进而,希望的是,将可溶化处理时的温度设置为与实施方式1相同的50~90℃,在使用杆菌这样的好氧性嗜热菌的情况下,优选的是,设定温度范围为55~70℃,更优选的是,尤其60~65℃。另外,设定可溶化处理时的pH为与实施方式1相同的pH6~9的范围,优选的是,设定为7~8的范围。
(实施方式8)
本实施方式中的处理装置,如图9所示,配备有溶解氧降低槽16、厌氧槽4、无氧槽6、曝气槽13、沉淀槽8、浓缩槽9、以及可溶化槽2。本实施方式中,除将在厌氧槽2中处理过的处理水供给到无氧槽4之外,还将在溶解氧降低槽16中以降低溶解氧的方式处理的处理水供给到无氧槽6。
供给到无氧槽6进行脱氮处理的处理水,进而被供给到曝气槽13并通过曝气搅拌进行好氧性处理,然后,供给到沉淀槽8进行固液体成分离。此时分离的液体成分被适当地排放,被分离的固体成分即污泥被供给到浓缩机9的同时,将污泥的一部分返送至曝气槽13。
另外,通过将曝气槽13中的处理液即硝化液的一部分经由溶解氧降低槽16返送到无氧槽6,来进行硝化液的脱氮处理。而且,能够通过将硝化液注入到无氧槽,降低硝化液的溶解氧,来使脱氮效率稳定。
进而,在浓缩机9中浓缩的污泥被供给到可溶化槽2并被可溶化处理,其后,被返送到溶解氧降低槽16。
还有,向无氧槽6供给的污泥也返送到厌氧槽4,继而,从厌氧槽4返送到溶解氧降低槽16。
优选的是,设定可溶化槽2的HRT为与实施方式3相同的12~72小时,更优选的是,设定为24~72小时,最优选的是,设定为36~48小时。
设定可溶化槽2以外的HRT,优选的是,溶解氧降低槽16中为0.15~0.3小时、厌氧槽4中为0.5~2小时、无氧槽6中为1~3小时、曝气槽13中为3~6小时,更优选的是,溶解氧降低槽16中为0.17~0.25小时、厌氧槽4中为1~1.5小时、无氧槽6中为1~2小时、曝气槽13中为3.5~5小时。
另外,作为产生对污泥进行可溶化的可溶化酶的微生物,使用嗜热菌,优选的是,使用尤其在实施方式1中公开的各种杆菌( Bacillus)属细菌或Geobacillus属细菌。
进而,希望的是,将可溶化处理时的温度设置为与实施方式1相同的50~90℃,在使用杆菌这样的好氧性嗜热菌的情况下,优选的是,设定温度范围为55~70℃,更优选的是,尤其60~65℃。另外,设定可溶化处理时的pH为与实施方式1相同的pH6~9的范围,优选的是,设定为7~8的范围。
(实施方式9)
本实施方式中,如图10所示,在可溶化槽2的后面步骤设置有硝化槽10的这一点上与上述实施方式8不相同。
即:本实施方式中,在可溶化槽2中可溶化处理的污泥供给到硝化槽10,并在硝化槽10中将污泥中的氨转换为亚硝酸或硝酸之后返送到溶解氧降低槽16。另外,将沉淀槽8中的污泥的一部分供给到硝化槽10,以维持硝化处理。
其他的构成及处理步骤与实施方式8相同,故省略说明。
还有,可溶化槽2的HRT,优选的是,设置为与实施方式5相同的12~72小时,更优选的是,设定为18~48小时,最优选的是,设定为20~36小时。
另外,作为产生对污泥进行可溶化的可溶化酶的微生物,使用嗜热菌,优选的是,使用尤其在实施方式1中公开的各种杆菌( Bacillus)属细菌或Geobacillus属细菌。
进而,希望的是,将可溶化处理时的温度设置为与实施方式1相同的50~90℃,在使用杆菌这样的好氧性嗜热菌的情况下,优选的是,设定温度范围为55~70℃,更优选的是,尤其60~65℃。另外,设定可溶化处理时的pH为与实施方式1相同的pH6~9的范围,优选的是,设定为7~8的范围。
(实施方式10)
本实施方式的有机废水的处理装置,如图11所示,配备有厌氧槽4、无氧槽6、曝气槽13、沉淀槽8、以及可溶化槽2。
本实施方式中,原水在厌氧槽4中进行厌氧性处理并将污泥中的磷成分排放之后,被供给到无氧槽6并在无氧槽6中进行脱氮处理。接着,在无氧槽6中进行脱氮处理过的处理液被供给到曝气槽13,在曝气槽13中含于污泥中的氨转换为亚硝酸或硝酸。即,在曝气槽13中进行硝化处理。
其次,在曝气槽13中硝化处理的处理液供给到沉淀槽8。而且在所述沉淀槽8中进行固液体成分离并将分离的液态部分排放,另外,分离、沉淀的固态部分的污泥的一部分供给到可溶化槽2中的同时,将剩余部分作为返送污泥返送到厌氧槽4。
进行可溶化处理后的污泥被返送至无氧槽6,从而反复进行无氧槽6中的脱氮处理、曝气槽13中的处理、沉淀槽8中的固液分离、在可溶化槽2中的可溶化处理。另外,在曝气槽13中被进行处理的硝化液的一部分返送至无氧槽6或者厌氧槽4,在无氧槽6中进行脱氮处理。
优选的是,设定可溶化槽2的HRT为与实施方式3相同的12~72小时,更优选的是,设定为24~72小时,最优选的是,设定为36~48小时。
设定可溶化槽2以外的HRT,优选的是,溶解氧降低槽16中为0.15~0.3小时、厌氧槽4中为0.5~2小时、无氧槽6中为1~3小时、好氧槽17中为3~6小时,更优选的是,溶解氧降低槽16中为0.17~0.25小时、厌氧槽4中为1~1.5小时、无氧槽6中为1~2小时、好氧槽17中为3.5~5小时。
另外,作为产生对污泥进行可溶化的可溶化酶的微生物,使用嗜热菌,优选的是,使用尤其在实施方式1中公开的各种杆菌( Bacillus)属细菌或Geobacillus属细菌。
进而,希望的是,将可溶化处理时的温度设置为与实施方式1相同的50~90℃,在使用杆菌这样的好氧性嗜热菌的情况下,优选的是,设定温度范围为55~70℃,更优选的是,尤其60~65℃。另外,设定可溶化处理时的pH为与实施方式1相同的pH6~9的范围,优选的是,设定为7~8的范围。
(实施方式11)
本实施方式中,在如图12所示,将可溶化槽2中可溶化处理过的污泥返送到厌氧槽4的这一点上与返送到无氧槽6中的实施方式10的场合不同。
在厌氧槽4中进行厌氧性处理、无氧槽6中进行脱氮处理、曝气槽13中进行硝化处理、在沉淀槽8中固液体成分离、在可溶化槽2中进行可溶化处理的工序上与实施方式10相同,故省略其说明。在本实施方式中,也将硝化液的一部分返送到无氧槽6中或厌氧槽4。
优选的是,设定可溶化槽2的HRT为与实施方式3相同的12~72小时,更优选的是,设定为24~72小时,最优选的是,设定为36~48小时。
另外,作为产生对污泥进行可溶化的可溶化酶的微生物,使用嗜热菌,优选的是,使用尤其在实施方式1中公开的各种杆菌( Bacillus)属细菌或Geobacillus属细菌。
另外,希望的是,将可溶化处理时的温度设置为与实施方式1相同的50~90℃,在使用杆菌这样的好氧性嗜热菌的情况下,优选的是,设定温度范围为55~70℃,更优选的是,尤其60~65℃。另外,设定可溶化处理时的pH为与实施方式1相同的pH6~9的范围,优选的是,设定为7~8的范围。
(实施方式12)
本实施方式中,在如图13所示,可溶化槽2后面的步骤设置有硝化槽10。本实施方式中,将在可溶化槽2中处理过的污泥供给到硝化槽10,并在硝化槽10中将污泥中的氨转化为亚硝酸或硝酸之后返送到无氧槽6。另外,从沉淀槽8向硝化槽10供给污泥。
在厌氧槽4中进行厌氧性处理、无氧槽6中进行脱氮处理、曝气槽13中进行硝化处理、在沉淀槽8中固液体成分离、在可溶化槽2中进行可溶化处理的工序上与实施方式11相同,故省略其说明。
还有,可溶化槽2的HRT,优选的是,设置为与实施方式5相同的12~72小时,更优选的是,设定为18~48小时,最优选的是,设定为20~36小时。
另外,作为产生对污泥进行可溶化的可溶化酶的微生物,使用嗜热菌,优选的是,使用尤其在实施方式1中公开的各种杆菌( Bacillus)属细菌或Geobacillus属细菌。
另外,希望的是,将可溶化处理时的温度设置为与实施方式1相同的50~90℃,在使用杆菌这样的好氧性嗜热菌的情况下,优选的是,设定温度范围为55~70℃,更优选的是,尤其60~65℃。另外,设定可溶化处理时的pH为与实施方式1相同的pH6~9的范围,优选的是,设定为7~8的范围。
(实施方式13)
本实施方式中,在可溶化槽2的后面步骤也与实施方式12相同地设置有硝化槽10,并在其硝化槽10中处理过地污泥如图14所示地返送到厌氧槽4的这一点上与返送到无氧槽6的实施方式12不相同。
在厌氧槽2中进行厌氧性处理、无氧槽6中进行脱氮处理、曝气槽13中进行硝化处理、在沉淀槽8中固液体成分离、在可溶化槽2中进行可溶化处理的工序上与实施方式10相同,故省略其说明。
还有,可溶化槽2的HRT,优选的是,设置为与实施方式5相同的12~72小时,更优选的是,设定为18~48小时,最优选的是,设定为20~36小时。
本实施方式也与实施方式12相同,需要将污泥从沉淀槽8供给到硝化槽10。
另外,作为产生对污泥进行可溶化的可溶化酶的微生物,使用嗜热菌,优选的是,使用尤其在实施方式1中公开的各种杆菌( Bacillus)属细菌或Geobacillus属细菌。
另外,希望的是,将可溶化处理时的温度设置为与实施方式1相同的50~90℃,在使用杆菌这样的好氧性嗜热菌的情况下,优选的是,设定温度范围为55~70℃,更优选的是,尤其60~65℃。另外,设定可溶化处理时的pH为与实施方式1相同的pH6~9的范围,优选的是,设定为7~8的范围。
(实施方式14)
本实施方式中的有机废水的处理装置,如图15所示,由反应槽1、可溶化槽2、贮存槽3构成。在反应槽1中进行与实施方式1相同的有机废水的处理。
在本实施方式中,如图16所示,分别重复进行通过搅拌进行的厌氧性处理和通过曝气进行的好氧性处理的工序各3次,其后,循环进行通过停止曝气进行的沉淀、固液体成分离、可溶化处理的工序。在反应槽1中进行重复厌氧性处理和好氧性处理的工序、沉淀、固液体成分离的工序,而在可溶化槽2中进行可溶化处理。
能够调整各工序的时间来在1天内进行数次从接收原水的流入到处理水的排出的一连串的废水处理的间歇式处理(例如,2~4次),但是,根据废水的性状或量等调整各工序的处理时间在一天进行1次左右,或3天2次的间歇式处理。
废水处理的工序的时间为,例如,流入60分钟、厌氧性处理60分钟、好氧性处理70分钟、厌氧性处理30分钟、好氧性处理80分钟、厌氧性处理20分钟、好氧性处理10分钟、沉淀40分钟、排出40分钟。
本实施方式中,在好氧性处理工序中进行硝化,而在厌氧性处理工序中进行脱氮处理。
可溶化处理过的可溶化液在第一个(最先的)好氧性处理工序中返送到反应槽2。其返送的时机取决于第一个好氧性处理工序的处理时间,但是,设定为停止曝气前30分钟到3小时,优选的是,30分钟到1小时前。
本实施方式中,在可溶化槽2后面的步骤设置有贮存槽3,所以能够用贮存槽3临时贮存在将可溶化槽2中处理过的可溶化液,从而,在第一个好氧性处理工序中易于调整将可溶化液返送到反应槽2的时机及量等。
可溶化槽2的HRT,优选的是,设置为与实施方式1相同的12~72小时,更优选的是,设定为18~48小时,最优选的是,设定为20~36小时。
作为产生对污泥进行可溶化的可溶化酶的微生物,使用嗜热菌,优选的是,使用尤其在实施方式1中公开的各种杆菌( Bacillus)属细菌或Geobacillus属细菌。
另外,希望的是,将可溶化处理时的温度设置为与实施方式1相同的50~90℃,在使用杆菌这样的好氧性嗜热菌的情况下,优选的是,设定温度范围为55~70℃,更优选的是,尤其60~65℃。另外,设定可溶化处理时的pH为与实施方式1相同的pH6~9的范围,优选的是,设定为7~8的范围。
(实施方式15)
本实施方式中的有机废水的处理装置,如图17所示,在反应槽1后面的步骤设置有贮存槽3,进而在其后面的步骤设置有可溶化槽2。本实施方式中,硝化、脱氮处理过的污泥贮存在贮存槽3,并根据需要可溶化处理的量向可溶化槽2供给污泥。
这样地只向可溶化槽2供给需要可溶化处理的污泥的量,由此能够事先调整向好氧性处理工序返送的可溶化液的量。
重复厌氧性处理和好氧性处理的工序,其后再进行沉淀、固液体成分离的这一点上与实施方式14相同。
可溶化槽2的HRT,优选的是,设置为与实施方式5相同的12~72小时,更优选的是,设定为18~48小时,最优选的是,设定为20~36小时。
另外,作为产生对污泥进行可溶化的可溶化酶的微生物,使用嗜热菌,优选的是,使用尤其在实施方式1中公开的各种杆菌( Bacillus)属细菌或Geobacillus属细菌。
另外,希望的是,将可溶化处理时的温度设置为与实施方式1相同的50~90℃,在使用杆菌这样的好氧性嗜热菌的情况下,优选的是,设定温度范围为55~70℃,更优选的是,尤其60~65℃。另外,设定可溶化处理时的pH为与实施方式1相同的pH6~9的范围,优选的是,设定为7~8的范围。
(实施方式16)
本实施方式是在由上述硝化、脱氮等生物处理产生的污泥中含有磷的情况下,配备去除其中的磷的装置的实施方式。
本实施方式中,在上述各实施方式那样的沉淀槽8后段侧,添加聚氯化铝等絮凝剂来除磷,或设置过滤材,经絮凝过滤来除磷。
上述各实施方式中,具有厌氧性处理和好氧性处理工序(曝气处理工序)的实施方式中,处理水或污泥含有磷时,所述磷在厌氧性处理工序中从污泥中的微生物排放,在好氧性处理工序中被微生物结合。然而,即使这样排放或结合磷,采用污泥的可溶化处理时,还存在含有磷的处理液被排放到系统外的顾虑,且不能通过厌氧性处理和好氧性的两者的处理达到排放磷或结合磷的功能的目的。
因此,通过设置上述这样的除磷装置,能够积极地去除含于处理水或污泥中的磷。这可适用于连续式处理及间歇式处理的两者。
(实施方式17)
本实施方式中,作为除磷装置,改变成使用上述絮凝剂等的装置,其构成如下,在沉淀槽8后段侧设有具备磷分离装置的磷释放槽,从沉淀槽8中分离出的污泥,以在所述磷释放槽中经过例如厌氧性状态、加热状态等的污泥状态,进一步地释放磷,将释放后的磷分离为释放磷污泥和磷的溶出液,并磷释放液里添加絮凝剂等,由此来除磷。然后,对磷释放污泥进行可溶化处理。
从而,在本实施方式中,也可以在沉淀槽8前段侧配备上述各实施方式那样的各种槽。这些可适用于连续式处理及间歇式处理的两者。
(实施方式18)
本实施方式,是将铁板、铁粒子、钢丝棉等投入到上述各实施方式的反应槽1、曝气槽13、硝化槽10、可溶化槽2、无氧槽6等,使磷成分附着于铁上而达到除磷的实施方式。
本实施方式中,无需使用上述实施方式那样的絮凝剂,也无需像上述实施方式17那样为排放磷而另外设置磷排放槽,只向已设置在处理装置中的反应槽1、曝气槽13、可溶化槽2、无氧槽6等投入铁原材料,使磷附着于所述铁原材料上,就能够容易地除磷。
(其他实施方式)
还有,在上述实施方式3、4、5等中,作为待处理液,使用将从食品工厂排出的剩饭气体分解并进行发酵的酸发酵液,但是,待处理液的种类不仅限于此,其他种类也无妨。
另外,如所述实施方式3、4、5,设置发酵液贮存槽3不是本发明必不可少的条件,而例如图18所示,也可以使用没有发酵液贮存槽3,而配备厌氧槽4、一次曝气槽5、无氧槽6、二次曝气槽7、沉淀槽8、以及可溶化槽2的处理装置。例如只处理来自污水处理厂的污水的情况下,可以适宜地使用如图18所示的处理装置。
而且,从可溶化槽2排放排气,但通过将这样的排放气体导入上述实施方式中的硝化槽或曝气槽中,可除去排气的臭味的同时,能够将高温排气导入硝化槽或曝气槽,提高各槽的温度高于基于平时的空气进行曝气时温度,由此能够提高微生物的活性,从而,提高处理效率,因此,优选以上方案。
而且,不论欲处理的有机废水的种类如何,都可以采用。

Claims (21)

1.一种有机废水的处理方法,是将有机废水以生物学的方法进行处理的方法,其特征在于,具有:
对于将有机废水进行硝化及脱氮处理后由硝化及脱氮处理产生的污泥,进行可溶化处理。
2.根据权利要求1所述的有机废水的处理方法,其特征在于,
有机废水的硝化及脱氮处理在反应槽(1)内间歇式进行。
3.根据权利要求2所述的有机废水的处理方法,其特征在于,
通过曝气进行硝化处理,通过停止曝气进行脱氮处理。
4.根据权利要求2或3所述的有机废水的处理方法,其特征在于,
在停止曝气处理30分钟~3小时前,将可溶化处理液返送到反应槽(1)。
5.根据权利要求2或3所述的有机废水的处理方法,其特征在于,
在停止曝气处理30分钟~1小时前,将可溶化处理液返送到反应槽(1)。
6.根据权利要求1所述的有机废水的处理方法,其特征在于,
有机废水的硝化及脱氮处理是通过厌氧性处理工序、一次曝气工序、在无氧槽中进行的脱氮工序、二次曝气工序进行。
7.根据权利要求1所述的有机废水的处理方法,其特征在于,
有机废水进行硝化及脱氮处理是通过在无氧槽中的脱氮工序、厌氧性处理工序、在交换槽中的处理工序、在无氧槽中的脱氮工序、曝气工序进行。
8.根据权利要求6或7所述的有机废水的处理方法,其特征在于,
可溶化处理后进行硝化。
9.根据权利要求1所述的有机废水的处理方法,其特征在于,
有机废水进行硝化及脱氮处理是通过厌氧性处理工序、在无氧槽中的脱氮工序、曝气工序进行的同时,降低可溶化处理后的处理液的溶解氧。
10.根据权利要求1所述的有机废水的处理方法,其特征在于,
有机废水进行硝化及脱氮处理是通过厌氧性处理工序、在无氧槽中的脱氮工序、曝气工序进行。
11.根据权利要求1至10中的任意一项所述的有机废水的处理方法,其特征在于,
在可溶化处理前浓缩污泥。
12.根据权利要求1至11中的任意一项所述的有机废水的处理方法,其特征在于,
通过好氧性嗜热菌,进行污泥可溶化。
13.根据权利要求12所述的有机废水的处理方法,其特征在于,
好氧性嗜热菌是杆菌属微生物即Bacillus属微生物。
14.根据权利要求1至13中的任意一项所述的有机废水的处理方法,其特征在于,
具有去除由硝化及脱氮处理而产生的污泥中的磷的工序。
15.一种有机废水处理装置,是对有机废水进行生物学处理的装置,其特征在于,
具有:对有机废水进行硝化及脱氮的装置;以及,对由硝化、脱氮产生的污泥进行可溶化的可溶化槽。
16.根据权利要求15所述的有机废水的处理装置,其特征在于,
对有机废水进行硝化及脱氮的装置是在间歇式反应槽(1)中进行硝化、脱氮的装置。
17.根据权利要求15所述的有机废水的处理装置,其特征在于,
对有机废水进行硝化及脱氮的装置是通过厌氧槽(4)、一次曝气槽(5)、无氧槽(6)、二次曝气槽(7)进行硝化、脱氮的装置。
18.根据权利要求15所述的有机废水的处理装置,其特征在于,
对有机废水进行硝化及脱氮的装置是通过在先无氧槽(11)、厌氧槽(4)、交换槽(12)、无氧槽(6)、曝气槽(13)来进行硝化、脱氮的装置。
19.根据权利要求15所述的有机废水的处理装置,其特征在于,
对有机废水进行硝化及脱氮的装置是通过厌氧槽(4)、无氧槽(6)、曝气槽(13)来进行硝化、脱氮的装置,并设置有降低经可溶化处理后的溶解氧的溶解氧降低槽(16)。
20.根据权利要求15所述的有机废水的处理装置,其特征在于,
对有机废水进行硝化及脱氮的装置是通过厌氧槽(4)、无氧槽(6)、曝气槽(13)来进行硝化、脱氮的装置。
21.根据权利要求15至20所述的有机废水的处理装置,其特征在于,
具有去除含于由硝化及脱氮处理生成的污泥中的磷的装置。
CNB038242850A 2003-08-22 2003-08-28 有机废水的处理方法及其装置 Expired - Fee Related CN1326786C (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP208429/2003 2003-08-22
JP2003208429A JP2005066381A (ja) 2003-08-22 2003-08-22 有機性廃水の処理方法とその処理装置

Publications (2)

Publication Number Publication Date
CN1688513A true CN1688513A (zh) 2005-10-26
CN1326786C CN1326786C (zh) 2007-07-18

Family

ID=34208977

Family Applications (1)

Application Number Title Priority Date Filing Date
CNB038242850A Expired - Fee Related CN1326786C (zh) 2003-08-22 2003-08-28 有机废水的处理方法及其装置

Country Status (6)

Country Link
JP (1) JP2005066381A (zh)
KR (1) KR100546991B1 (zh)
CN (1) CN1326786C (zh)
AU (1) AU2003261784A1 (zh)
TW (1) TW200516056A (zh)
WO (1) WO2005019121A1 (zh)

Families Citing this family (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5315587B2 (ja) * 2005-12-27 2013-10-16 栗田工業株式会社 有機物含有排水の処理装置及び処理方法
WO2007114324A1 (ja) * 2006-03-31 2007-10-11 Menicon Co., Ltd. バイオマス処理方法、堆肥、畜産用敷料、及びバイオマス用処理剤
BR112012013332B1 (pt) 2009-12-01 2019-10-29 Li Dayong método e aparelho para tratamento biológico de esgoto
KR101126871B1 (ko) 2010-02-05 2012-03-23 금강엔지니어링 주식회사 플라즈마 방전조를 구비한 하폐수 고도처리 시스템
TWI555708B (zh) * 2011-01-17 2016-11-01 財團法人工業技術研究院 同時去除有機及無機性污染物之廢水處理系統以及廢水處理方法
CN103459071B (zh) 2012-04-03 2015-09-30 住友电工硬质合金株式会社 立方氮化硼烧结体工具
CN106916756B (zh) * 2017-04-10 2020-05-19 北京绿安创华环保科技有限公司 真菌菌株,微生物菌剂,秸秆土壤修复剂及其应用
EP4079705B1 (en) 2019-12-16 2024-05-01 Sumitomo Electric Industries, Ltd. Cubic boron nitride sintered material
KR20220095234A (ko) 2019-12-16 2022-07-06 스미토모덴키고교가부시키가이샤 입방정 질화붕소 소결체
KR20220074911A (ko) 2019-12-27 2022-06-03 스미또모 덴꼬오 하드메탈 가부시끼가이샤 입방정 질화붕소 소결체 및 그 제조 방법
WO2022025293A1 (ja) 2020-07-31 2022-02-03 住友電気工業株式会社 立方晶窒化硼素焼結体、およびそれを含む切削工具
WO2022025291A1 (ja) 2020-07-31 2022-02-03 住友電気工業株式会社 立方晶窒化硼素焼結体、およびそれを含む切削工具
WO2022025292A1 (ja) 2020-07-31 2022-02-03 住友電気工業株式会社 立方晶窒化硼素焼結体、およびそれを含む切削工具
US20220153651A1 (en) 2020-11-04 2022-05-19 Sumitomo Electric Industries, Ltd. Cubic boron nitride sintered material

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0716595A (ja) * 1993-06-30 1995-01-20 Meidensha Corp 活性汚泥循環変法の運転制御方法
JP3845515B2 (ja) * 1998-06-23 2006-11-15 株式会社タクマ 排水中の窒素及びリンの除去システムならびに除去方法
JP2000263091A (ja) * 1999-03-19 2000-09-26 Hitachi Kiden Kogyo Ltd 汚水及び汚泥の処理方法
JP3212969B2 (ja) * 1999-05-18 2001-09-25 神鋼パンテツク株式会社 有機性廃水の処理方法及びその処理装置
JP2003053384A (ja) * 2001-08-23 2003-02-25 Nippon Steel Corp 廃水からの窒素・リンの除去方法及びその装置
JP2003071487A (ja) * 2001-08-30 2003-03-11 Ebara Corp 有機性廃水の処理方法及び処理装置
JP3955478B2 (ja) * 2002-01-25 2007-08-08 株式会社荏原製作所 窒素及びリン含有汚水の処理方法並びに装置

Also Published As

Publication number Publication date
AU2003261784A1 (en) 2005-03-10
CN1326786C (zh) 2007-07-18
KR20050088258A (ko) 2005-09-05
JP2005066381A (ja) 2005-03-17
TW200516056A (en) 2005-05-16
WO2005019121A1 (ja) 2005-03-03
KR100546991B1 (ko) 2006-01-26

Similar Documents

Publication Publication Date Title
CN112250178B (zh) 一种利用污泥发酵碳源实现晚期垃圾渗滤液深度脱氮及污泥减量的方法和装置
CN1083804C (zh) 采用微生物处理废水及废气的装置和方法
CN1688513A (zh) 有机废水的处理方法及其装置
CN1678536A (zh) 组合活性污泥-生物膜序批式反应器和工艺
CN1668539A (zh) 一种处理来自生物处理装置的污泥的方法及其装置
CN101076499A (zh) 含氮液体的处理方法及装置
CN1778714A (zh) A/o生物脱氮反应器、硝化过程的调节方法及其在线模糊控制装置、方法
CN1569690A (zh) Sbr法交替好氧/缺氧生物脱氮工艺及实时控制装置和方法
WO2003076351A1 (fr) Procede de traitement des boues de stations d'epuration par voie mycelienne
CN1010854B (zh) 污水或工业废水的活性污泥处理方法
Luo et al. Research progress and prospects of complete ammonia oxidizing bacteria in wastewater treatment
CN1210214C (zh) 干法腈纶废水的处理工艺
CN1868921A (zh) 生物处理槽的污泥处理方法以及废水处理系统
CN1834231A (zh) 厌氧性氨氧化细菌的培养方法和装置
CN1210395C (zh) 异养硝化细菌,培养方法及其应用
CN1562808A (zh) 豆制品废水生物脱氮工艺及模糊控制装置和方法
Hu et al. Start-up and maintenance of indigenous microalgae-bacteria consortium treating toilet wastewater through partial nitrification and nitrite-type denitrification
CN1792869A (zh) 废水的处理装置和处理方法
CN1496337A (zh) 固体减少量提高的废水处理设备和方法
Guo et al. Rapid enrichment of anammox bacteria for low-strength wastewater treatment: Role of influent nitrite and nitrate ratios in sequencing batch reactors (SBRs)
CN1199876C (zh) 有机废水的处理方法
KR100989106B1 (ko) 침지형 회전식 미생물 접촉장치를 이용하는 하·폐수 처리 장치
CN1743280A (zh) 废水处理方法及装置
CN1248976C (zh) 集成化的生物处理污水工艺过程
JP2005211715A (ja) 有機性廃液の処理方法とその処理装置

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C14 Grant of patent or utility model
GR01 Patent grant
C19 Lapse of patent right due to non-payment of the annual fee
CF01 Termination of patent right due to non-payment of annual fee