CN1682237B - 用于通过使用编码探针检测生物分子的方法和仪器 - Google Patents

用于通过使用编码探针检测生物分子的方法和仪器 Download PDF

Info

Publication number
CN1682237B
CN1682237B CN038223104A CN03822310A CN1682237B CN 1682237 B CN1682237 B CN 1682237B CN 038223104 A CN038223104 A CN 038223104A CN 03822310 A CN03822310 A CN 03822310A CN 1682237 B CN1682237 B CN 1682237B
Authority
CN
China
Prior art keywords
probe
coding
nucleic acid
molecule
scanning
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
CN038223104A
Other languages
English (en)
Other versions
CN1682237A (zh
Inventor
S·陈
X·苏
M·山川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Intel Corp
Original Assignee
Intel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from US10/251,152 external-priority patent/US7361821B2/en
Application filed by Intel Corp filed Critical Intel Corp
Publication of CN1682237A publication Critical patent/CN1682237A/zh
Application granted granted Critical
Publication of CN1682237B publication Critical patent/CN1682237B/zh
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12QMEASURING OR TESTING PROCESSES INVOLVING ENZYMES, NUCLEIC ACIDS OR MICROORGANISMS; COMPOSITIONS OR TEST PAPERS THEREFOR; PROCESSES OF PREPARING SUCH COMPOSITIONS; CONDITION-RESPONSIVE CONTROL IN MICROBIOLOGICAL OR ENZYMOLOGICAL PROCESSES
    • C12Q1/00Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions
    • C12Q1/68Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions involving nucleic acids
    • C12Q1/6813Hybridisation assays
    • C12Q1/6816Hybridisation assays characterised by the detection means
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10STECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10S977/00Nanotechnology
    • Y10S977/70Nanostructure
    • Y10S977/701Integrated with dissimilar structures on a common substrate
    • Y10S977/702Integrated with dissimilar structures on a common substrate having biological material component
    • Y10S977/704Nucleic acids, e.g. DNA or RNA
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10STECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10S977/00Nanotechnology
    • Y10S977/70Nanostructure
    • Y10S977/724Devices having flexible or movable element
    • Y10S977/727Devices having flexible or movable element formed from biological material
    • Y10S977/728Nucleic acids, e.g. DNA or RNA
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10STECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10S977/00Nanotechnology
    • Y10S977/70Nanostructure
    • Y10S977/734Fullerenes, i.e. graphene-based structures, such as nanohorns, nanococoons, nanoscrolls or fullerene-like structures, e.g. WS2 or MoS2 chalcogenide nanotubes, planar C3N4, etc.
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10STECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10S977/00Nanotechnology
    • Y10S977/70Nanostructure
    • Y10S977/734Fullerenes, i.e. graphene-based structures, such as nanohorns, nanococoons, nanoscrolls or fullerene-like structures, e.g. WS2 or MoS2 chalcogenide nanotubes, planar C3N4, etc.
    • Y10S977/742Carbon nanotubes, CNTs
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10STECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10S977/00Nanotechnology
    • Y10S977/70Nanostructure
    • Y10S977/773Nanoparticle, i.e. structure having three dimensions of 100 nm or less
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10STECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10S977/00Nanotechnology
    • Y10S977/70Nanostructure
    • Y10S977/773Nanoparticle, i.e. structure having three dimensions of 100 nm or less
    • Y10S977/774Exhibiting three-dimensional carrier confinement, e.g. quantum dots

Abstract

此处公开的方法、仪器和组合物涉及生物分子的检测、鉴定和/或测序,如核酸或蛋白质。在本发明的某些实施方案中,允许包括连接到一个或多个纳米条形码上的探针分子的编码探针与一个或多个靶分子结合。在结合和从未结合的编码探针分离之后,在表面上排列结合的编码探针,并且用扫描探针显微镜进行分析。纳米条形码可以是通过SPM可以进行识别的任何分子或复合体,如碳纳米管、富勒烯(fullerenes)、亚微米金属条形码、纳米颗粒或量子点。在探针是寡核苷酸的情况下,在排列和SPM分析之前,与靶核酸杂交的相邻编码探针可以被连接起来。此处也公开了包括编码探针的组合物。用于生物分子分析的系统包括一个SPM装置和连接到一个表面上的至少一个编码探针。

Description

用于通过使用编码探针检测生物分子的方法和仪器
技术领域
本发明所述方法、组合物和仪器涉及分子生物学和生物分子分析的领域,包括但不限于核酸、蛋白质、脂类和多糖。尤其是,本发明涉及,使用纳米条形码和扫描探针显微镜(SPM),对核酸和/或其它生物分子进行检测、鉴定和/或测序的方法、组合物和仪器。
发明背景
生物分子的鉴定和/或测序,如核酸或蛋白质的鉴定和/或测序,对于医学诊断、法医学、毒理学、病理学、细菌战、公众健康和许多其它领域是必不可少的。尽管目前已经针对核酸或蛋白质的鉴定和/或测序进行了大量研究,但其它生物分子,如碳水化合物、多糖、脂类、脂肪酸等等,也可能是重要的。此处公开的方法、组合物和仪器不限于核酸的鉴定和/或测序,也可以用于其它类型生物分子的分析,包括但不限于蛋白质、脂类和多糖。
用于核酸检测的标准分析方法,如Southern印迹(DNA印迹)或与核酸芯片的结合,依赖于荧光或放射性探针分子与靶核酸分子的杂交。已知的核酸测序方法,通常或者利用Sanger双脱氧技术或者利用杂交到核酸芯片上。
基于寡核苷酸杂交的测定方法被广泛用于靶核酸的检测。与靶核酸在序列上互补的探针寡核苷酸附着在荧光、放射性或其它部分上,并且允许通过Watson-Crick(沃森-克里克)碱基配对的形成与核酸杂交。关于该技术的许多变化是已知的。最近,已经设计出可以含有数百或甚至数千个寡核苷酸探针的DNA芯片(DNA chips)。靶核酸与寡核苷酸在芯片上的杂交可以使用荧光光谱学、放射性等等来检测。不精确互补的序列间的核酸杂交可能导致与灵敏度和/或特异性有关的问题。样品中靶核酸的低水平的存在可能不被检测到。
用于Sanger双脱氧核酸测序的方法受到可以被测序的核酸长度的限制,该方法基于对已经按照大小分开的四色荧光性或放射性核酸的检测。通常,每次可以确定仅有500到1000个碱基的核酸序列。使用当前的方法,对完整基因序列的确定,要求产生基因的许多拷贝,切割成重叠片段并且测序,在此之后,装配重叠的DNA序列。该过程是很艰苦、昂贵、低效率并且很耗时的。通常也需要使用荧光或放射性部分,这些部分潜在地具有安全和废物处理问题。使用与寡核苷酸芯片杂交的用于核酸测序的更新的方法,可以被用来推断短的核酸序列,或者被用来检测样品中特定核酸的存在,但是不适合于鉴别长的核酸序列。
多种技术可以用于鉴别蛋白质、多肽和肽。通常,这些技术涉及可以识别蛋白质上的一个或多个表位结构域的抗体的结合和检测。尽管基于抗体的蛋白质鉴定是相当快速的,但这样的测试方法可能有时会显示出不可接受的高水平的假阳性或假阴性结果,这是由于抗体与不同抗原的交叉反应性,靶分析物的低抗原性(导致该测试方法的低灵敏度),抗体与各种表面的非特异性结合,等等。它们也需要制备可以识别单一蛋白质或肽的抗体。同样地,它们不适合于鉴定先前还没有被表征的新颖蛋白质。
存在一种对生物分子,如核酸或蛋白质,进行检测、鉴定和/或测序的快速、准确和灵敏的方法的需求。
附图简述
下述附图构成本发明说明书的一部分,这些附图被包括到说明书中,以便对本发明公开的实施方案的某些方面做进一步的说明。参考一个或多个附图,同时结合此处给出的、对特定实施方案的详细描述,本发明的实施方案将更易于理解。
图1示意性说明了一种例证性的方法,该方法用于排列编码探针130(coded probes 130),每一个探针包括一个或多个纳米条形码(nano-barcodes),附着到表面100(surface 100)上的探针分子上。(A)将表面100浸渍到含有编码探针130的溶液110(solution 110)中。(B)从溶液110中移出含有排列的编码探针130的表面100。
图2示意性说明了一种替代性的例证性方法,用于在表面220上排列编码探针230。(A)一滴含有编码探针230的溶液210被夹心在盖玻片200和载玻片220之间。当盖玻片200被保持在原来位置时,载玻片220被移动,从而导致编码探针230的排列。
图3示意性说明了另一种替代性的例证性方法,用于在表面300上排列编码探针340。
图4示意性说明了一种例证性的编码探针400(coded probe400),包括附着在探针分子410上的纳米条形码420(nano-barcode420)。单一纳米条形码420可以包括一个或多个部分,正如下面更详细的讨论。
图5显示了一种用于合成编码探针的例证性方案。(A)转化例证性纳米-标记单元(nano-tag element)成为含有R1和R2功能部分的双功能分子(bi-functional molecule)。(B)保护一个功能部分和激活另一个功能部分。(C)在可控聚合作用中,逐步加入构件(buildingblocks)。
图6示意性说明了主链介导纳米条形码合成(backbone mediatednano-barcode synthesis)的一种通用方案。(A)标记单位的单功能化。(B)转化为氨基酸类似物(amino acid analog)。(C)转化为核苷酸类似物(nucleotide analog)。
图7显示了双功能富勒烯二醇的一种例证性修饰,用于整合进编码探针中。
图8显示了双功能富勒烯的一个例证性结构,具有在编码探针合成中的用途。
图9显示了消化的λDNA的一个例证性图象,是通过原子力显微镜所获得的。
图10显示了通过微型流控分子梳(microfluidic molecularcombing,MMC)排列的DNA分子的一个实例。
图11显示了通过微型流控分子梳(MMC)排列的DNA分子的另一个实例。
图12示意性说明了一种基于例证性寡核苷酸的纳米条形码,由杂交在一起的13个单一寡核苷酸链构成。
图13显示了图12的纳米条形码的单一寡核苷酸组件。应该注意的是,正如图12所示,有9个片段(按顺序,标记为PT1到PT9)用来构成纳米条形码的上链(top strand),有4个片段(标记为#1到#4)用来构成下链(bottom strand)。杂交的纳米条形码表现出可通过扫描探针显微镜检测的分支点(branch points)。
图14罗列了PT1到PT9的完整序列,包括分支点。
图15显示了图12和图13的纳米条形码(nano-barcode),通过原子力显微镜成像(箭头,图右上角)。为了比较,也显示了2.8kb线性质粒DNA。
例证性实施方案的描述
所公开的方法、组合物和仪器是用于生物分子如核酸的检测、鉴定和/或测序。在本发明的特定实施方案中,所述方法、组合物和仪器适合于获得非常长的核酸分子的序列,其碱基长度大于1000,大于2000,大于5000,大于10000,大于20000,大于50000,大于100000或甚至更多个碱基。优点包括在单一测序循环中读出长核酸序列的能力,获得序列数据的高速率,低测序成本,以及按照每单位序列数据所需操作时间数量来说的高效率。其它优点包括以低发生率的假阳性结果,灵敏并且准确地检测和/或鉴定核酸。
下述详细描述包括许多特定详细资料,以便对本发明所公开的实施方案提供更彻底的理解。然而,对于本技术领域的技术人员而言,显而易见的是,本发明的实施方案不需要这些特定细节就可以实践。在其他情形中,没有对本技术领域熟知的设备、方法、程序和单一组分在此处进行更详细的描述。
定义
正如此处所用,“一个(a)”或“一个(an)”表示一个或不止一个条目。
正如此处所用,“大约(about)”表示在一个值的百分之十的范围内。例如,“大约100”将表示在90到110之间的某个数值。
“核酸(nucleic acid)”包括DNA、RNA(核糖核酸)、单链、双链或三链,和它们的任意化学修饰。实际上,考虑到了核酸的任意修饰。一个“核酸”可以是几乎任何长度,从由2个或更多个碱基组成的寡核苷酸到全长染色体DNA分子。核酸包括,但不限于,寡核苷酸和多核苷酸。
“编码探针(coded probe)”指附着在一个或更多个纳米条形码上的探针分子(probe molecule)。探针分子是表现出选择性和/或特异性结合到一个或多个靶分子上的任何分子。在本发明的多个实施方案中,每一个不同的探针分子可以附着在一个可区别的纳米条形码上,以便可以检测到来自不同探针分子群体的特定探针的结合。关于可以使用的探针分子的类型,本发明的实施方案没有限制。可以使用本技术领域已知的任何探针分子,包括但不限于寡核苷酸、核酸、抗体、抗体片段、结合蛋白、受体蛋白、肽、外源凝集素、底物、抑制剂、激活剂、配体、激素、细胞因子等等。在本发明的某些实施方案中,编码探针可以包括已经共价或非共价附着到一个或多个纳米条形码上的寡核苷酸和/或核酸,其中纳米条形码用于鉴别寡核苷酸和/或核酸的序列。在本发明的多个实施方案中,线性系列的编码探针可以被连接在一起。被连接的分子中的每一编码探针可以被连接到可区别的纳米条形码上,以允许鉴定它的序列。由于连接分子中编码探针的序列也可以被确定,所以可以鉴定整个连接分子的序列。在另外的实施方案中,寡核苷酸探针中的每一核苷酸可以被附着在可区别的纳米条形码上,从而允许从核苷酸序列中鉴定编码探针的序列。
“纳米条形码(nano-barcode)”指可以被用来检测和/或鉴定编码探针的组合物。在下面更详细讨论的非限定性实例中,纳米条形码可以包括一个或更多个亚微米金属条形码(submicrometer metallicbarcodes),碳纳米管(carbon nanotubes),富勒烯或任何其它可以通过扫描探针显微镜检测和鉴定的纳米级部分。纳米条形码不限于单一部分,在本发明的某些实施方案中,纳米条形码可能包括,例如,两个或多个彼此连接在一起的富勒烯。例如,富勒烯可能包括以特定顺序连接在一起的一系列大的富勒烯和小的富勒烯。纳米条形码中的不同长短的富勒烯的顺序,可以通过扫描探针显微镜(scanning probemicroscopy)来检测,例如,被用于鉴定所附着的寡核苷酸探针的序列。
“靶(target)”或“分析物(analyte)”分子是可以结合到编码探针上的任何分子,包括但不限于核酸、蛋白质、脂质和多糖。在本发明的一些实施方案中,编码探针对靶分子的结合可以被用来检测样品中靶分子的存在。
分子梳(Molecular Combing)
在本发明的不同实施方案中,纳米条形码、编码探针和/或结合到编码探针上的靶分子可以被附着到一个表面上,并且被排列用于分析。编码探针的排列,提供了编码探针鉴定的增高的准确度和/或速度。以无组织模式放置在表面上的编码探针或纳米条形码,可能会彼此重叠在一起,或者被部分地遮掩起来,这增加了它们的检测和/或鉴定的复杂性。在一些实施方案中,编码探针可以在表面上排列,并且所整合的纳米条形码按照如下讨论被检测。在另外的替代性实施方案中,纳米条形码可以与探针分子分离,在表面上排列并且被检测。在某些实施方案中,结合到单一靶分子上的编码探针的顺序可能被保留和检测,例如通过扫描探针显微镜(scanning probe microscopy)。在其它实施方案中,一个靶分子的多个拷贝可能存在在样品中,靶分子的鉴定和/或测序可以通过将结合到多个拷贝上的编码探针的所有序列装配到重叠的靶分子序列上来确定。装配方法,例如将部分重叠的核酸或蛋白序列装配成一个连续序列的方法在本技术领域是已知的。在不同实施方案中,纳米条形码可以在它们被附着到探针分子上时被检测,或者可选择性地,可以在检测之前从探针分子上被分离下来。
将分子,如核酸、寡核苷酸探针和/或纳米条形码,附着到表面上并予以排列的方法和仪器在本技术领域是已知的。(例如参见Bensimon等人,Phys.Rev.Lett.74:4754-57,1995;Michalet等人,Science277:1518-23,1997;美国专利号5,840,862;6,054,327;6,225,055;6,248,537;6,265,153;6,303,296和6,344,319。)纳米条形码、编码探针和/或靶分子可以附着到表面上,使用空气-水弯月面或其它类型界面中固有的物理力量进行排列。该技术通常已知为分子梳(molecularcombing)。溶解在水介质中的纳米条形码、编码探针和/或靶分子可以在任意一端或两个端附着到表面上,如硅烷化载玻片、生物素化表面、金涂覆表面或本技术领域已知能结合这些分子的任何其它表面。表面可以慢慢地从水介质中抽出。极性或带电靶分子、纳米条形码和/或编码探针分子将优选地分配到亲水(含水)介质中。因此,从水介质中拿出表面导致结合的靶分子、纳米条形码和/或编码探针的延伸,与液面的运动方向平行。延伸分子的测量长度和其实际大小之间存在直接相关性,1μm的延伸长度相当于大约2000个碱基的核酸序列(Herrick等人,Proc.Natl.Acad.Sci.USA 97:222-227,2000)。
一旦表面已经从水介质中完全拿出,附着的纳米条形码和/或编码探针以可能更容易和更准确分析的平行式样被排列。在本发明的某些实施方案中,其中编码探针的两端附着在表面上,排列的编码探针将以U型构型被安置,该构型也更容易分析。该技术不受将要被排列的靶分子、纳米条形码和/或编码探针大小的限制,并且可以在长至全长染色体的核酸上发挥作用(例如,Michalet等人,1997;Herrick等人,2000)。在液面运动的适当速率下,所产生的剪切力相对较低,这导致数十万碱基或更多碱基的排列DNA片段(Michalet等人,1997)。
分子梳受到分子和被处理表面之间的强大的非特异性吸附的抑制(Bensimon等人,1995)。因此,在本发明的多个实施方案中,表面经过了处理,以便靶分子或编码探针的仅仅一端或更多个端将结合到表面上。核酸和其它类型的编码探针结合到表面上的方法在本技术领域是已知的,下面将对这些方法进行概述。在非限定性实例中,靶分子、纳米条形码和/或编码探针可以用生物素残基在分子的一个端或两个端进行共价修饰。一旦暴露给抗生物素蛋白或链霉抗生物素蛋白包被的表面,将只有生物素化端结合到表面上。可以通过使用本质上疏水的表面,如硅烷化表面,来降低到表面的非特异性吸附。
本发明的实施方案不受可以使用的表面类型的限制。表面的非限定性实例包括玻璃、功能化玻璃、陶瓷制品、塑料、聚苯乙烯、聚丙烯、聚乙烯、聚碳酸酯、PTFE(聚四氟乙烯,polytetrafluoroethylene)、PVP(聚乙烯吡咯烷酮,polyvinylpyrrolidone)、锗、硅、石英、砷化镓、金、银、尼龙、硝化纤维或本技术领域已知的能使靶分子、纳米条形码和/或编码探针附着在表面上的任何其它材料。附着或者可以是共价相互作用或者非共价相互作用。尽管在本发明的某些实施方案中,表面是玻璃的载玻片或者盖玻片的形式,但是表面的形状是没有限制的,表面可以是处于任何形状下。在本发明的一些实施方案中,表面是平面的。
在表面上排列靶分子、纳米条形码和/或编码探针的可替代性的方法,在本技术领域是已知的。(例如,Bensimon等人,1995;Michalet等人,1997;美国专利号5,840,327;6,054,327;6,225,055;6,248,537;6,265,153;6,303,296和6,344,319)。应该预期到,在权利要求所要求的主题范围内,可以使用任何已知的排列方法。在本发明的某些实施方案中,当溶解在水介质中的靶分子、纳米条形码和/或编码探针被牵引通过运动着的弯月面时,就会发生排列。液面运动的原理并不重要,例如,可以通过将表面浸入到缓冲溶液中,并且慢慢地从溶液中将它取出来实现。替代地,表面可以被浸入到溶液中,可以通过蒸发或通过移出液体,慢慢地降低液面的水平面。在本发明的另一个替代性实施方案中,可以将一滴溶液放置到盖玻片和表面之间,如载玻片。将表面慢慢地拖离盖玻片。由于溶液粘附在盖玻片上,这导致在盖玻片与表面接触的边缘上形成了一个空气-水界面。移动该界面,在表面上排列了靶分子、纳米条形码和/或编码探针。下面将更详细讨论的另一个替代性的用于排列纳米条形码和/或编码探针的方法,涉及使用自由流动电泳(free-flow electrophoresis),或者用于替换分子梳或者在分子梳的过程中使用。正如下面实施例中将讨论的,可以选择地,编码探针和/或纳米条形码可以通过微流控分子梳(microfluidic molecularcombing)来排列。
核酸(Nucleic Acids)
将要检测、鉴定和/或测序的核酸分子可以通过本技术领域已知的任何技术来制备。在本发明的某些实施方案中,核酸是天然发生的DNA或RNA分子。实际上,可以通过公开的方法来检测、鉴定和/或测序任何自然发生的核酸,包括但不限于染色体的、线粒体的和叶绿体DNA,和,核糖体的、转运、不均一核以及信使RNA。在一些实施方案中,将要分析的核酸可能存在于细胞、组织或器官的粗匀浆或提取物中。在其它实施方案中,核酸可以在分析之前被部分地或完全地纯化。在可选择性的实施方案中,将被分析的核酸分子可以通过化学合成或本技术领域已知的多种核酸扩增、复制和/或合成方法来制备。
纯化细胞核酸的各种各样形式的方法是已知的。(例如,参见Guide to Molecular Cloning Techniques,Berger和Kimmel编著,Academic Press,New York,NY,1987;Molecular Cloning:A Laboratory Manual,第二版,Sambrook,Fritsch和Maniatis编著,Cold Spring HarborPress,Cold Spring Harbor,NY,1989)。所引述文献中公开的方法仅仅是例证性的,可以使用本技术领域已知的任何变化形式。在分析单链DNA(ssDNA)的情况下,ssDNA可以通过任何已知方法从双链DNA(dsDNA)来制备。这样的方法可能涉及加热dsDNA,并且允许这些链分离,或者可能涉及通过已知扩增或复制方法从dsDNA制备ssDNA,如克隆到M13中。任何这样的已知方法可以被用来制备dsDNA或ssDNA。
尽管本发明的某些实施方案包括分析自然存在的核酸,实际上可以使用任何类型的核酸。例如,可以分析通过多种扩增技术制备的核酸,如聚合酶链式反应(PCRTM)扩增的核酸。(参见美国专利4,683,195;4,683,202和4,800,159。)将被分析的核酸可以选择性地被克隆到标准载体中,如质粒、粘粒、BACs(细菌人工染色体)或YACs(酵母人工染色体)。(例如参见Berger和Kimmel,1987;Sambrook等人,1989。)核酸插入物可以从载体DNA分离,例如通过用适当的限制性内切核酸酶切割,随后用琼脂糖凝胶电泳分离。分离核酸插入物的方法在本技术领域是已知的。所公开的方法对将被分析的核酸的来源没有限制,任意类型的核酸,包括原核的、细菌的、病毒的、真核的、哺乳动物的和/或人的可以在权利要求所要求的主题范围内进行分析。
在本发明的多个实施方案中,单一核酸的多个拷贝可以通过编码探针杂交来分析,如下面的讨论中。单一核酸的制备和多个拷贝的形成,例如通过多个扩增和/或复制方法,在本技术领域是已知的。可以选择地,单一克隆,如BAC、YAC、质粒、病毒或含有单一核酸插入物的其它载体,可以被分离、培养,并且插入物可以被拿出、被纯化用于分析。克隆和获取纯化的核酸插入物的方法,在本技术领域是已知的。
本技术领域的熟练技术人员将意识到,权利要求所要求保护的主题范围不限于核酸的分析,但也包括其它类型生物分子的分析,包括但不限于蛋白质、脂类和多糖。制备和/或纯化各种各样类型的生物分子的方法,在本技术领域是已知的,可以使用任何这样的方法。
编码探针文库(Coded Probe Libraries)
在本发明的某些实施方案中,编码探针可能包括探针分子的一个文库,每一个不同的探针附着在一个可以辨识的纳米条形码上。在给定文库范围内,特定探针分子的拷贝多于一个是可能的。在这种情况下,相同探针的每一拷贝将被结合到相同的纳米条形码上。所用的探针和纳米条形码的类型没有限制,可以使用任何已知类型的探针分子,包括但不限于寡核苷酸、核酸、抗体、抗体片段、结合蛋白、受体蛋白、肽、外源凝集素、底物、抑制剂、激活剂、配体、激素、细胞因子等等。进一步,可以使用任何类型的可以辨识的纳米条形码。
寡核苷酸文库(Oligonucleotide Libraries)
在本发明的多个实施方案中,编码探针可能包括寡核苷酸探针,如具有既定序列的寡核苷酸。寡核苷酸可以结合到可以辨识的纳米条形码上,杂交到将要分析的核酸上,和被连接在一起的相邻编码探针上。正如上面所讨论的,从核酸分离后,连接的编码探针可以附着到一个表面上,并且被排列。然后,排列的编码探针可以通过扫描探针显微镜(scanning probe microscopy,SPM)进行分析。SPM分析允许编码探针的纳米条形码部分的检测和鉴定,以及允许确定编码探针结合核酸的序列。这一信息可以被用于鉴定核酸和/或用于确定核酸序列。熟练技术人员将意识到,权利要求所要求的主题不限于SPM检测方法,可以使用能检测和鉴定在表面上排列的纳米条形码和/或编码探针的任何分析方法。熟练技术人员也将意识到,SPM分析不限于检测和鉴定基于寡核苷酸的编码探针,而是可以在任何类型的编码探针和/或纳米条形码上使用。
在本发明的可选择性实施方案中,不需要连接相邻编码探针,编码探针(coded probes)就可以被检测。编码探针可以与同一靶分子的多个拷贝杂交。未杂交的编码探针可以被去除,杂交的编码探针可以被检测。在一些实施方案中,当仍然与靶分子杂交时,编码探针可以被检测。可以选择地,编码探针可以与靶分子分离,例如通过加热样品,然后进行检测。在这样的实施方案中,在检测之前,纳米条形码组分能或者不能从编码探针的探针组分上去除。
在本发明的某些实施方案中,当仍然附着在靶分子上时,编码探针可以被检测到。假定短寡核苷酸探针和靶核酸之间的结合相互作用是相对较弱强度时,这样的方法可能更适合,例如使用交联试剂将编码探针已经共价结合到靶分子上的情况下,或者在探针分子和靶物质之间的结合相互作用较强的情况下,正如抗体-抗原相互作用。在本发明的多个实施方案中,寡核苷酸型编码探针可以是DNA、RNA或其任何类似物,如肽核酸(peptide nucleic acid,PNA),它可以被用来在一个核酸中鉴定特定互补序列。在本发明的某些实施方案中,可以制备一个或多个编码探针文库,来与一个或多个核酸分子杂交。例如,可以使用一组含有所有4096或大约2000个非互补6-mers(6-聚体),或所有16384或大约8000个非互补7-mers(7-聚体)的编码探针。如果将要使用的是寡核苷酸编码探针的非互补子集,可以进行多重性杂交和序列分析,分析的结果通过计算方法合并为一个单一数据集合。例如,如果使用仅含有非互补6-mers的文库用于杂交和序列分析时,可以适用与那些第一个文库所不包括的编码探针序列杂交的同一靶核酸分子进行第二次杂交和分析。
在本发明的一些实施方案中,编码探针文库可以包括对于给定寡核苷酸长度所有可能的序列(例如,六聚体文库将包括4096个编码探针)。在这样的情况下,某些编码探针将与互补编码探针序列形成杂化物。这样的杂化物,以及未杂交的编码探针,可以使用已知方法与杂交到靶分子上的编码探针分离,如高效液相层析(HPLC)、凝胶渗透层析、凝胶电泳、超滤和/或羟基磷灰石层析。对于给定长度,选择和产生所有可能序列的寡核苷酸的完整集合或特定子集的方法是已知的。在各种实施方案中,可以使用长度为2、3、4、5、6、7、8、9、10、11、12、13、14、15、16、17、18、19、20、21、22、23、24、25或更多个核苷酸的编码探针。
在本发明的某些实施方案中,编码探针文库可以包括随机核酸序列,位于与恒定核酸序列在一个端或两个端结合的编码探针的中间部位。例如,12-mer(12-聚体)编码探针的子集可以包括在每一端与恒定2-mers结合的随机8-mer序列的完整集合。这些编码探针文库可以根据它们的恒定部分进行细分,并且分别地与核酸杂交,随后使用每一不同编码探针文库的联合数据,通过分析来确定核酸序列。熟练技术人员将意识到,所需的子文库的数量是结合到随机序列上的恒定碱基数量的函数。另一个替代性实施方案可以使用多元杂交和分析,一个单一编码探针文库含有结合到随机寡核苷酸序列上的一个特定恒定部分。对于在核酸上的任何给定位点,具有不同的但是是重叠的序列的多个编码探针与该位点以稍微偏移的方式结合是可能的。因此,采用单一文库使用多个杂交和分析,可以通过编辑重叠、偏移编码探针序列获得核酸的完整序列。
在本发明涉及寡核苷酸文库的实施方案中,寡核苷酸可以通过任何已知方法制备,如通过在Applied Biosystems 381A DNA synthesizer(Foster City,CA)或类似设备上合成。可以选择地,可以从多个卖方购买寡核苷酸(例如Proligo,Boulder,CO;Midland Certified Reagents,Midland,TX)。在寡核苷酸是化学合成的情况下,纳米条形码可以共价连接到一个或多个用于合成的核苷酸前体上。可以选择地,纳米条形码可以在已经合成寡核苷酸之后被结合。在其它可选择的形式中,可以随着寡核苷酸合成,纳米条形码被同时附着上去。
在本发明的某些实施方案中,编码探针可以包括肽核酸(peptidenucleic acids,PNAs)。PNA是具有腺嘌呤(A)、鸟嘌呤(G)、胸腺嘧啶(T)和胞核嘧啶(C)单体单元的聚酰胺型DNA类似物。PNAs是从公司通过商业途径获得的,如PE Biosystems(Foster City,CA)。可以选择地,在存在叔胺、N,N-二异丙基乙胺(DIEA)的情况下,PNA合成可以如此进行,用9-氟甲氧基羰基(Fmoc)单体激活,用O-(7-氮杂苯并三唑-1-基)-1,1,3,3-四甲基脲六氟磷酸酯(O-(7-azabenzotriazol-1-yl)-1,1,3,3-tetramethyluroniumhexafluorophosphate,HATU)偶联。PNA可以通过反相高效液相层析(reverse phase high performance liquid chromatography,RP-HPLC)纯化,通过基质辅助激光解吸电离-时间飞行质谱(MALDI-TOF)分析来检验。
纳米条形码(Nano-barcodes)
每一编码探针可以结合至少一个共价或非共价附着的纳米条形码。纳米条形码可以被用来检测和/或鉴定个体编码探针。在本发明的某些实施方案中,每一编码探针可以具有两个或多个附着的纳米条形码,它们的组合对于特定编码探针是独特的。纳米条形码的组合可以被用来扩展可以用于在文库中特定地鉴定编码探针的可辨识纳米条形码的数量。在本发明的其它实施方案中,编码探针可以每一个具有一个结合的单一的独特纳米条形码。唯一的要求是,从每一个编码探针所检测的信号必须能区别性地从不同的编码探针鉴定该编码探针。
在本发明的某些实施方案中,纳米条形码可以在合成编码探针之前被整合到前体中。对于基于寡核苷酸的编码探针,可以预期到在腺嘌呤(A)和鸟嘌呤(G)位置处的共价附着的内部氨基修饰。内部附着也可以使用可通过商业途径获得的亚磷酰胺(phosphoramidite)在胸腺嘧啶(T)位置处进行。在一些实施方案中,在A和G位置具有正丙胺连接子的文库片段可以被用来将纳米条形码附着到编码探针上。内部氨烷基尾部的引入允许纳米条形码的合成后附着(post-synthetic attachment)。连接子(linkers)可以从卖主处购买,例如Synthetic Genetics(San Diego,CA)。在本发明的一个实施方案中,也应该预期到使用纳米条形码的适当的亚磷酰胺衍生物进行的自动偶联。这样的纳米条形码可以在寡核苷酸合成中被偶联到5’-末端。
一般而言,纳米条形码将以如此一种方式被共价附着到探针上,此方式以便最小化纳米条形码的位阻,目的在于有助于编码探针结合到靶分子上,如杂交到核酸上。可以使用连接子,以便对编码探针提供一定程度的柔韧性。均相和非均相双功能连接子可以从多个商业来源获得。
到寡核苷酸碱基上的附着位点将随着碱基有所变化。尽管在任何位置的附着是可能的,但在某些实施方案中,附着发生在不涉及与互补碱基进行氢键结合的位置。因此,例如附着可以在嘧啶的第5或第6位置,如尿嘧啶、胞嘧啶和胸腺嘧啶。对于嘌呤如腺嘌呤和鸟嘌呤,键合可以通过第8位置。权利要求所要求的方法和组合物不限于任何特定类型的探针分子,如寡核苷酸。纳米条形码到其它类型探针如肽、蛋白质和/或抗体探针的连接方法,在本技术领域是已知的。
关于可以使用的纳米条形码的类型,本发明的实施方案没有限制。应该预期到,可以使用本技术领域已知的任何类型的纳米条形码。非限定性实施例包括碳纳米管、富勒烯和亚微米金属条形码。
金属条形码(Metallic Barcodes)
可以潜在用作纳米条形码的亚微米金属条形码的实例,在本技术领域是已知的(例如Nicewarner-Pena等人,Science 294:137-141,2001)。Nicewarner-Pena等人(2001)公开了制备采用亚微米条带编码的多金属微棒(multimetal microrod)的方法,由多同类型的金属构成。该系统允许产生大量可区别的纳米条形码——使用两种类型的金属,可以高达4160;使用三种不同类型的金属,多达8x105。这样的纳米条形码可以被整合到编码探针中,通过SPM技术读出。将金属颗粒如金和银附着到寡核苷酸和其它类型的探针分子的方法,在本技术领域是已知的(例如美国专利5,472,881)。金属性纳米条形码(MetallicnanobarcodesTM)可以从商业来源获得(例如Nanoplex Technologies,Mountain View,CA)。
量子点微珠(Quantum Dot Microbeads)
纳米条形码也可以包括量子点标记微珠,正如Han等人所公开的(Nature Biotech.19:631-635,2001)。通过将不同大小的量子点(硫化锌-封端的硒化镉纳米晶体)以精确控制的定量嵌入到聚合微珠中,产生多色光学编码微珠。尽管2001出版物涉及使用微珠用于荧光标记和检测,但是熟练技术人员将意识到这样的珠子也可以以其它检测形态使用,如SPM成像。可以选择地,已经提议了多孔硅光子晶体(poroussilicon photonic crystals),通过恒电流阳极蚀刻编码(Cunin等人,NatureMaterials 1:39-41,2002)。这样的微米大小的、纳米结构的颗粒也可以用于纳米条形码的SPM检测。
碳纳米管(Carbon Nanotubes)
在公开的方法中使用纳米条形码的另一个例证性,包括单壁纳米碳管(SWNTs)。纳米管可以制成多种形状和大小,它们是可以通过SPM方法区分的。(例如参见Freitag等人,Phys.Rev.B 62:R2307-R2310,2000;Clauss等人,Europhys.Lett.47:601-607,1999;Clauss等人,Phys.Rev.B.58:R4266-4269,1998;Odom等人,Ann.N.Y.Acad.Sci.960:203-215,2002)。Odom等人(2002)公开了一种STM(scanning tunneling microscope,扫描隧道显微镜)技术,该技术能检测大小为10nm或更小的SWNTs的隧道光谱中的离散峰值。这样的峰值可以代表碳纳米管的电子态密度(density of electronic states,DOS)中的van Hove奇异性。
碳纳米管的电子特性被通过管的长度进行调节。电子的波函数对于长度的灵敏度是通过管长度L的能级分裂的估计值表示的。
ΔE=hvF/2F(Eq.1)
其中h是普朗克常数,vF是费米速率(8.1x105米/秒)(Venema等人,“Imaging Electron Wave Functions of Carbon nanotubes,”Los AlamosPhysics Preprints:cond-mat/9811317,1996年11月23。)电子能级之间的差异与纳米管的长度成反比,对于更长的管子观察到了更精细的分裂。
对于本发明的某些实施方案,被用作纳米条形码的纳米管的管子长度为大约10到200nm,直径为大约1.2到1.4nm。被用作纳米条形码的纳米管的长度或直径没有限制,应该预期到实际上任何长度或直径的纳米管。
应该预期到,纳米管可以通过已知方法制备,或者从商业来源获得,例如CarboLex(Lexington,KY),NanoLab(Watertown,MA),Materials and Electrochemical Research(Tucson,AZ)或者Carbon NanoTechnologies Inc.(Houston,TX)。在使用之前,对或者合成或者购买的纳米管进行一些处理是适当的。处理可以包括从其它污染物中纯化纳米管,将混合直径和/或长度的纳米管分离为离散直径和长度的纳米管,去除纳米管端帽和/或共价修饰,以促进纳米管附着到探针上,从而形成编码探针。
在本发明的某些实施方案中,变化长度和/或直径的纳米管可以通过本技术领域已知的多种技术来产生,包括但不限于碳弧放电、通过碳氢化合物的催化高温分解所进行的化学汽相淀积,等离子体辅助化学汽相淀积,含有催化金属的石墨靶物质的激光烧蚀,或者凝聚相电解。(例如参见美国专利6,258,401,6,283,812和6,297,592。)在一些实施方案中,纳米管可以通过质谱分析对大小进行分类(参见Parker等人,J.Am.Chem.Soc.113:7499-7503,1991)。可以选择性地,可以用AFM(atomic force microscope,原子力显微镜)或STM(scanningtunneling microscope,扫瞄隧道显微镜)对纳米管进行分类,以便在将纳米管整合到编码探针之前精确地测量个体纳米管的几何形状。应该预期到,本技术领域已知的其它大小分级方法,如气相层析、时间飞行质谱、超滤或等价技术。一旦分类完毕,可以对碳纳米管进行衍生,并且共价附着到已知序列的寡核苷酸探针或任何其它类型探针上。
对于一个碳纳米管,可能的长度最小增量变化是碳碳键的长度,或者大约0.142nm。对于200nm的管长度范围,将允许大约1400个离散纳米条形码。然而,该方法不限于每个编码探针的单一纳米管。在可以选择的实施方案中,多个不同长度和直径的纳米管可以被连接到一个单一编码探针上。使用不同长度纳米管的组合,可能可区别的纳米条形码的数量成指数增加。在一些实施方案中,为了简化分析,单一纳米管可以被附着到单一探针分子上。
本发明的其它实施方案涉及产生具有已知长度和直径的碳纳米管。在非限定性的例证性实施方案中,一个芯片可能含有具有预选厚度的SiC层,该层覆盖了另一个层,例如由硅或掺杂了催化剂的硅组成的层(例如金属原子,如镍)。使用标准芯片处理方法,如光刻和蚀刻或激光烧蚀,SiC层可以被划分为任何长度、宽度、厚度和形状的SiC沉积物。随后芯片可以在真空下加热,例如在大约1400℃大约10-7托(Torr)下,或者可以选择地从大约10-3到10-12托,10-4到10-10托,或者10-5到10-9托,和从1200℃到2200℃或者1400℃到2000℃。在这些条件下,SiC晶体发生自然分解,失去硅原子(美国专利6,303,094)。剩余的碳原子自然装配成碳纳米管。可以对SiC沉淀物的大小和形状进行精确控制,以产生任意长度和直径的碳纳米管。
上面所讨论的本发明的例证性实施方案没有限制,可以使用任何产生选定长度和直径的碳纳米管(例如美国专利6,258,401;6,283,812和6,297,592)的方法。在一些实施方案中,可以使用激光束、电子束、离子束、气体等离子束调节纳米管的长度,以修正末端。可以选择地,纳米管的末端可以在含有氧气的环境下与热刀接触,以氧化地去除管的末端。含有纳米管的坯料也可以被分割,或者磨光以截平纳米管。
在本发明的某些实施方案中,碳纳米管可以用活性基团衍生以有助于对探针分子的附着(attachment)。在非限定性实施例中,纳米管可以被衍生化,以含有羧酸基团(美国专利6,187,823)。羧酸盐衍生纳米管可以通过标准化学附着到探针分子上,例如通过碳二亚胺介导形成与位于探针上的伯胺或仲胺基团的酰胺键合。衍生和交联的方法没有限制,可以使用本技术领域已知的任何活性基团或交联方法。
富勒烯(Fullerenes)
在本发明的可以选择的实施方案中,富勒烯可以被用作纳米条形码(nanobarcodes)。产生富勒烯的方法是已知的(例如美国专利6,358,375)。富勒烯可以通过与上面所公开的碳纳米管类似的方法衍生并且连接到探针分子上。含有富勒烯的编码探针可以通过SPM技术来鉴定,这类似于上面那些对于纳米管所公开的方法。
在本发明的某些实施方案中,富勒烯可以被连接到寡核苷酸编码探针中的个体核苷酸上。在这样的情况下,只需要两种不同类型的可区别的富勒烯,这是由于在寡核苷酸中仅存在有四种类型的核苷酸,两种类型的富勒烯可以组合出四种不同的组合(例如AA、BB、AB和BA)。在个体核苷酸被附着到纳米条形码上的情况下,使用核苷酸和富勒烯之间的已知连接基团是适当的,以避免杂交到靶核酸时的位阻。
熟练技术人员将意识到,所公开的方法中所用的纳米条形码不限于此处公开的实施方案,而是可以包括可以连接到探针并且被检测的任何其它类型的已知纳米条形码。具有潜在用途的纳米条形码的其它非限定性实施例包括量子点(例如Schoenfeld等人,Proc.7th Int.Conf.on Modulated Semiconductor Structures,Madrid,605-608页,1995;Zhao等人,1st Int.Conf.on Low Dimensional Structure and Devices,Singapore,467-471页,1995)。量子点和其它类型的纳米条形码可以通过已知方法合成和/或从商业来源获得(例如Quantum Dot Corp.,Hayward,CA)。其它具有潜在用途的纳米条形码包括纳米颗粒(nanoparticles),例如可以从Nanoprobes Inc.(Yaphank,NY)和Polysciences,Inc.(Warrington,PA)获得的纳米颗粒。
基于寡核苷酸编码探针的杂交和连接
(Hybridization and Ligation of Oligonucleotide-Based Coded Probes)
在本发明的多个实施方案中,靶核酸与基于寡核苷酸的编码探针文库的杂交,可以在仅允许完全互补核酸序列之间发生杂交的严格条件下发生。低严格杂交条件通常在0.15M到0.9M NaCl和在20℃到50℃的温度范围下进行。高严格杂交条件通常在0.02M到0.15MNaCl和在50℃到70℃的温度范围下进行。应该理解到,适当严格性的温度和/或离子强度部分地是通过寡核苷酸探针的长度,靶序列的碱基含量,以及杂交混合物中存在甲酰胺、氯化四甲铵或其它溶剂来确定的。上面提及的范围是例证性的,对于特定杂交反应的适当严格性,通常是根据经验,依据与阳性和/或阴性对照组进行比较来确定。本技术领域的普通技术人员,能按照常规程序调节杂交条件,以允许仅仅发生完全互补的核酸序列之间的严格杂交。
一旦短的编码探针已经与核酸杂交,可以使用已知方法将相邻编码探针连接在一起(例如参见美国专利6,013,456)。短至6到8个碱基的寡核苷酸序列,可以有效地与靶核酸杂交(美国专利6,013,456)。可以使用长度至少为6到8个碱基的寡核苷酸实现不依赖于引物的连接(Kaczorowski和Szybalski,Gene 179:189-193,1996;Kotler等人,Proc.Natl.Acad.Sci.USA 90:4241-45,1993)。连接与核酸模板杂交的寡核苷酸编码探针,在本技术领域是已知的(美国专利6,013,456)。相邻寡核苷酸编码探针的酶促连接,可以使用DNA连接酶,如T4、T7或Taq连接酶,或大肠杆菌DNA连接酶。酶促连接的方法是已知的(例如Sambrook等人,1989)。
分子的固定化(Immobilization of Molecules)
在本发明的多个实施方案中,将要分析的靶分子可以被固定化,在编码探针结合之前、之后和/或过程中。例如,靶分子固定化可以被用来促进结合的编码探针从未结合的编码探针中的分离。在某些实施方案中,靶分子固定化(target molecule immobilization)也可以,在编码探针检测和/或鉴定之前,被用来从靶分子上分离结合的编码探针。尽管下述讨论针对核酸的固定化作用,但本技术领域的熟练技术人员将意识到固定各种各样类型的生物分子的方法在本技术领域是已知的,并且可以在权利要求所要求保护的方法中使用。
可以运用核酸固定,例如来促进靶核酸从连接的编码探针以及从未杂交的编码探针或彼此杂交在一起的编码探针中的分离。在一个非限定性的实施例中,靶核酸可以被固定化,并且允许与编码探针杂交,然后,杂交的相邻编码探针被连接在一起。彻底地洗涤含有结合核酸的基质,以去除未杂交的编码探针以及与其它编码探针杂交的编码探针。在洗涤之后,通过加热到大约90到95℃并维持几分钟,从固定化的靶核酸中去除杂交和连接的编码探针。正如上面所公开的,连接的编码探针可以被连接到表面,并且通过分子梳来排列。然后排列的编码探针可以通过SPM来分析。
核酸的固定化,可以通过本技术领域已知的多种方法来实现。在本发明的一个例证性实施方案中,可以通过用链霉抗生物素蛋白或抗生物素蛋白包被基质,随后通过生物素化的核酸附着来实现固定(Holmstrom等人,Anal.Biochem.209:278-283,1993)。固定也可以通过用聚-L-Lys(lysine,赖氨酸)包被硅、玻璃或其它基质、随后使用双功能交联试剂通过氨基或者巯基修饰核酸的共价连接而发生(Running等人,BioTechniques 8:276-277,1990;Newton等人,Nucleic Acids Res.21:1155-62,1993)。氨基残基可以通过使用用于交联的氨基硅烷被引入到基质上。
固定化作用可以通过5’-磷酸化核酸到化学修饰基质上的直接共价连接而发生(Rasmussen等人,Anal.Biochem.198:138-142,1991)。核酸和基质之间的共价键是通过水溶性碳二亚胺或其它交联试剂的缩合作用形成的。该方法有助于核酸通过它们的5’-磷酸主要实现5’-附着。例证性的修饰基质将包括载玻片或盖玻片,所述载玻片或盖玻片已经在酸浴中处理过,暴露出玻璃上的SiOH基团(美国专利5,840,862)。
DNA通常结合到玻璃上,通过首先硅烷化玻璃基质,然后用碳二亚胺或戊二醛活化实现。在可以替代的程序中,可以使用如下试剂,如3-环氧丙氧丙基三甲氧基硅烷(3-glycidoxypropyltrimethoxysilane,GOP),乙烯基硅烷,或氨丙基三甲氧基硅烷(aminopropyltrimethoxysilane,APTS),具有通过在分子的3’或5’端引入的氨基连接子连接的DNA。DNA可以使用紫外线辐射直接附着在基质上。用于核酸的固定技术的其它非限定性实例公开在美国专利5,610,287;5,776,674和6,225,068中。用于核酸结合的可以通过商业途径获得的基质是可以使用的,如Covalink、Costar、Estapor、Bangs和Dynal。熟练技术人员将意识到,所公开的方法不限于核酸的固定,并且具有潜在用途,例如用于将寡核苷酸编码探针的一端或两端附着到基质上。
用于固定核酸或其它靶分子的基质类型没有限制。在本发明的多个实施方案中,固定基质可以是磁珠、非磁性珠、平面基底或几乎包括任何材料的固体基底的任何其它结构。可以使用的基质的非限定性实例包括玻璃、硅土、硅酸盐、PDMS(聚二甲基硅氧烷)、银或其它金属涂覆基底、硝化纤维、尼龙、活性石英、活性玻璃、聚偏1,1-二氟乙烯(PVDF)、聚苯乙烯、聚丙烯酰胺,其它聚合物如聚氯乙烯或聚甲基丙烯酸甲酯,和含有光活性种类的光聚合物,如氮宾、卡宾,以及能与核酸分子形成共价键的羰游基基团(参见美国专利5,405,766和5,986,076)。
双功能交联剂(bifunctional cross-linking reagents)可以在本发明的多个实施方案中使用。双功能交联剂可以根据它们的功能基团的特异性划分,如氨基、胍基、吲哚、或羧基特异性基团。在这些交联剂中,针对游离氨基基团的试剂是受欢迎的,这是由于这些试剂的商业实用性、易于合成以及可以应用它们的温和反应条件。交联分子的例证性方法,公开在美国专利5,603,872和5,401,511中。交联试剂包括,戊二醛(GAD)、双功能环氧乙烷(OXR)、已二醇二缩水甘油醚(EGDE)和碳二亚胺,如1-乙基-3-(3-二甲基氨基丙基)碳二亚胺(EDC)。
扫描探针显微镜(Scanning Probe Microscopy)
扫描探针显微镜(SPM)是用来测量处在微米和/或纳米数量级的物体的物理性能的一组设备。可以获得不同模式的SPM技术,下面对这些技术进行了更详细的讨论。任何形式的SPM分析可以被用于编码探针检测和/或鉴定。一般而言,SPM设备,在非常接近表面的地方,使用非常小的、尖端探针,以测量物体的性能。在一些类型的SPM设备中,探针可以被安装在悬臂上,该悬臂的长度可以是数百微米,厚度介于大约0.5到5.0微米之间。典型地,探针尖端,以xy模式,光栅扫描表面,以便绘制表面特性中的局部变化。用于成像生物分子和/或检测用作纳米条形码的分子的SPM方法,在本技术领域是已知的(例如Wang等人,Amer.Chem.Soc.Lett.,12:1697-98.1996;Kim等人,Appl.Surface Sci.130,230,340-132:602-609,1998;Kobayashi等人,Appl.Surface Sci.157:228-32,2000;Hirahara等人,Phys.Rev.Lett.85:5384-87,2000;Klein等人,Applied Phys.Lett.78:2396-98,2001;Huang等人,Science 291:630-33,2001;Ando等人,Proc.Natl.Acad.Sci.USA12468-72,2001)。
扫描隧道显微镜(Scanning Tunneling Microscopy,STM)
扫瞄隧道显微镜是二十世纪八十年代早期开发的第一个SPM技术。STM依赖于探针尖端和样品表面之间存在的量子机械电子隧道(quatum mechanical electron tunneling)。尖端被尖锐为单一原子点,光栅扫描通过表面,保持探针-表面间隙距离为数埃,使其不实际接触到表面。在探针尖端和样品之间施加小的电压差(在毫伏数量级到几个伏特),测定尖端和样品之间的隧道电流。当尖端扫描过表面时,样品的电性和局部形态特性的差异引起在隧道电流的量上的变化。在本发明的某些实施方案中,尖端的相对高度可以通过具有反馈控制的压电元件来控制,与计算机连接。计算机可以实时监控电流强度,将尖端向上或向下移动以保持相对恒定的电流。在不同的实施方案中,尖端的高度和/或电流强度通过计算机处理,以显示扫描表面的图像。
由于STM测量样品和样品外形的电特性,所以它可以区分不同类型的导电材料,如在金属条形码中的不同金属类型。STM也能测量局部电子密度。由于隧道电导与局部态密度(DOS)成比例,所以STM也可以被用来区分碳纳米管,它们的电学特性依赖于纳米管的直径和长度而有所变化。STM也可以被用来检测和/或鉴定任何纳米条形码,它们在其电特性是不同的。
STM探针尖端可以扫描过含有排列编码探针的表面,以检测和鉴定表面上的每一个编码探针。也可以鉴定连接的编码探针(ligatedcoded probes)。通过确定与靶分子结合的编码探针来鉴定靶分子。在本发明的实施方案中,编码探针显示特定序列(如寡核苷酸序列)的存在,可以从与靶分子结合的编码探针的序列来确定生物分子的序列。
原子力显微镜(Atomic Force Microscopy)
另一种形式的SPM是原子力显微镜(AFM)。通过AFM进行的生物分子分析方法,在本技术领域通常是已知的(例如Uchihashi等人,“Application of Noncontact-Mode Atomic Force Microscopy toMolecular Imaging,”http://www.foresight.org/Conferences/MNT7/Abstracts/Uchihashi)。在AFM显微镜中,探针被连接到与将被分析的表面接触的弹簧加载或弹性悬臂上。接触在分子力范围内进行(即在范德华力的相互作用范围内)。在AFM内,不同操作模式是可能的,包括接触模式、非接触模式和TappingModeTM
在接触模式中,探针尖端和样品表面之间的原子力通过保持-样品距离常数、并且测量悬臂的偏差来测量,通常通过将悬臂的激光偏转到位置敏感检测器上来测量。悬臂偏转导致反射激光束位置发生了变化。正如在STM中,探针尖端的高度可以使用具有反馈控制的压电元件进行计算机控制。在本发明的一些实施方案中,通过提高或降低探针尖端来维持相对恒定的偏转程度。由于探针尖端可以与样品实际(范德华)接触,接触模式AFM趋向于使非刚性样品变形。在非接触模式中,尖端被保持在样品表面上的大约50到150埃之间,并且尖端是振荡的。尖端与样品之间的范德华相互作用反映在尖端摆动的相位、振幅或频率的变化上。非接触模式中获得的分辨率相对较低。
在TappingModeTM中,使用压电元件,悬臂以它的共振或接近共振频率振动。AFM尖端周期性地接触(或轻打)样品表面,在空气中的频率为每秒大约50000到500000个周期,在液体中的频率较低。当尖端开始接触样品表面时,振动的振幅有所降低。振幅的变化被用来确定样品的拓扑特性。由于AFM分析不依赖于电导率,所以该分析可以被用来分析非导电材料的拓扑特性。某些类型的纳米条形码,包括但不限于碳纳米管、富勒烯和纳米颗粒,它们在其拓扑特性是不同的,可以通过AFM技术来检测和/或鉴定。
在可以替代的AFM模式中,除了样品的拓扑图之外,可以获得额外的信息。例如,在侧向力显微镜(lateral force microscopy,LFM)中,探针在与它的长度垂直的方向进行扫描,并且悬臂的扭转程度被测定。悬臂扭转将依赖于表面的摩擦特性。由于编码探针的摩擦特性可能依赖于其组成而有所变化,所以LFM可以用于检测和鉴定不同的编码探针。
另一个变化形式是化学力显微镜(chemical force microscopy,CFM),其中探针尖端用化学物质功能化,并且扫描样品以检测化学物质和样品之间的粘附力(例如Frisbie等人,Science 265:2071-2074,1994)。对于纳米条形码材料具有不同亲合力的化学品,如金或银,可以被整合进AFM探针尖端,并且扫描表面以检测和鉴定纳米条形码。另一个具有潜在用途的SPM模式是力调制成像(force modulationimaging)(Maivald等人,Nanotechnology 2:103,1991)。Uchihashi等人(http://www.foresight.org/Conferences/MNT7/Abstracts/Uchihashi)公开了一种以非接触模式AFM、使用频率调制的生物分子成像方法。
其它可以被潜在地用于检测和/或鉴定编码探针的SPM模式包括,磁力显微镜(magnetic force microscopy,MFM),高频率MFM,磁阻敏感影像(magnetoresistive sensitivity mapping,MSM),电力显微镜(electric force microscopy,EFM),扫描电容显微镜(scanningcapacitance microscopy,SCM),扫描延伸电阻显微镜(scanning spreadingresistance microscopy,SSRM),隧道AFM和导电AFM。在这些类型的一些之中,可以测定样品的磁性。熟练技术人员将意识到,可以设计金属条形码和其它类型的纳米条形码,可以通过它们的磁性以及通过它们的电特性来鉴别。
用于编码探针检测和/或鉴定的SPM设备可以通过商业途径获得(例如Veeco Insruments,Inc.,Plainview,NY;Digital Instruments,Oakland,CA)。替代性地,可以使用客户定制设计的SPM设备。
纳米条形码(Nano-barcodes)和扫描探针显微镜(Scaning ProbeMicroscopy)
图1到图4示意性说明了本发明的例证性实施方案。图1A和图1B示意性说明了用于在表面100上排列编码探针130的非限定性方法。表面100,例如已经通过已知方法用链霉抗生物素蛋白包被的玻璃显微镜载玻片100,被浸入到溶液110中,例如含有生物素化编码探针130的溶液。溶液110可以被包括在容器120中。
在非限定性实施例中,编码探针130包括已经与靶核酸分子杂交的寡核苷酸探针(oligonucleotide probes)。核酸分子可以通过与尼龙膜、96孔微量滴定平板或其它固定基质附着而被固定化。例如包括所有4096个可能的6-聚体序列的生物素化寡核苷酸,可以从商业来源获得(例如,Midland Certified Reagents,Midland,TX)。生物素化寡核苷酸可以被连接,例如连接到亚微米金属条形码上(Nicewarnar-Pena等人,2001),从而形成编码探针130。编码探针130允许与靶核酸杂交。在杂交后,相邻编码探针130使用连接酶连接在一起。未杂交的编码探针130和彼此杂交在一起的编码探针130通过粗放洗涤来去除,仅剩下与核酸杂交的编码探针130。编码探针130是通过将溶液110加热到95℃、维持5分钟而去除。与固定基质附着的核酸被去除,仅将连接的编码探针留在溶液110中。
溶液110中保留的生物素化编码探针130在一个端与链霉抗生物素蛋白涂覆表面100连接。表面100从溶液110中被慢慢去除。可以选择地,来自溶液110的液体从容器120中慢慢地被去除,例如通过蒸发或慢慢抽吸。当空气-水界面的弯月面慢慢地移动通过表面100时,附着的编码探针130在表面100上被排列。排列的编码探针130可以通过AFM、STM或其它扫描探针方法来分析。
图2对本发明的另一个例证性实施方案进行了示意性说明。将一滴含有编码探针230的溶液210放置在表面220上,如玻璃载玻片上。在某些实施方案中,玻片220可以如上所公开地进行处理,以结合编码探针230的一个或两个端。溶液滴210被夹心在表面220和盖玻片200之间。在多个实施方案中,当表面220从盖玻片200上被慢慢地拖走时,盖玻片200可以保持在一个恒定位置。这在盖玻片200的边缘产生了液面,其有助于排列编码探针230。
在本发明的多个实施方案中,编码探针130、230可以在两个端而不是一个端被附着到表面100、220上。在这种情况下,编码探针130、230的排列将导致U型分子,而不是线性分子(例如美国专利5,840,862)。图1和图2中示意性说明的例证性实施方案,也可以通过将编码探针130、230的两个端与表面100、220附着来进行(未显示出)。
在图3中,示意性说明的是另一个例证性实施方案,编码探针340可以在表面300上通过自由流动电泳进行排列。表面300可以包括导电和非导电材料的交互带,如涂覆到玻璃板320上的金膜带310。在存在交流电场330下,含有带电残基如寡核苷酸上的磷酸基团的编码探针340将与电场330对齐。自由流动电泳可以与分子梳联合使用,或者可以代替分子梳,以便在表面300上对齐编码探针340。进行自由流动电泳的方法是已知的(例如Adjari and Prost,Proc.Natl.Acad.Sci.U.S.A.88:4468-71,1991)。然而,本应用提出了在表面上对齐分子的自由流动电泳的第一用途。
实施例
实施例1:纳米标记元件(Nano-tag Elements)
表1显示了纳米标记元件的例证性列表,其分子结构可以用于纳米条形码的生产。大部分所罗列的元件具有纳米大小特征。纳米标记元件通过母结构来分组,被划分为富勒烯分子,POSS(多面体寡聚硅倍半氧化物,含笼型硅氧烷,polyhedral oligomeric silseqquioxane)分子,和有机金属化合物。POSS分子是相对新型的杂交结构,基于硅倍半氧化物的笼形结构。富勒烯和POSS分子是相对对称的三维结构,而有机金属化合物或者是平面的,或者是非对称的三维结构。富勒烯在任何溶剂中表现出相对低的可溶性。POSS分子在塑料聚合物中被用作添加剂,在单个沉积中往往表现出集结。有机金属化合物的优点在于巨大的多样性,这是由于金属中心和有机配对物间的组合配对。此外,这些分子的三维多样性可以在3D不对称到2D对称的范围中变化。许多有机金属化合物可以被双功能化,以便对元件进行下游处理,成为条形码。有机金属分子是大量成像研究的对象,并且具有可以容易地通过分子成像观察的特征。熟练技术人员将意识到,表1中罗列的纳米标记元件仅仅是例证性的。本技术领域已知有多种纳米标记元件,这些元件可以被用于制成纳米条形码,包括但不限于量子点和碳纳米管。任何这样已知的纳米标记元件可以被用于产生纳米条形码和编码探针。
实施例2合成方案(Synthetic Schemes)
双功能中间体(Bifunctional Intermediates)
图5示意性说明了用于纳米标记介导的条形码合成的一个例证性方案,涉及产生双功能化纳米标记元件,该元件可以被用作结构单元(构件,building block),用于个体单位的可控制逐步头对尾装配,形成特定聚合物序列。该方法已经在分子生物化学中用于在自动固相合成仪器上制备肽和寡核苷酸。图5A显示了一种例证性的纳米标记元件初始转化成双功能分子。两个双功能部分(R1和R2)被示出,它们附加到到标记元件的相对端。图5B示意性说明了选择性和暂时保护一个基团,同时激活另一个功能基团。这些技术是众所周知的,例如在固相肽合成中。图5C示意性说明了在可控聚合中逐步加入结构单元。典型地,将暂时保护基团从生长聚合物的端点去除,下一个结构单元被偶合到新的脱保护端点。多个循环引起条形码聚合物的长度有所增加。
示例性R1功能基团包括CH2OH和CONHC3H6NH2。示例性R2功能基团包括CH2OH和COOH。其中当CH2OH被用作R1和R2基团时,R1基团可以用二甲氧基三苯甲基结构进行保护,该结构可以通过酸处理来去除。然后R2基团通过氰乙基-N,N-二异丙基亚磷酰胺来活化。其中当R1基团是CONHC3H6NH2和R2基团是COOH时,R1基团可以通过三苯甲基结构来保护,该部分可以通过酸处理来去除。R2基团可以被活化,例如通过碳二亚胺处理。其它保护/脱保护化学是熟知的,例如在固相肽或寡核苷酸合成中,任何这样的已知方法可以被用于产生纳米条形码。
骨架介导合成(Backbone Mediated Synthesis)
在标准肽或寡核苷酸固相合成后,骨架介导纳米条形码合成是根据模型制作的。纳米标记的元件被转化为单功能化类似物,然后或者连接到氨基酸,或者连接到核苷酸亚磷酰胺上。结构单元将被适当地构建并活化,用于标准自动固相合成。图6示意性说明了整个模式。标记单位通过加入适当的R基团被初始单功能化(图6A)。或者使用基于肽或者使用基于寡核苷酸的聚合作用,功能化标记基团被转化为共价标记的氨基酸亚单位(图6B)或核苷酸亚单位(图6C)。
在这种模式中,一个考虑是骨架的选择,以及自然存在的聚合分子的已知物理和化学特性,如多肽和寡核苷酸。标记元件化学附着到氨基酸或寡核苷酸类似物上,应该具有相等的难易程度。亚磷酰胺聚合化学比肽化学强烈10倍,并且与编码探针的下游合成更兼容。然而,肽可以产生二级结构如α螺旋,α螺旋可以给编码探针提供结构熵(structural entropy)。表2概括了基于可商业途径获得的起始产物的候选者。熟练技术人员将意识到,所罗列的候选者亚单位仅仅是例证性的,本技术领域已知有多种其它潜在的亚单位,并且可以使用。
采用纳米标记元件的聚合物装饰(Polymer Decoration)
另一个编码探针合成的替代性方法需要产生聚合物支架结构(scaffolds),纳米标记元件(nano-tag elements)通过聚合物后装配(post-polymer assembly)附加到该聚合物支架上。例如,肽和寡核苷酸提供线性支架分子,纳米标记元件可以通过后装配附着到该支架分子上。有利地,产生肽或寡核苷酸的方法在本技术领域是熟知的。然而,其它形式的纳米结构可以提供多维支架。该方法的一个困难在于,将多于一种的标记元件(不包括间隔物)放入到聚合物中是困难的。保护/脱保护的高特异性也限制了这样的模式。位阻也阻止了完全装饰。该工艺用于产生编码探针的例证性实例中是最少遇到困难的方法,这是由于该模式的聚合物合成部分被很好地表征了,肽和寡核苷酸的翻译后修饰是已知的。基于寡核苷酸的编码探针的非限定性实例提供在下面的实施例中。基于例证性寡核苷酸的编码探针上的分支点,可以通过SPM技术检测,或者可以作为纳米颗粒或其它类型纳米标记元件的附着位点。
在特定的适当隔开的位点上具有活性基团的肽或寡核苷酸,可以从商业来源购买。然后,聚合物被暴露给单功能化的纳米标记元件,所有活性位点将被修饰。依赖于该策略,固相化学技术可以被采用,用于用纳米标记元件进行的装饰,从而阻止不需要的分子间的聚合反应。
表3罗列了例证性的单功能化标记元件以及它们用于装饰的相关聚合物。所罗列的所有组分,目前都可以通过商业途径获得,并且装饰化学是已知的。完全的标记和溶解性是重要的。由于分子被装饰,它们的溶解性受到了影响,这通常导致沉淀。而且,这些结构符合二级和三级结构特性,从而导致复杂的折叠模式(folding patterns)。折叠可以受到沉淀到平坦表面的影响。因此,更刚性的骨架可能表现出某些优点。熟练技术人员将意识到所罗列的功能化纳米标记元件是没有限制的,多种其它功能化纳米标记元件,如量子点或碳纳米管,是已知的,并且可以使用。
聚合物亚单位的直接读出(Direct read)
第四个策略是基于某些氨基酸或核苷酸类似物的电荷密度的STM成像。该方法可以通过商业途径获得特定序列的肽或寡核苷酸合成来实现,随后打点和成像。表4罗列了几个例证性的亚单位,以及将它们整合到聚合物序列中。当设计这些聚合物时,可以考虑二级结构和成像表现。
正如在下面实施例中所公开的,例证性的编码探针亚单位是确定的,并且它们的特征是确定的。
实施例3例证性编码探针亚单位的合成
肽聚合物(Peptide Polymers)
制备例证性的肽聚合物,其潜在用途在于或者产生装饰聚合物,或者产生直接的聚合物成像(SEQ ID NO:1)。进行5mg数量级固相肽合成。所得到的肽用HPLC纯化到大约98%纯度。用质谱来证明全长产物的存在。肽的羧基末端被修饰,以形成酰胺末端基团。AAMAAKAMAAMAKAVAMAAKAVAAMAKAAA(SEQ ID NO:1)
基于与角蛋白、Rop蛋白和聚丙氨酸的序列类似性,该序列被预测是α-螺旋,氨基末端和来自赖氨酸的仲胺面向螺旋的同一侧。这些胺对于任何具有活化羧基基团的单功能化分子产生了极好的附着点,使用了标准二环己基碳二亚胺(DCC)或水溶性碳二亚胺交联。羧基末端上的酰胺保护基团被用于防止肽彼此聚合在一起。
潜在的四级结构形成为螺旋束(例如4-螺旋束),可以通过装饰赖氨酸侧链予以消除或最小化。肽浓度也在影响高级结构的形成中起着重要作用。
第二个合成肽序列(SEQ ID NO:2)是通过固相肽合成制备的,如上所讨论的。设计该序列以检验不同氨基酸及它们的成像能力。通过在一侧加载螺旋优选氨基酸并且用其它氨基酸的侧链装饰另外一侧,设计α-螺旋结构。因此,丙氨酸和甲硫氨酸残基被放置在螺旋的一侧,而剩余氨基酸的代表被放置在螺旋的另一侧上。GALYAMARAVHAMAEAACQAAWAMG(SEQ ID NO:2)
双功能富勒烯(Bi-functional Fullerenes)
在修饰的C70富勒烯的周围,设计例证性的双功能纳米条形码亚单位,该亚单位与固相寡核苷酸合成是可相容的。在本发明的某些实施方案中,伯醇被用于两个功能基团,从而产生了二醇-富勒烯类似物。也可以使用仲醇和叔醇,尽管它们的活性相对低一些,位阻相对大一些。合成的第一部分涉及形成双功能化富勒烯分子,其中功能基团可以是OH、CH2OH或COOH。在可以选择的实施方案中,制备二羧基化富勒烯,在存在缩合剂(例如DCC)的情况下,羧基基团与试剂反应,如1-氨基3-丙醇试剂反应,以产生两种醇。胺基基团与羧基缩合,导致烃链的附着在羟基残基上终止。该途径可以导致烃链长度不同的几种有用产物,最终在富勒烯链的可控装配上影响了富勒烯的间隔。使用羧基化富勒烯的一个告警是所涉及的其它反应,从而导致较少的产物和较低产率。
在衍生后,纯化双功能化产物。为了从双功能化亚单位有效地形成编码探针,两个功能基团被放置在分子的相对端。去除具有一个官能度或具有两个相邻修饰的杂质。尽管两个功能基团的位置在不到180°分离的情况下可能是可行的,两个功能基团的位置在不到150°的情况下对于编码探针形成是不可接受的。
正如图7中所公开的,纯化的二醇产物被进一步修饰成用于合成的结构单元。三苯甲基化反应是很简单的,涉及二醇修饰的富勒烯与二甲基-三苯甲基-氯化物的反应。用DMT-Cl衍生产生了期望的单-DMT和双-DMT的混合物。纯化单三苯甲基化产物,并且将其与双-三苯甲基化产物分离。单三苯甲基化产物的亚磷酰胺化通过标准反应在惰性条件下发生。氯-2氰乙基-N,N二异丙基-亚磷酰胺试剂可以通过商业途径获得,并且最好新鲜使用且仅使用一次。反应很快地进行,得到高产率。在该反应中的产物,将在硅胶层析上得到增加的流动性,从而允许简单的纯化。最终产物通常使用一小块硅土垫来清洁。在真空下干燥最终产物,并且在氩气下干燥储存。使用标准亚磷酰胺化学,将该产物整合到聚合物序列中。
设想由于两个相对的极性端上集中的局部电子分布,充分利用C(70)非完美球形,设计双功能C(70)亚单位。选择C(70)富勒烯来提供在相对位点上具有两种类型的最高活性键的支架。预期到五个双取代的异构体,包括两对对映异构体。整合两种类型的羟基基团的设计,允许使用寡核苷酸合成的普通程序,其中羟基存在于核苷中。伯醇主要通过DMT-Cl衍生,剩下仲醇适合于亚磷酸酯化(phosphitylation)。通过C2-C8连接子从C(70)支架上分离醇基团。
图8示意性说明了双功能富勒烯的例证性结构,其含有一个伯醇和一个仲醇。为了形成伯醇,可以使用有机锌反应物通过Reformatsky反应,或使用如琥珀酸半醛通过Prato加成反应引入单羧酸部分,产生取代的吡咯烷衍生物。期望产率为15-30%。用Dibal-H以及羰基基团一起还原C(70)酯。仲醇部分的前体,一种酮,可以使用Prato加成反应或Diels-Alder方法被引入,使用可通过商业途径获得的甲基乙烯基酮的三甲硅烷基烯醇。产率为35%和50%。
实施例4例证性双功能富勒烯的产生
在本发明的例证性实施方案中,产生C70富勒烯二醇,其被转化为DMTr(二甲氧基三苯甲基)保护的和亚磷酰胺活化的化合物。该产物被用于纳米条形码的合成。通过亚磷酰胺部分的缩合产生的磷酸酯骨架可以增强富勒烯的水溶性,从而有助于随后使用所得到的编码探针。
从New England Peptide synthesis division(Fitchburg,MA)获得用于双功能富勒烯合成的C70-二醇中间体。中间体产物在适当溶剂中具有有限的溶解性,用于封闭激活和聚合反应。产物显示出自发逆转为母体化合物,具有半衰期估计在~1.0年。
也产生了基于寡核苷酸和肽核酸的编码探针,使用上面所讨论的模式,通过Midland Certified Reagents(Midland,TX)、AppliedBiosystems(Foster City,CA)或者QIAGEN Operon(Alameda,CA)合成。
实施例5基质制备和分子附着
多种基质可以被用于编码探针的成像。成像较慢(在分钟级),分子运动较快(若干分之几秒)。因此,为了限制分子运动,样品必须被吸收到基质上,成为晶体晶格的一部分。通过AFM使用云母的DNA成像例证了这一概念。DNA,使用二价金属如Ni2+或Mg2+通过磷酸酯骨架,结合云母。DNA和云母都带负电,所以必须使用抗衡离子如Mg2+或Ni2+来将DNA吸收到云母上(Biophys.J.70:1933,1996;PNAS94:496,1997;Biochemistry 36:461,1997)。二价阳离子作为带负电DNA骨架上的抗衡离子,也提供额外的电荷来结合云母。AP-云母(功能化氨丙基云母)已经被用于结合用于AFM的DNA(Proc.Natl.Acad.Sci.USA 94:496,1997)。
金涂覆云母基质的退火(Annealing Gold-on-Mica Substrates)
石英毛细管火焰喷枪是通过在Sutter Instruments P-2000毛细管拔出器中拉出一条1.00mm o.d.,0.75mm i.d.的石英毛细管来制备。刻划玻璃,在毛细管的ID为大约200μm的位置断开。然后将表面打磨平坦,用3M特大研磨膜磨光。在加热单元上,以130℃将石英片加热5分钟。使用离石英尖端1.5英寸的火焰,用氢气火焰喷枪火焰处理该片。用镊子将新生的金基质放置(焊膏面朝上)在该片状物的中央。用预先火焰处理的1cmx1cmx1mm石英块支持基质,该石英块仅接触云母表面,将其加热5分钟。将石英毛细管火焰喷枪保持与片状物平面成30°的角度,这样火焰的尖端恰好接触到金表面。使用两英寸焊道,以1秒为周期,将火焰重复地通过金表面(45次)。在氩气下将基质保存在其原始容器中,直到使用。
DNA在底物上的沉积
将DNA沉积在云母上,并且用AFM扫描。使用一群不同大小的质粒分子(在长度上,以1000碱基进行变化),其大小范围在1-10Kb,获得AFM图像(没有示出)。
到金的直接附着
将要成像的分子被直接或非直接连接到基质上。直接附着(direct attachment)涉及用功能基团修饰纳米标记,其与底物特异性反应以产生共价键。在含水条件下,硫在还原金上的亲核攻击在本技术领域是已知的。该方法已经被最优化,在温和条件下显示出可行性。直接附着的氧化还原动力学可以用pH来控制。该反应是特异的,不应该与其它纳米标记交叉反应。另一个方法可以使用更活性的攻击基团,如基于自由基的机理或光催化反应。一般而言,自由基反应动力学是快速并且强烈的,但通常缺乏控制。最后的一个方法使用笼式硫类似物,该类似物用光或pH去保护。该方法将使用与第一个方法类似的机制,但增加了一个特异性元件,用于起始并且局部化反应。共价附加到金表面的例证性反应部分包括巯基基团、氧自由基、碳自由基和光活化试剂,如本技术领域已知的多种硫化合物。在这些化合物中,巯基修饰的寡核苷酸到金表面的附着是研究最广泛的,已经在多种出版物上公开。此外,硫醇修饰的寡核苷酸探针可以通过商业途径从标准来源获得(例如Midland Certified Reagents,Mildland TX)。
到金的非直接连接
靶物质到底物的非直接连接涉及一个“连接子”分子,来提供到基质以及到纳米条形码的连接点。在该策略中,使用了双功能连接子分子。连接子分子具有一个用于连接到金的功能基团,和另一个连接到条形码的功能基团。该方法的一个优点是,通过第二次反应,在连接到条形码之前,可以以期望密度用连接子分子修饰基质,通过成像进行验证。
在一个非限定性实施例中,连接子分子可以使用巯基基团被连接到金,在连接子的相对端使用另一个功能基团。一个非限定性实例是羧基基团。氨基化间隔条形码可以与末端羧基特异性(但不可逆地)反应。碳二亚胺介导的胺与羧基基团的缩合反应是一个已经很好的理解了的化学路径。
实施例7.STM成像(STM Imaging)
金纳米颗粒(Gold Nanoparticles)
用金纳米颗粒和λDNA获得AFM图像。所用的基质是聚L-赖氨酸涂覆的盖玻片和氨基处理的云母(AP-云母)。AP-云母是通过用3-氨丙基三乙氧基硅烷汽相处理最新裂解的云母获得的。50nm、10nm、5nm和2nm的金纳米颗粒是从Ted-pella Inc.(Redding,CA)购买的。对于聚L-赖氨酸盖玻片基质,让10μm的金胶体溶液在盖玻片上干燥。对于AP-云母,将100μm金胶体溶液在基质上放置15分钟。然后用Kimwipe通过毛细作用带走过量溶液。使用Digital Iustruments以tapping mode AFM,对AP-云母基质进行AFM成像,显示出光滑的、无特征表面。AP-云母证明是很好的用于固定金纳米颗粒的表面。50nm金纳米颗粒可以容易地通过AFM成像(没有示出)。5和10nm金纳米颗粒也可以由AFM清楚地看见(没有示出)。2nm金纳米颗粒个别地是可以区分的,尽管图象清晰度没有较大纳米颗粒清晰(没有示出)。
在10、5和2nm金纳米颗粒的混合物中,区分不同大小的纳米颗粒是可能的(没有示出)。2和5nm纳米颗粒可以使用分连接子模式AFM(tapping mode AFM),通过测量的高度来区分。这些结果显示基于不同大小纳米颗粒的纳米条形码可以通过SPM成像技术区分。在另一个例证性实施例中,将20μl聚-L-赖氨酸溶液(0.01%,来自Sigma Chemicals,St.Louis,MO)在云母基质上放置大约5分钟,然后用纳米纯水(18MΩ)冲洗,并且在过滤后的N2气下干燥。将金纳米颗粒(来自Polysciences或者Ted-Pella Inc.)超声波处理30秒。将25μl未稀释纳米颗粒的样品放置到聚-L-赖氨酸包被的云母上大约10分钟,然后用纳米纯水冲洗,并且在过滤后的N2气下干燥。用以分连接子模式AFM用Digital Instruments获得图像(没有示出)。
也可以通过AFM对Hind III消化的λDNA成像。在HEPES缓冲液中,制备1μg/ml消化的λDNA溶液(40mM HEPES,5mM NiCl,pH 6.8)。30μl的DNA溶液样品沉积到处理的云母基质上10分钟,用纳米纯水冲洗,在N2气下干燥。图9所示为消化的λDNA的AFM图像。双链DNA分子可以通过AFM成像清楚地看见。
富勒烯(Fullerenes)
通过STM成像,获得沉积在石墨表面的单一富勒烯分子的图像,使用具有14.46nm扫描尺寸的Digital Instruments(没有示出)。多个富勒烯通过肽连接在一起,并且成像。四个富勒烯被附加到SEQ ID NO:1的肽上,通过STM扫描获得图像,显示了四个富勒烯中的每一个(没有示出)。
实施例8核酸的排列
通过微型流体分子梳排列λDNA。在覆盖在基质上的PDMS层上,制备微型流体渠道(microfluidic channels)。根据Anderson等人的(“Fabrication of topologically complex three0dimensional microfluidicsystems in PDMS by rapid prototyping,”Anal.Chem.72:3158-3164,2000),通过模塑聚二甲基硅氧烷(PDMS)制备微型流体渠道。基质可以包括,例如如上所讨论的制备的AP-云母或金包被基质。样品可以在微型流体渠道的一端被引入腔室中,在渠道的另一端对贮存器应用真空。在渠道内加入一个或多个柱子,允许通过分子梳进行分子排列。去除PDMS层,用纳米纯水冲洗基质,用N2气干燥。用多个腔室和/或微型流体渠道、不同模式的微型流体组分、不同的微型流体流和渠道内的不同结构,形成各种各样的排列。
图10和图11显示了λDNA分子的实施例,通过MMC方法排列。完全伸展和排列的λDNA的长度是大约17μm。正如所期望的,分子在与微观流体流动方向平行的方向排列。该结果说明了在表面上排列编码探针的可行性,或者与靶物质杂交或者要不然杂交且然后释放。编码探针分子的排列,有助于通过SPM成像技术进行它们的成像和鉴定。
实施例9基于寡核苷酸的编码探针的AFM成像
正如图12所示意性说明的,在另一个非限定性实施例中,编码探针可以作为一组杂交在一起的短寡核苷酸序列而产生。图中的每一条线代表一个单一的合成寡核苷酸,顶层链上有9个和底层链上有4个。杂交产生了可以通过SPM技术成像的分支点。可以选择地,如上所讨论的,分支点可以作为金属纳米颗粒或其它标记元件的附着点。图13提供了一个例证性的寡核苷酸编码探针序列,显示了彼此杂交在一起的顶层链和底层链的序列。为了清楚,图13没有给出分支序列。图14显示了形成编码探针顶层链的9个分离寡核苷酸的完整序列。指出了彼此杂交在一起形成分支点的部分。例如,PT1(SEQ ID NO:3)的3’端,标记为“A”,与PT2(SEQ ID NO:4)的5’端杂交,标记为“A’”。同样地,B与B’结合,C与C’结合,等等。
如上所讨论的,通过AFM技术,对例证性的编码探针进行了成像。图15的箭头指出了编码探针的一个AFM图像。为了比较,在编码探针的相邻处给出了线性2.8kb质粒双链DNA分子。
**************************************************
根据本发明的公开内容,此处所公开以及权利要求所要求的所有方法、组合物和仪器可以制造和使用,不要求过度的试验。对于本技术领域的普通技术人员而言显而易见,可以对此处描述的方法、组合物和仪器进行修改,只要不背离权利要求所要求主题的概念、精神和范围。更特别地,显而易见,可以用某些相关的因素代替此处描述的因素,而同时得到相同或类似的结果。对于本技术领域普通技术人员来说是显而易见的所有这样的类似替代和修饰,被认为在权利要求所要求的主题的精神、范围和概念内。
表1例证性的纳米标记元件
  分子   卖主   MW g/mol   可区分特征
  富勒烯
  C60   BuckyUSA   720.6   大小,形状,低密度
  C70   BuckyUSA   840.7   大小,形状,低密度
  C84   BuckyUSA   1008.9   大小,形状,低密度
  分子   卖主   MW g/mol   可区分特征
  金属中心富勒烯
  C60La   BuckyUSA   859.5   大小,形状,高电子密度和电荷
  C84La   BuckyUSA   1147.8   大小,形状,高电
  子密度和电荷
  C60Er   BuckyUSA   887.5   大小,形状,高电子密度&电荷
  C84Er   BuckyUSA   1176.8   大小,形状,高电子密度&电荷
  富勒烯氧化物
  C60-O   BuckyUSA   736   大小,形状,低密度
  C70-O   BuckyUSA   856   大小,形状,低密度
  双功能富勒烯
  O-C60-O   BuckyUSA   752   大小,形状,低密度
  O-C70-O   BuckyUSA   872   大小,形状,低密度
  P.O.S.S.多面体寡聚硅倍半氧化物   Hybrid Plastics   800-1600   800-1600
  八-五环辛硅氧烷水合物   Aldrich   1137   大小,形状,电荷(-)
  八铵POSS   Hybrid Plastics   大小,形状,电荷(+)
  八异丁基POSS   Hybrid Plastics   大小,形状
  八甲基POSS   Hybrid Plastics   大小,形状
  分子   卖主   MW g/mol   可区分特征
  八TmAPOSS   Hybrid Plastics   大小,形状,密度
表1(续)
  有机金属化合物
 金属中心包括:Cr,Fe,Al,B,Co,Ni,Zr,Cu,Mg,Zn和Ru。有机部分包括任何官能结   Aldrich,Acros,BoulderScientific   金属中心具有不同大小的外部轨道,密度,电荷分布,和氧化还
  构,包括sepulcrates,联吡啶,porphrines,corrins,乙二胺四乙酸(EDTA),联苯,苯,酞菁染料,血卟啉,血红素,萘酞菁(naphthalocyanine),酞菁染料,环戊二烯,茚,芴,苯并茚,4-氟苯基,4-甲氧基苯基,三(4-氯苯基)以及其它   分布,和氧化还原状态。有机部分赋予大小,形状和密度特征
  Cu II三氟乙酰乙酸   Aldrich
  Cu II酞菁染料   Aldrich
  Co II酞菁染料   Aldrich
  Fe II酞菁染料   Aldrich
  Zn II酞菁染料   Aldrich
  Ni II酞菁染料   Aldrich
  有机金属化合物
  Mg II酞菁染料   Aldrich
  Co II 2-3萘酞菁染料   Aldrich
  1,1’-二茂铁二羧酸   Aldrich   274.06
  Co III sepulcratetrichloride   Aldrich
  Co II 2-吡嗪基羧酸酯   Aldrich
  纳米晶体颗粒(Ag),NHS酯   Nanoprobes
表2.用于骨架介导合成的潜在亚单位
  候选者   单官能化   与亚单位的附着
  C60   C60COOH   赖氨酸
  C70   C70COOH   赖氨酸
  La Buckey   LABucky COOH   赖氨酸
  C60   C60COOH   乙基氨基胸苷
  C70   C70COOH   乙基氨基胸苷
  La Buckey   LABucky COOH   乙基氨基胸苷
  (NH2)8POSS   NA   谷氨酸或天冬氨酸
  金属Phalocyanonine   COOH   赖氨酸或NH2-胸苷
  金属Phalocyanonine   NH2   谷氨酸或天冬氨酸
表3.用于聚合物装饰的例证性亚单位
  标记元件   单官能化   与聚合物亚单位的附着   聚合物序列
  C60   C60COOH   赖氨酸   NH<sub>2</sub>-(Gly-Gly-Gly-Lys)<sub>8</sub>-COOH
  C60   C60COOH   赖氨酸   NH2-(A-A-A-A-A-A-K)7-COOH
  C70   C70COOH   赖氨酸   NH<sub>2</sub>-(Gly-Gly-Gly-Lys)<sub>8</sub>-COOH
  C70   C70COOH   赖氨酸   NH<sub>2</sub>-(A-A-A-A-A-A-K)<sub>7</sub>-COOH
  La Buckey   LA BuckyCOOH   赖氨酸   NH<sub>2</sub>-(Gly-Gly-Gly-Lys)<sub>8</sub>-COOH
  La Buckey   LA BuckyCOOH   赖氨酸   NH<sub>2</sub>-(A-A-A-A-A-A-K)<sub>7</sub>-COOH
  C60   C60COOH   乙基氨基胸苷(X)   5’-(T-X)10-3’
  C60   C60COOH   乙基氨基胸苷(X)   5’-(X-Q),其中Q是12原子间隔物
  C70   C70COOH   乙基氨基胸苷(X)   5’-(T-X)10-3’
  C70   C70COOH   乙基氨基胸苷(X)   5’-(X-Q),其中Q是12原子间隔物
  La Buckey   LA  BuckyCOOH   乙基氨基胸苷(X)   5’-(T-X)10-3’
  标记元件   单官能化   与聚合物亚单位的附着   聚合物序列
  La Buckey   LA BuckyCOOH   乙基氨基胸苷(X)   5’-(X-Q),其中Q是12原子间隔物
  (NH<sub>2</sub>)<sub>8</sub>POSS   NA   谷氨酸或天冬氨酸   NH<sub>2</sub>-(Gly-Gly-Gly-Glu)<sub>8</sub>-COOH
  (NH<sub>2</sub>)<sub>8</sub>POSS   NA   谷氨酸或天冬氨酸   NH<sub>2</sub>-(A-A-A-A-A-E)<sub>7</sub>-COOH
  (NH<sub>2</sub>)<sub>8</sub>POSS   NA   T羧酸酯类似物(Y)   5’-(T-X)10-3’
  金属phalocyanine   COOH   赖氨酸   NH<sub>2</sub>-(A-A-A-A-A-A-K)<sub>7</sub>-COOH
  金属phalocyanine   COOH   赖氨酸   NH<sub>2</sub>-(Gly-Gly-Gly-Lys)<sub>8</sub>-COOH
表4.用于直接聚合物成像的例证性亚单位
  亚单位   聚合物
  赖氨酸(K)   (A<sub>6</sub>-K)<sub>8</sub>或(AAKAAAK)<sub>4</sub>或KKKKKKK
  谷氨酸(E)   (A<sub>6</sub>-E)<sub>8</sub>或(AAEAAAE)<sub>4</sub>或EEEEEE
  E和K   (AAKAAAE)4
  Br-T(Br)   T-Br-T-Br-TTT-Br-TTT-Br-Br-T
  NH<sub>2</sub>-T(N)   T-N-T-N-TTT-N-TTT-N-N-T
  亚单位   聚合物
  Br和N   T-Br-T-N-T-Br-Br-TTT-N-N-Br-T
  磷酸酯和间隔物   TTT-3-9-3-3-9-9-3-9

Claims (28)

1.一种方法,包括:
a)获得一个或多个编码探针,每一个编码探针包括一个附着到至少一个纳米条形码上的探针分子;
b)用一个或多个靶分子接触编码探针;
c)在表面上排列结合到一个或多个靶分子上的编码探针;
d)鉴定所排列的编码探针;和
e)基于结合的编码探针,检测一个或多个靶分子。
2.如权利要求1所述的方法,其中所述每一个编码探针包括一个寡核苷酸。
3.如权利要求2所述的方法,其中所述靶分子是核酸。
4.如权利要求3所述的方法,其中用靶分子接触所述编码探针的文库,该文库包括特定长度的寡核苷酸的所有可能的序列。
5.如权利要求1所述的方法,其中所述纳米条形码选自碳纳米管、富勒烯、亚微米金属条形码、纳米颗粒和量子点。
6.如权利要求3所述的方法,其中所述核酸被附着到一个表面上。
7.如权利要求6所述的方法,进一步包括连接与核酸杂交的相邻的编码探针。
8.如权利要求7所述的方法,进一步包括将连接的编码探针与核酸和未连接的编码探针分离。
9.如权利要求1所述的方法,进一步包括通过分子梳在表面上排列编码探针。
10.如权利要求1所述的方法,其中所述编码探针是通过扫描探针显微镜被鉴定的。
11.如权利要求10所述的方法,其中扫描探针显微镜技术选自原子力显微镜、扫描隧道显微镜、侧向力显微镜、化学力显微镜、力量调制成像、磁力显微镜、高频磁力显微镜、磁阻敏感影像、电力显微镜、扫描电容显微镜、扫描伸展电阻显微镜(scanning spreadingresistance microscopy)、隧道原子力显微镜和导电原子力显微镜。
12.如权利要求9所述的方法,其中所述在表面上排列的编码探针是通过扫描探针显微镜来鉴定的。
13.如权利要求12所述的方法,进一步包括确定与核酸结合的寡核苷酸的序列。
14.如权利要求13所述的方法,进一步包括从与核酸结合的寡核苷酸的序列确定核酸的序列。
15.如权利要求3所述的方法,进一步包括从与核酸结合的编码探针鉴定核酸。
16.如权利要求1所述的方法,其中所述靶分子是蛋白质、肽、糖蛋白、脂蛋白、核酸、多核苷酸、寡核苷酸、脂类、糖脂类或多糖。
17.如权利要求16所述的方法,其中两个或多个靶分子存在于样品中,同时分析样品中的所有靶分子。
18.如权利要求16所述的方法,其中两个或多个靶分子存在于样品中,同时分析样品中的所有相同类型的靶分子。
19.一种方法,包括:
a)获得一个或多个编码探针,每一个编码探针包括一个附着到至少一个纳米条形码上的探针分子;
b)用编码探针接触一个或多个靶分子;
c)在一个表面上,排列与一个或多个靶分子结合的编码探针;
d)用扫描探针显微镜鉴定排列的编码探针;和
e)从鉴定的编码探针,检测一个或多个靶分子。
20.如权利要求19所述的方法,其中通过分子梳在表面上排列编码探针。
21.如权利要求19所述的方法,其中扫描探针显微镜技术选自原子力显微镜、扫描隧道显微镜、侧向力显微镜、化学力显微镜、力量调制成像、磁力显微镜、高频磁力显微镜、磁阻敏感影像、电力显微镜、扫描电容显微镜、扫描伸展电阻显微镜、隧道原子力显微镜和导电原子力显微镜。
22.如权利要求19所述的方法,其中靶分子是核酸。
23.如权利要求22所述的方法,进一步包括从结合的编码探针确定至少部分的核酸序列。
24.如权利要求19所述的方法,进一步包括,在表面上排列编码探针之前,从靶分子分离结合的编码探针。
25.一种用于核酸测序的系统,包括:
a)扫描探针显微镜;
b)表面;和
c)多个附着到所述表面上的、排列的纳米条形码探针。
26.如权利要求25所述的系统,其中通过分子梳在表面上排列所述编码探针。
27.如权利要求25所述的系统,其中编码探针包括连接的寡核苷酸。
28.如权利要求25所述的系统,其中扫描探针显微镜是原子力显微镜或扫描隧道显微镜。
CN038223104A 2002-09-20 2003-09-22 用于通过使用编码探针检测生物分子的方法和仪器 Expired - Fee Related CN1682237B (zh)

Applications Claiming Priority (5)

Application Number Priority Date Filing Date Title
US10/251,152 US7361821B2 (en) 2002-09-20 2002-09-20 Controlled alignment of nanobarcodes encoding specific information for scanning probe microscopy (SPM) reading
US10/251,152 2002-09-20
US10/667,004 2003-09-19
US10/667,004 US7476786B2 (en) 2002-09-20 2003-09-19 Controlled alignment of nano-barcodes encoding specific information for scanning probe microscopy (SPM) reading
PCT/US2003/029726 WO2004038037A2 (en) 2002-09-20 2003-09-22 Controlled alignment of nano-barcodes encoding specific information for scanning probe microscopy (spm) reading

Publications (2)

Publication Number Publication Date
CN1682237A CN1682237A (zh) 2005-10-12
CN1682237B true CN1682237B (zh) 2010-05-26

Family

ID=32179444

Family Applications (1)

Application Number Title Priority Date Filing Date
CN038223104A Expired - Fee Related CN1682237B (zh) 2002-09-20 2003-09-22 用于通过使用编码探针检测生物分子的方法和仪器

Country Status (6)

Country Link
US (1) US7705222B2 (zh)
EP (1) EP1546983A4 (zh)
JP (1) JP4520857B2 (zh)
CN (1) CN1682237B (zh)
AU (1) AU2003278852A1 (zh)
WO (1) WO2004038037A2 (zh)

Families Citing this family (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20050064435A1 (en) * 2003-09-24 2005-03-24 Xing Su Programmable molecular barcodes
US7381529B2 (en) 2003-12-31 2008-06-03 Intel Corporation Methods and compositions for detecting nucleic acids using scanning probe microscopy and nanocodes
AU2005267018B2 (en) * 2004-07-23 2008-10-23 Ventana Medical Systems, Inc. Method and apparatus for applying fluids to a biological sample
GB2447679A (en) * 2007-03-21 2008-09-24 Jean Ernest Sohna Sohna Scanning probe microscopy-based polynucleotide sequencing and detection
US20080287668A1 (en) * 2007-05-14 2008-11-20 Tihamer Thomas Toth-Fejel Nanostructures and methods of making
CN102062718B (zh) * 2009-11-17 2012-11-21 国家纳米科学中心 测定染料、抗体、药物和药物前体分子在多肽分子上相对吸附常数的方法
US9052522B2 (en) * 2010-06-03 2015-06-09 Alessi Technologies, Llc System and method for mounting a specimen on a slide
US9042013B2 (en) * 2010-06-03 2015-05-26 Alessi Technologies, Llc System and method for mounting a specimen on a slide
ES2472965T3 (es) * 2011-03-04 2014-07-03 F. Hoffmann-La Roche Ag Nuevo tipo de sondas universales para la detección de variantes gen�micas
JP6004470B2 (ja) * 2012-09-03 2016-10-05 国立大学法人大阪大学 試料の固定化方法
US11028427B2 (en) 2015-08-18 2021-06-08 Purdue Research Foundation Systems and methods for proteomic activity analysis using DNA-encoded probes
CN106771375A (zh) * 2016-12-27 2017-05-31 上海纳米技术及应用国家工程研究中心有限公司 一种界面处dna形貌随温度变化的检测方法
AU2018306623B2 (en) * 2017-07-27 2023-02-16 Cornell University Fixation and retention of extracellular vesicles
CN110687095B (zh) * 2019-10-12 2020-12-18 北京科技大学 一种用于原位高温高压实验的装置

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6361944B1 (en) * 1996-07-29 2002-03-26 Nanosphere, Inc. Nanoparticles having oligonucleotides attached thereto and uses therefor

Family Cites Families (50)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3772200A (en) * 1971-04-30 1973-11-13 Minnesota Mining & Mfg Method of tagging with microparticles
US4053433A (en) * 1975-02-19 1977-10-11 Minnesota Mining And Manufacturing Company Method of tagging with color-coded microparticles
US6060237A (en) * 1985-02-26 2000-05-09 Biostar, Inc. Devices and methods for optical detection of nucleic acid hybridization
US4683202A (en) * 1985-03-28 1987-07-28 Cetus Corporation Process for amplifying nucleic acid sequences
US4683195A (en) * 1986-01-30 1987-07-28 Cetus Corporation Process for amplifying, detecting, and/or-cloning nucleic acid sequences
US4800159A (en) * 1986-02-07 1989-01-24 Cetus Corporation Process for amplifying, detecting, and/or cloning nucleic acid sequences
DE69028402T2 (de) * 1989-05-22 1997-04-17 Hoffmann La Roche Verfahren zur markierung und zum nachweis von stoffen mit nukleinsäuren
US5427930A (en) * 1990-01-26 1995-06-27 Abbott Laboratories Amplification of target nucleic acids using gap filling ligase chain reaction
ES2084335T3 (es) * 1991-02-14 1996-05-01 Baxter Int Union de sustancias de reconocimiento a liposomas.
US5603872A (en) * 1991-02-14 1997-02-18 Baxter International Inc. Method of binding recognizing substances to liposomes
WO1992015709A1 (en) * 1991-02-28 1992-09-17 Abbott Laboratories Scanning probe microscopy immunoassay
CA2064683A1 (en) * 1992-03-26 1993-09-27 Krishna Mohan Rao Kallury Formation of thermostable enzymes with extra-ordinary heat tolerance by immobilization on phospholipid matrices
US5472881A (en) * 1992-11-12 1995-12-05 University Of Utah Research Foundation Thiol labeling of DNA for attachment to gold surfaces
WO1995006138A1 (en) * 1993-08-25 1995-03-02 The Regents Of The University Of California Microscopic method for detecting micromotions
US5610287A (en) * 1993-12-06 1997-03-11 Molecular Tool, Inc. Method for immobilizing nucleic acid molecules
FR2716263B1 (fr) * 1994-02-11 1997-01-17 Pasteur Institut Procédé d'alignement de macromolécules par passage d'un ménisque et applications dans un procédé de mise en évidence, séparation et/ou dosage d'une macromolécule dans un échantillon.
US5986076A (en) * 1994-05-11 1999-11-16 Trustees Of Boston University Photocleavable agents and conjugates for the detection and isolation of biomolecules
US5538898A (en) * 1995-03-16 1996-07-23 International Business Machines Corporation Method suitable for identifying a code sequence of a biomolecule
US6319670B1 (en) * 1995-05-09 2001-11-20 Meso Scale Technology Llp Methods and apparatus for improved luminescence assays using microparticles
US5776674A (en) * 1995-06-05 1998-07-07 Seq, Ltd Chemical biochemical and biological processing in thin films
FR2737574B1 (fr) * 1995-08-03 1997-10-24 Pasteur Institut Appareillage d'alignement parallele de macromolecules et utilisation
GB9521943D0 (en) * 1995-10-26 1996-01-03 Univ Hertfordshire Coded particles for process sequence tracking in combinatorial compound library preparation
ES2287956T3 (es) * 1996-07-29 2007-12-16 Nanosphere Inc. Nanoparticulas que tienen oligonucleotidos unidos a las mismas y usos de las mismas.
FR2755149B1 (fr) * 1996-10-30 1999-01-15 Pasteur Institut Procede de diagnostic de maladies genetiques par peignage moleculaire et coffret de diagnostic
US6038060A (en) * 1997-01-16 2000-03-14 Crowley; Robert Joseph Optical antenna array for harmonic generation, mixing and signal amplification
JP3183845B2 (ja) * 1997-03-21 2001-07-09 財団法人ファインセラミックスセンター カーボンナノチューブ及びカーボンナノチューブ膜の製造方法
FR2764280B1 (fr) * 1997-06-06 1999-07-16 Yvan Alfred Schwob Procede pour la fabrication de carbone 60
US6459758B1 (en) * 1997-08-22 2002-10-01 Lucent Technologies Inc. Method and apparatus for discrete tomography
DE19742227A1 (de) * 1997-09-25 1999-04-01 Juergen Prof Dipl Phys Wolfrum Verfahren zum Sequenzieren eines einzelnen DNA-Moleküls
US6432715B1 (en) * 1998-02-24 2002-08-13 Isotag Technology, Inc. Method for marking items for identification
IL134729A (en) * 1998-07-24 2005-08-31 Lumigen Inc Methods of synthesizing polynucleotides by ligation of multiple oligomers
US5998175A (en) * 1998-07-24 1999-12-07 Lumigen, Inc. Methods of synthesizing and amplifying polynucleotides by ligation of multiple oligomers
US6280939B1 (en) * 1998-09-01 2001-08-28 Veeco Instruments, Inc. Method and apparatus for DNA sequencing using a local sensitive force detector
CA2345376C (en) * 1998-09-24 2010-03-16 Advanced Research And Technology Institute, Inc. Water-soluble luminescent quantum dots and bioconjugates thereof
US6187823B1 (en) * 1998-10-02 2001-02-13 University Of Kentucky Research Foundation Solubilizing single-walled carbon nanotubes by direct reaction with amines and alkylaryl amines
US6283812B1 (en) * 1999-01-25 2001-09-04 Agere Systems Guardian Corp. Process for fabricating article comprising aligned truncated carbon nanotubes
WO2000056937A2 (en) * 1999-03-25 2000-09-28 Hyseq, Inc. Solution-based methods and materials for sequence analysis by hybridization
EP1179185B1 (en) * 1999-05-07 2009-08-12 Life Technologies Corporation A method of detecting an analyte using semiconductor nanocrystals
US6248537B1 (en) * 1999-05-28 2001-06-19 Institut Pasteur Use of the combing process for the identification of DNA origins of replication
US7225082B1 (en) * 1999-10-01 2007-05-29 Oxonica, Inc. Colloidal rod particles as nanobar codes
AU2001278133A1 (en) 2000-08-01 2002-02-13 Surromed, Inc. Methods for solid phase nanoextraction and desorption
US6297592B1 (en) * 2000-08-04 2001-10-02 Lucent Technologies Inc. Microwave vacuum tube device employing grid-modulated cold cathode source having nanotube emitters
US6778263B2 (en) * 2000-08-25 2004-08-17 Amnis Corporation Methods of calibrating an imaging system using calibration beads
AU2002211807A1 (en) * 2000-09-11 2002-03-26 Massachusetts Institute Of Technology Direct haplotyping using carbon nanotube probes
GB0025414D0 (en) * 2000-10-16 2000-11-29 Consejo Superior Investigacion Nanoparticles
US7386326B2 (en) 2001-09-04 2008-06-10 Texas Instruments Incorporated Programmable task-based co-processor
JP2005517900A (ja) 2001-11-21 2005-06-16 アプレラ コーポレイション デジタルアッセイ
US7169275B2 (en) * 2002-01-21 2007-01-30 Tecan Trading Ag Method for separating particles in free flow electrophoresis
US20030148289A1 (en) * 2002-02-04 2003-08-07 Intel Corporation Modified carbon nanotubes as molecular labels with application to DNA sequencing
US7361821B2 (en) * 2002-09-20 2008-04-22 Intel Corporation Controlled alignment of nanobarcodes encoding specific information for scanning probe microscopy (SPM) reading

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6361944B1 (en) * 1996-07-29 2002-03-26 Nanosphere, Inc. Nanoparticles having oligonucleotides attached thereto and uses therefor

Also Published As

Publication number Publication date
CN1682237A (zh) 2005-10-12
AU2003278852A8 (en) 2004-05-13
JP4520857B2 (ja) 2010-08-11
US7705222B2 (en) 2010-04-27
EP1546983A4 (en) 2006-03-15
US20060281119A1 (en) 2006-12-14
WO2004038037A3 (en) 2004-11-11
AU2003278852A1 (en) 2004-05-13
EP1546983A2 (en) 2005-06-29
WO2004038037A2 (en) 2004-05-06
JP2006501485A (ja) 2006-01-12

Similar Documents

Publication Publication Date Title
US7476786B2 (en) Controlled alignment of nano-barcodes encoding specific information for scanning probe microscopy (SPM) reading
US7705222B2 (en) Controlled alignment of nano-barcodes encoding specific information for scanning probe microscopy (SPM)
US7381529B2 (en) Methods and compositions for detecting nucleic acids using scanning probe microscopy and nanocodes
CN1706002B (zh) 用于检测和鉴定分子结构的扫描探针显微图像基于模型的融合
CA3003082C (en) Microarray fabrication system and method
US20160222441A1 (en) Materials and Methods Relating to Nano-Tags and Nano-Barcodes
US20060068381A1 (en) Methods for identifying a peptide that binds a geometrical shape
US20010024788A1 (en) Method for producing nucleic acid strand immobilized carrier
EP2215476B1 (en) Method and system for detection of a selected type of molecules in a sample.
US6849397B2 (en) Label-free detection of nucleic acids via surface plasmon resonance
EP1552531A1 (en) Model-based fusion of scanning probe microscopic images for detection and identification of molecular structures
US9062392B2 (en) Methods for isolating a peptide methods for identifying a peptide
Wenzler Biological applications of surface analytical techniques: Interactions between molecules at surfaces
Alivisatos Inorganic Nanorods: Synthesis, Alignment, Properties

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
REG Reference to a national code

Ref country code: HK

Ref legal event code: DE

Ref document number: 1084203

Country of ref document: HK

C14 Grant of patent or utility model
GR01 Patent grant
REG Reference to a national code

Ref country code: HK

Ref legal event code: WD

Ref document number: 1084203

Country of ref document: HK

C17 Cessation of patent right
CF01 Termination of patent right due to non-payment of annual fee

Granted publication date: 20100526

Termination date: 20130922