CN1659415B - 用于高温操作的感应电炉 - Google Patents

用于高温操作的感应电炉 Download PDF

Info

Publication number
CN1659415B
CN1659415B CN038129035A CN03812903A CN1659415B CN 1659415 B CN1659415 B CN 1659415B CN 038129035 A CN038129035 A CN 038129035A CN 03812903 A CN03812903 A CN 03812903A CN 1659415 B CN1659415 B CN 1659415B
Authority
CN
China
Prior art keywords
dome
electric furnace
pedestal
furnace
cooling
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
CN038129035A
Other languages
English (en)
Other versions
CN1659415A (zh
Inventor
D·J·米勒
W·H·罗夫
A·W·因特米尔
T·R·托曼
邵理璋
S·L·斯特隆
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Graftech International Holdings Inc
Original Assignee
Graftech International Holdings Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Graftech International Holdings Inc filed Critical Graftech International Holdings Inc
Publication of CN1659415A publication Critical patent/CN1659415A/zh
Application granted granted Critical
Publication of CN1659415B publication Critical patent/CN1659415B/zh
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F27FURNACES; KILNS; OVENS; RETORTS
    • F27BFURNACES, KILNS, OVENS, OR RETORTS IN GENERAL; OPEN SINTERING OR LIKE APPARATUS
    • F27B14/00Crucible or pot furnaces
    • F27B14/06Crucible or pot furnaces heated electrically, e.g. induction crucible furnaces with or without any other source of heat
    • F27B14/061Induction furnaces
    • DTEXTILES; PAPER
    • D01NATURAL OR MAN-MADE THREADS OR FIBRES; SPINNING
    • D01FCHEMICAL FEATURES IN THE MANUFACTURE OF ARTIFICIAL FILAMENTS, THREADS, FIBRES, BRISTLES OR RIBBONS; APPARATUS SPECIALLY ADAPTED FOR THE MANUFACTURE OF CARBON FILAMENTS
    • D01F9/00Artificial filaments or the like of other substances; Manufacture thereof; Apparatus specially adapted for the manufacture of carbon filaments
    • D01F9/08Artificial filaments or the like of other substances; Manufacture thereof; Apparatus specially adapted for the manufacture of carbon filaments of inorganic material
    • D01F9/12Carbon filaments; Apparatus specially adapted for the manufacture thereof
    • D01F9/14Carbon filaments; Apparatus specially adapted for the manufacture thereof by decomposition of organic filaments
    • D01F9/32Apparatus therefor
    • D01F9/322Apparatus therefor for manufacturing filaments from pitch
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F27FURNACES; KILNS; OVENS; RETORTS
    • F27DDETAILS OR ACCESSORIES OF FURNACES, KILNS, OVENS, OR RETORTS, IN SO FAR AS THEY ARE OF KINDS OCCURRING IN MORE THAN ONE KIND OF FURNACE
    • F27D9/00Cooling of furnaces or of charges therein
    • F27D2009/0002Cooling of furnaces
    • F27D2009/0018Cooling of furnaces the cooling medium passing through a pattern of tubes
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F27FURNACES; KILNS; OVENS; RETORTS
    • F27DDETAILS OR ACCESSORIES OF FURNACES, KILNS, OVENS, OR RETORTS, IN SO FAR AS THEY ARE OF KINDS OCCURRING IN MORE THAN ONE KIND OF FURNACE
    • F27D99/00Subject matter not provided for in other groups of this subclass
    • F27D99/0001Heating elements or systems
    • F27D99/0006Electric heating elements or system
    • F27D2099/0015Induction heating
    • F27D2099/002Core heating

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Textile Engineering (AREA)
  • Furnace Details (AREA)
  • Carbon And Carbon Compounds (AREA)
  • General Induction Heating (AREA)
  • Battery Electrode And Active Subsutance (AREA)
  • Muffle Furnaces And Rotary Kilns (AREA)
  • Furnace Housings, Linings, Walls, And Ceilings (AREA)
  • Waste-Gas Treatment And Other Accessory Devices For Furnaces (AREA)

Abstract

一种可在超过3100℃的温度下操作的感应电炉,具有一个冷却系统(60),其可选择地安装于炉壁(76)的上端。冷却系统包括一个圆顶(62),其通过冷却水管(68)主动冷却。在加热处理的冷却期间,最初通过电炉绝热层(58)远离热区域的热传导,自然地进行冷却。一旦电炉热区域(20)内的温度达到大约1500℃,安装于圆顶的一个提升机构(80)轻微提升电炉盖(16),允许来自热区域的热气与圆顶内较冷的气体混合。这加速了热区域的冷却,大大减少了冷却时间,不需要定期更换的阀门或其他复杂冷却机件来阻塞电炉本身。通过用柔性石墨阻挡层(40)包裹基座,提高了石墨电炉基座(10)在高操作温度下的寿命;柔性石墨阻挡层(40)抑制了石墨的蒸发。此外,位于基座内的证明盘(154)提供了热区域的精确温度分布。

Description

用于高温操作的感应电炉
技术领域
本发明涉及一种感应电炉,其适于在大约3000℃及以上的温度下操作。结合沥青纤维的石墨化和其他含碳纤维,其具有特殊的应用,将利用特殊参考对其进行描述。然而,应该认识到:电炉也适合其他高温处理,例如去除金属杂质的石墨材料的卤素净化。
背景技术
多年来,大量感应电炉用于纤维石墨化和其他高温操作。一个典型的感应电炉包括一个称为基座的导电容器。在感应加热线圈中流动的交流电(ac)产生一个随时间变化的电磁场。由线圈产生的磁场穿过基座。磁场在基座内感应出电流,基座产生热。待加热的材料包含在基座内,通常其被称为“热区域”,或电炉的最热部分。
对于要求高达约3000℃高温的操作,石墨是一种形成基座的优选材料,因为其既具有导电性,又能经受非常高的温度。然而,石墨具有升华转而蒸发的趋向。当温度升高到大约3100℃时,升华明显加强。因为贯穿基座的温度变化,所以在大约3100℃的标准操作温度下,电炉寿命通常以周来计算。在3400℃下,寿命通常仅有几个小时。因此,在3000℃以上的温度下操作的电炉,往往经历相当长时间的停工期,以替换部件。
含碳纤维石墨尤其得益于3000℃以上温度的处理。例如,在锂电池的构成中,锂的摄取依靠石墨的温度,当石墨温度升高时,摄取随之改善。在加热期间,通过使用高温计来测量电炉内不同部位的温度实现了整个基座的热分布的改进。根据所测量的温度,感应功率的不同密度随后沿基座长度传递到基座的若干部分。然而,随着时间的推移,高温计易于失灵,需要再校准。
为增加基座寿命,一旦完成了高温加热操作,希望迅速冷却电炉。一般,冷却管环绕电炉载有水。然而,因为电炉通常是彻底绝热的,所以经常要花大约一周时间使电炉从其操作温度冷却下来。在一些应用中,使用热交换器来加速冷却。在这样的设计中,经由电炉绝热的热损失,电炉冷却到大约1500℃的温度。随后,热区域的上面和下面的阀门打开,经过外部热交换器的压力环流开始形成。对于极少在2800℃以上操作的电炉,此系统工作得很好。在那些通常在3000℃以上操作的电炉中,热区域部件的频繁更换使得这些设计对于操作来说是高价的。在其他设计中,从电炉上去除电炉上方的松散绝热材料,从而加速冷却。结果,在每一次加热处理后都需要更换绝热体。
本发明提供了一种新的改进的感应电炉和使用方法,其克服了以上涉及的问题以及其他问题。
发明内容
根据本发明的一个方面,提供一种电炉。该电炉包括一个容器,其形成了一个内部腔室,用于容纳待处理物品和一个加热所述容器的加热装置。一个盖子可选择地关闭容器内部腔室。冷却系统包括形成腔室的圆顶,以及提升机构,其可选择地提升盖子,允许热气从容器内部腔室流到圆顶。
根据本发明的另一个方面,为电炉提供了一个冷却系统。冷却系统包括一个形成内部腔室的圆顶。冷却装置冷却该圆顶。系统包括在感应电炉热区域和圆顶之间选择性地提供流体连通的装置,以及包括一个装置,其根据热区域温度和内部腔室温度中的至少一个来控制连通装置。
根据本发明的再一个方面,提供一种感应电炉。该电炉包括一个基座,其形成一个容纳待处理物品的内部腔室,基座由石墨制成。感应线圈在基座内感应出电流,以加热基座。基座外面的一层柔性石墨抑制了从基座升华的碳蒸汽逸出。
根据本发明的再一个方面,提供了一种操作电炉的方法。此方法包括在含气体的第一腔室中加热待处理的物品,以及主动冷却含气体的第二腔室。第二腔室与第一腔室可选择地流体连接。在加热步骤后,通过可选择地流体连接第一腔室与第二腔室,来冷却第一腔室,因此允许热量从第一腔室内的气体流动到第二腔室内的气体。
本发明的至少一个实施例的优势在于:有效增加了电炉寿命。
本发明的至少一个实施例的另一个优势在于:减小了冷却时间。
本发明的至少一个实施例的另一个优势在于:冷却系统易于从电炉上拆卸,简化了基座和其他热区域部件的拆卸和替换。
本发明的至少一个实施例的其他优势来自于在监控整个电炉的电炉温度变化方面的更高精度。
当读到以下内容以及看到附图时,对于本领域普通技术人员来说,本发明的进一步优势将是显而易见的。
附图说明
图1是根据本发明的一个分批感应电炉的侧面剖视图,显示了处于闭合位置的电炉盖;
图2是图1的批量感应电炉的侧面剖视图,显示了处于开启位置的电炉盖;
图3是沿图2中A-A的电炉壁的放大剖视图,显示了一个安装在其中的高温计;
图4是图1和图2的电炉壁的放大的侧面剖视图,显示了一个安装在其中的高温计;
图5是图1的冷却系统的侧面剖视图;
图6是一个曲线图,说明了随着时间的推移,冷却系统对电炉温度的影响;
图7是图5的执行部件的放大侧面剖视图;
图8是图5的密封和引导机构的放大的侧面剖视图;
图9是图5的圆顶的侧面正视图,显示了安装在外部的冷却管;
图10是图5的圆顶的俯视图,显示了安装在外部的冷却管;以及
图11是图5的夹紧机构的侧面剖视图。
具体实施方式
参考图1和图2,一个适合在3000℃以上温度下操作的感应电炉包括一个由如石墨的导电材料制成的基座10。基座包括一个圆柱侧面壁12,在其下端由基底14封闭。可拆卸的绝热盖16封闭基座的上开口端部18,以形成一个内部腔室20,此腔室提供了容纳待处理物品的热区域。盖16包括一个由石墨制成的盖子部分22,其位于一个由基座在邻近上端部18处形成的隔板24之上。盖子部分22附着于一个扩大的绝热塞子26的下表面上,塞子最好由刚性绝热材料制成,例如石墨刚性绝热材料。塞子26在其上端部具有向外延伸的外围凸缘。在感应电炉操作周期的加热阶段,盖16封闭内部腔室20,允许电炉在例如氩等惰性气体的微小正压力下工作。惰性气体是这样的气体:在部件和产品暴露的温度范围内,其不与电炉部件或进行热处理的产品发生反应。这防止了碳以及石墨电炉部件和热处理产品的氧化。在低于大约1900℃的工作温度下,可以使用氮作为惰性气体,随后当温度到达该水平时,用氩替换氮。正压力最好至大约20千克/平方米。
由感应线圈30感应加热基座10,由交流电源(未示出)提供动力。线圈30产生一个交变磁场,其穿过基座,在基座中感应出电流,并且导致基座发热。待热处理的物品,例如用于形成石墨的沥青纤维,位于罐32内,该罐最好由石墨制成。在加热处理前,将罐32装载到基座腔室20中。热通过辐射从基座传递到纤维中。
在整个基座截面中,流过基座10的感应电流是不均匀的。在外表面34的电流密度最大,并且朝着内表面36按指数规律下降。选择基座厚度,以实现经过基座的相对均匀的电流分布,并且感应出一些电流,并在电炉内的石墨罐32中直接生成热。电炉合适的厚度大约为5厘米。经过基座截面的温度分布给出了从外表面34提升温度到基座内的一个最大值,随后降到内表面36的较低值。
如在图3和4中的最佳所示,基座的外表面34用柔性石墨板材的阻挡层40包裹。可以获得从俄亥俄州Lakewood,OH.的Graftech公司出品的名称为的商品的合适石墨板材。柔性石墨板材最好由在添加溶液中添加石墨片来构成,该溶液含有酸,例如硫磺和硝酸的化合物,随后利用热量将添加的微粒分层。当暴露在足够的温度下,通常大约为700℃或700℃以上,微粒以可折叠方式膨胀,从而生成具有蠕虫状外形的颗粒。此“蠕虫”可以在一起压缩成柔韧或完整的膨胀石墨板材,通常称为“柔性石墨”,无需粘合剂。
通过控制压缩率,可以改变用于阻挡层40的板材密度和厚度。板材密度通常在大约0.4克/立方厘米到大约2.0克/立方厘米的范围内,厚度最好为大约0.7到1.6毫米。
粘合剂(未示出)可以应用在柔性石墨板40和基座10的外表面34之间,从而在装配电炉期间,保持板与基座接触。虽然也设想仅在邻近那些被加热到最高温度、通常称为“热区域”的区域使用石墨板,但石墨板最好覆盖基座的整个外表面34,包括侧壁12和基底14。石墨板用作围绕基座的蒸汽阻挡层,抑制了从基座表面34升华的碳蒸汽的选出。这导致了碳蒸汽的部分压力在邻近基座的区域增加。碳在基座上的蒸发率和再沉淀率之间很快达到平衡,其抑制了石墨进一步从基座蒸发的损失。
继续参考图1和3,基座位于具有底缘52的压力容器50内,例如,压力容器由玻璃纤维制成,底缘52由铝制成。压力容器内衬有冷却管54,其最好由非磁性材料制成,例如铜。冷却管设置成垂直,螺旋形回路。冷却管彼此电绝缘,以防止圆周方向的电流。例如水等的冷却液体,一直通过冷却管流动,从而防止管和其他电炉部件过热。
冷却管铸成耐火材料厚层56,耐火材料主要包括碳化硅,其提供了良好的导热性、强度和电绝缘。在耐火材料和邻近侧壁12以及基底14的基座10之间,填有绝热材料层58,例如碳黑。在电炉工作期间,绝热材料层58原地固定柔性石墨层40。碳黑最好是细粉末形式,当替换或修理基座10时,这使得碳黑能通过真空从电炉吸出。基座随之很容易从电炉拆卸。绝热材料层58的厚度保持最小值,从而提供快速冷却时间。选择最佳绝热级别,从而防止过多的热损失,并提供尽可能最短的冷却时间。与传统电炉相比,因为加热而增加的能量要求,与来自快速冷却时间的电炉生产力的增益相抵消。
现在参考图5,冷却系统60可选择地安装到电炉上端部,从而封闭基座腔室20的上端部。冷却系统包括一个由铜或其他非磁性材料制成的圆顶62。圆顶62形成了一个内部的、不透气的圆顶腔室64,其在微小正压力下容纳有惰性气体。在电炉操作周期的加热时间部分中,圆顶下端部66与基座腔室20通过电炉盖16(图1)隔离。盖16没有必要使内部腔室20与周围环境中隔离,因为圆顶用于此目的。在炉周期的冷却时间部分中,主动冷却圆顶。特别地,如在图9和10中所示,冷却管68固定到圆顶外表面上,并与一个外部的热交换器70连接。圆顶整个表面最好都用于冷却,从而最大化热量去除率。第一组冷却管68A环绕圆顶的圆柱侧壁72,而第二组冷却管68B位于圆顶上壁74的外部。
经由一个适当定位的绞盘(未示出),冷却系统60可从一个远离电炉的位置移动到电炉顶部的位置。圆顶下端部的外围凸缘76夹紧于电炉壁的上部分78(分别包括耐火材料和玻璃纤维压力容器的上端部)中,该上部分78在基座上方延伸(图2)。
在冷却期间,圆顶用作电炉的热交换器。如在图5中所示,可操作一个提升机构80,以提升电炉盖16。这在电炉腔室和圆顶腔室64之间产生一个开口82(图2)。尤其是,从一个关闭位置提升盖16到一个开启位置,关闭位置如图1中所示,其中盖子部分22位于隔板24上,而开启位置如图2中所示,其中盖子部分与隔板间隔一段距离。通过自然对流,进行基座腔室20的热气和圆顶62内的冷气迅速的混合。使用反馈控制并通过提升盖16来调节开口程度,从而限制圆顶腔室64内的温度低于铜的熔点,最好在大约200-300℃的范围内,虽然在温度检测和控制特别精确的情况下,可选择地承受更高的温度。盖16可在箭头B的方向上以任意量,移动至一个使其整体位于圆顶内的位置(图5)。
整个冷却系统60可以从电炉上移走,允许容易地拆卸基座10,以便维修或替换。一个最佳显示于图11中的夹紧机构84,可选择地将冷却机构的外围凸缘76夹到电炉壁78上。这样,在加热处理期间,圆顶62将腔室20的上端部和圆顶腔室64与外部的、周围的环境隔离。夹紧机构84包括一个冷却管86,给冷却管供给冷却水,从而使夹紧机构保持冷却。如图1所示,一个外部支架88可选择地承载圆顶的大部分重量,以避免对电炉壁78上端部可能的损坏。
参考图5,一个或更多个例如热电偶等的温度探测器90,放置于圆顶62内。温度探测器为控制系统92提供信号,如果圆顶腔室64内的温度变高,该控制系统用信号通知提升机构80放下盖子,以减小开口82的尺寸,而如果温度下降到预设水平以下,控制系统指示提升机构,通过提升盖16来增加开口尺寸。
如在图5中所示,在圆顶腔室64内可选择地提供流体混合装置,例如风扇94,以改善基座腔室20和圆顶腔室64之间的气体循环。
在大约1500℃以上,热度最快速地流过电炉侧面,因而经过绝热层58的冷却速度相对较快。这样,在循环的冷却部分的最初时期,圆顶62的冷却效果通常并不有利。因此,在大约3100℃和大约1500℃之间的最初冷却时期,电炉盖16最好保持闭合。一旦炉温达到大约1500℃,绝热材料抑制冷却,圆顶62的冷却作用变得有效。因此,最好在这个阶段开始盖16的提升。
图6显示了上端冷却系统60在电炉冷却速度上的效果。显示了两条曲线,一条显示了没有圆顶的电炉的预测冷却,另一条显示了使用圆顶62的预测冷却。能够看到:当使用圆顶时,冷却时间大约为48小时,从而总体冷却时间减少了至少一半。这些结果是针对内径63厘米、高241厘米的基座以及4.65平方米的圆顶传热面积(也就是,圆顶侧壁72和顶壁74的总面积)来预测的。
再次参考图5,同时参考图7,提升机构80有利地包括一个直线执行部件100。通过一个活节联轴器104,执行部件100在其下端连接到一个安装板102上。安装板102通过螺栓106或其他合适的固定构件安装到圆顶上壁74上。直线执行部件100伸展或者收缩,从而收起或释放滚链108的一端,滚链越过一个滑轮系统110;直线执行部件可包括一个由空气或液压操作的活塞107。滚链108的另一端与垂直定向的圆柱提升杆112的上端连接。直线执行部件100、安装板102、滚链108和滑轮系统110支撑在不锈钢或类似材料制成的机架114内,并且不经受圆顶腔室64内的热气。
提升杆112的下端延伸进入圆顶腔室64,并且通过不锈钢联结器120与电炉盖16连接。联结器120安装到石墨支撑杆121上,支撑杆延伸恰好穿过盖16。同时参考图8,提升杆112穿过执行部件安装板102内的第一开口122以及圆顶上壁74的第二开口124。
继续参考图8,一个密封和引导系统130用来引导杆112的下端通过开口122、124,并在圆顶腔室64和机架114内部之间提供密封。密封和引导系统尤其包括一个不锈钢制成的圆柱套管132。在套管下端133以上很短的距离,将套管焊接或安装到一个环形安装凸缘134上,该凸缘又环绕开口122用螺栓固定到安装板102上。用螺栓138将套管上端安装到第二环形凸缘136上。套管132的下端133延伸到安装板102下方。套管132下端部133,将如O型圈等的环形密封件140挤压靠在圆顶上壁74的上表面。当提升杆穿过密封件上下移动时,密封件与提升杆密闭接合。在套管132内上下轴承144、146之间支撑间隔管142,上下轴承分别倚靠凸缘136和密封件140。间隔管142容纳提升杆112从中穿过。
再次转向电炉操作,安装若干个高温计150(在优选实施例中为3个),与相应的管152保持热连通,管穿过基座壁12进入基座腔室20(图2-4)。在加热和冷却基座腔室期间,高温计150放置于基座腔室20的不同区域,并且允许连续监测周围温度。高温计150最好信号通知控制系统92,控制系统92使用检测温度来确定何时信号通知提升机构80开始提升盖16。
在一个炉周期开始前,在整个热区域的不同地点,将若干证明盘154也放置在基座腔室20内。证明盘154提供每一个盘所暴露的最高温度的精确确定。在一个优选实施例中,证明盘由碳制成,碳在加热处理期间变成石墨。通过测量暴露的盘154的石墨晶粒的大小,并且与从精确校准试样盘获得的那些尺寸相比较,来确定最高温度。通过产生的衍射模式,X射线衍射技术可用来自动确定晶粒尺寸。
在加热处理后,检测证明盘154,从而显示出比仅靠高温计150所能提供的更详细的温度分布模式。此外,盘154对高温计150提供检查,随着时间的推移,高温计有不再准确、甚至完全损坏的趋势。因为盘的低成本以及使用简易,比起高温计的可行性,可使用更多的证明盘。在每一次加热处理后,丢弃盘154,更换新的盘。
最好对每一个电炉维持一个数据库,从而存储高温计的读数和盘的测量值,并且对数据进行趋势分析。在几个炉周期过程中,能够对高温计错误、感应线圈端部效应以及不良绝热区域进行检测和更正。
典型的加热处理进行如下。将待处理的物品,例如石墨化的沥青纤维,加载到一个或者多个罐32内。对罐进行封闭,并且连同若干新证明盘154一起,放入基座腔室20中。冷却系统由一个适当定位的绞盘(未示出)操控,直到凸缘76位于炉壁部分78上。在微小的正压力下,基座腔室20和圆顶腔室64内的空气被替换成惰性气体。在加热处理期间,惰性气体经由入口和出口进给管(未示出)持续通过腔室20。通过直线执行部件100将盖16降到闭合位置,在该位置上,盖封闭了基座腔室20。经过冷却管54的冷却水流开始流动(在提升盖16之前,圆顶冷却可以推迟一段时间)。给感应线圈30提供电源,以加热基座10,从而使基座腔室进入工作温度。这可能需要一到两天或更多的时间。一旦达到工作温度,例如3150℃,将基座腔室20内的温度在该工作温度下保持足够长的时间,从而实现理想的石墨化水平,或完成其他热处理过程。控制系统92使用基于高温计测量的反馈控制,从而根据检测的温度来启动感应线圈30。
一旦加热阶段完成,切断感应线圈30的电源,并且经由通过绝热层58的热传导,电炉开始冷却。一旦基座腔室20的温度下降到大约1500℃,指示直线执行部件100轻微提升盖16到一个打开位置,允许基座腔室20内的热气与圆顶腔室64内的冷气混合。当基座腔室内的温度进一步下降时,执行部件100将盖16进一步提离腔室,增大开口82的尺寸,以便维持最大化的冷却速度,而圆顶腔室64不会过热。在大约1000℃以下,最好用热电偶替换高温计150。一旦基座腔室20达到适当的低温,冷却系统60被移走或向空气敞开,例如通过开启圆顶62中的阀门(未示出)。
由冷却系统60提供的改善的对柔性石墨阻挡层40的冷却,以及由描述的证明盘154提供的精确温度监控,均有助于改善电炉运作。通过使用柔性石墨,基座寿命得到了明显改善。在基座一部分受到柔性石墨保护、而另一部分未受到保护的测试中,仅在短时间之后,测试显示出基座的这些部分每一个的厚度有明显不同。已经发现:在3000℃以上工作的电炉,在基座更换之间持续的时间是没有柔性石墨阻挡层40的传统电炉的4-5倍。感应电炉适合于在至3150℃的操作温度下延长操作,这对于先前的感应电炉来说是不可行的。
可以理解:当参考一个感应电炉对冷却系统进行描述时,该冷却系统也可以用于冷却在高温下操作的其他类型的电炉。
参考优选实施例对本发明进行了描述。很显然,对于阅读并且理解了前述详细描述的人来说,可以作出修改和变动。在后附权利要求书或其等效要求的范围内,本发明被解释为包括所有这些修改和变动是所预期的。

Claims (10)

1.一种电炉,包括:
容器,其形成了一个内部腔室,用于容纳待处理物品,所述容器具有基座;
感应线圈,所述感应线圈在基座内感应出电流,以加热基座;
可选择地关闭容器内部腔室的盖子;以及
冷却系统,其包含:
形成腔室的圆顶,
提升机构,其可选择地提升盖子,允许热气从容器内部腔室流入圆顶,以及
主动冷却圆顶的冷却装置,其中所述冷却装置包含安装到圆顶表面的冷却管,冷却流体流经此冷却管。
2.根据权利要求1的电炉,其特征在于:圆顶可选择地安装在容器上。
3.根据权利要求1的电炉,其特征在于:提升机构包括线性执行部件。
4.根据权利要求3的电炉,其特征在于:线性执行部件通过一个提升杆与盖可操控地连接。
5.根据权利要求4的电炉,其特征在于:为了进行垂直运动,提升杆的下端安装在圆顶内,由圆顶承载线性执行部件。
6.根据权利要求1的电炉,其特征在于:在第一位置和第二位置之间,所述提升机构移动盖子,在第一位置时,盖子封闭容器内部腔室,在第二位置时,盖子位于圆顶腔室内。
7.根据权利要求1的电炉,其特征在于:圆顶腔室能够维持惰性气体的正压力。
8.根据权利要求1的电炉,进一步包括:
监控圆顶温度的温度探测器。
9.根据权利要求1的电炉,其特征在于:圆顶由非磁性材料制成。
10.根据权利要求1的电炉,其中基座由石墨制成,该电炉进一步包括:
基座外表面的一层柔性石墨,其抑制了从基座升华的碳蒸汽逸出。
CN038129035A 2002-04-04 2003-04-03 用于高温操作的感应电炉 Expired - Fee Related CN1659415B (zh)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
US10/115,694 US6724803B2 (en) 2002-04-04 2002-04-04 Induction furnace for high temperature operation
US10/115,694 2002-04-04
PCT/US2003/010416 WO2003087689A1 (en) 2002-04-04 2003-04-03 Induction furnace for high temperature operation

Publications (2)

Publication Number Publication Date
CN1659415A CN1659415A (zh) 2005-08-24
CN1659415B true CN1659415B (zh) 2010-05-26

Family

ID=28673818

Family Applications (1)

Application Number Title Priority Date Filing Date
CN038129035A Expired - Fee Related CN1659415B (zh) 2002-04-04 2003-04-03 用于高温操作的感应电炉

Country Status (11)

Country Link
US (2) US6724803B2 (zh)
EP (1) EP1499842B1 (zh)
JP (1) JP2005521855A (zh)
CN (1) CN1659415B (zh)
AT (1) ATE520807T1 (zh)
AU (1) AU2003221812A1 (zh)
BR (1) BR0308931A (zh)
CA (1) CA2481247C (zh)
RU (1) RU2326319C2 (zh)
WO (1) WO2003087689A1 (zh)
ZA (1) ZA200407915B (zh)

Families Citing this family (22)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6724803B2 (en) * 2002-04-04 2004-04-20 Ucar Carbon Company Inc. Induction furnace for high temperature operation
GB2393500B (en) * 2003-01-29 2004-09-08 Morgan Crucible Co Induction furnaces and components
US7113535B2 (en) * 2004-05-21 2006-09-26 Ajax Tocco Magnethermic Corporation Induction furnace for melting granular materials
US20100104496A1 (en) * 2004-10-21 2010-04-29 Miller Douglas J High strength monolithic carbon foam
US7527855B2 (en) * 2004-10-21 2009-05-05 Graftech International Holdings Inc. High strength monolithic carbon foam
US7413793B2 (en) * 2004-10-21 2008-08-19 Graftech International Holdings Inc. Induction furnace with unique carbon foam insulation
US7745764B2 (en) * 2005-12-07 2010-06-29 Ajax Tocco Magnethermic Corporation Method and apparatus for controlling furnace position in response to thermal expansion
AU2008299132A1 (en) * 2007-09-11 2009-03-19 Graftech International Holdings Inc. Coated carbon foam article
CN102625508B (zh) * 2012-04-11 2014-03-26 西安越达环保科技有限公司 电极圆可调式电极升降机构、炉盖及电弧炉
WO2014035480A1 (en) * 2012-08-30 2014-03-06 General Electric Company Induction furnace with uniform cooling capability
KR102070865B1 (ko) * 2015-09-15 2020-01-29 주식회사 원익아이피에스 리니어소스 및 그를 가지는 기판처리장치
RU174419U1 (ru) * 2016-07-12 2017-10-12 Валерий Евгеньевич Сидоров Устройство "нагреватель из графита"
TW201805246A (zh) * 2016-07-20 2018-02-16 康寧公司 玻璃處理設備及方法
JP7065857B2 (ja) * 2016-09-19 2022-05-12 キング・アブドゥッラー・ユニバーシティ・オブ・サイエンス・アンド・テクノロジー サセプター
US10544976B2 (en) * 2016-09-26 2020-01-28 Walmart Apollo, Llc Soft-sided cooler
CN106839783B (zh) * 2016-12-22 2018-11-27 合肥迅达电器有限公司 一种具有散热功能的节能型中频电炉
DE102018108291A1 (de) * 2018-04-09 2019-10-10 Eisenmann Se Ofen
RU2710176C1 (ru) * 2019-03-05 2019-12-24 Акционерное Общество "НПК "Химпроминжиниринг" Печь проходного типа для высокотемпературной обработки углеволокнистых материалов с индукционным способом нагрева рабочей зоны
JP7323736B1 (ja) * 2022-03-28 2023-08-08 株式会社Ihi機械システム 熱処理装置及び熱処理方法
WO2023189752A1 (ja) * 2022-03-28 2023-10-05 株式会社Ihi機械システム 熱処理装置及び熱処理方法
SE545807C2 (en) * 2022-06-22 2024-02-06 Stora Enso Oyj Furnace configured for treatment of particulate matter in a controlled gaseous environment
CN115031541A (zh) * 2022-08-10 2022-09-09 泽州县金秋铸造有限责任公司 升降式竖冷窑冷却机构

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2181092A (en) * 1936-03-06 1939-11-21 Nesaloy Products Inc Metallurgical process and apparatus
US3297311A (en) * 1963-11-11 1967-01-10 Asea Ab Apparatus for degasifying liquid metal
US3408470A (en) * 1966-04-04 1968-10-29 John R. Gier Jr. Induction furnace employing high purity atmosphere
US5267258A (en) * 1991-09-20 1993-11-30 Fuji Electric Co., Ltd. Fast melting induction furnace with pressing cover

Family Cites Families (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2165742A (en) * 1935-09-04 1939-07-11 Blackwell Harold Alexandre Process for separating magnesium and like metals which sublime from their ores and compounds
US3079451A (en) * 1958-11-24 1963-02-26 Light Metals Res Lab Inc Apparatus for treating titanium and other metals
US3484840A (en) * 1968-01-26 1969-12-16 Trw Inc Method and apparatus for melting and pouring titanium
US3639718A (en) * 1970-06-15 1972-02-01 Little Inc A Pressure- and temperature-controlled crystal growing apparatus
US3696223A (en) * 1970-10-05 1972-10-03 Cragmet Corp Susceptor
US4152187A (en) * 1977-08-12 1979-05-01 Caterpillar Tractor Co. Method of sealing a vacuum induction furnace
US4888242A (en) * 1986-05-27 1989-12-19 Toyo Tanson Co., Ltd. Graphite sheet material
JPH03255885A (ja) * 1990-03-02 1991-11-14 Mitsubishi Kasei Corp 真空誘導炉及び活性金属の処理方法
JP2511100Y2 (ja) * 1990-09-10 1996-09-18 日本アジャックスマグネサーミック株式会社 簡易真空誘導炉
US5260538A (en) * 1992-04-09 1993-11-09 Ethyl Corporation Device for the magnetic inductive heating of vessels
JP3584492B2 (ja) * 1994-07-12 2004-11-04 富士電機システムズ株式会社 脱亜鉛誘導溶解方法
US6724803B2 (en) * 2002-04-04 2004-04-20 Ucar Carbon Company Inc. Induction furnace for high temperature operation

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2181092A (en) * 1936-03-06 1939-11-21 Nesaloy Products Inc Metallurgical process and apparatus
US3297311A (en) * 1963-11-11 1967-01-10 Asea Ab Apparatus for degasifying liquid metal
US3408470A (en) * 1966-04-04 1968-10-29 John R. Gier Jr. Induction furnace employing high purity atmosphere
US5267258A (en) * 1991-09-20 1993-11-30 Fuji Electric Co., Ltd. Fast melting induction furnace with pressing cover

Also Published As

Publication number Publication date
AU2003221812A1 (en) 2003-10-27
BR0308931A (pt) 2005-01-04
US6898232B2 (en) 2005-05-24
RU2004132207A (ru) 2005-05-10
JP2005521855A (ja) 2005-07-21
ATE520807T1 (de) 2011-09-15
EP1499842A1 (en) 2005-01-26
EP1499842B1 (en) 2011-08-17
CA2481247A1 (en) 2003-10-23
RU2326319C2 (ru) 2008-06-10
US6724803B2 (en) 2004-04-20
WO2003087689A1 (en) 2003-10-23
EP1499842A4 (en) 2008-09-17
US20050013339A1 (en) 2005-01-20
CN1659415A (zh) 2005-08-24
CA2481247C (en) 2010-03-16
ZA200407915B (en) 2005-11-30
US20030189965A1 (en) 2003-10-09

Similar Documents

Publication Publication Date Title
CN1659415B (zh) 用于高温操作的感应电炉
CN103858214B (zh) 快速热处理腔室
US7011510B2 (en) Hot isostatic pressing apparatus and hot isostatic pressing method
US4175609A (en) Process and apparatus for the molding of shaped articles from a composite metallic refractory material
US7413793B2 (en) Induction furnace with unique carbon foam insulation
CN102507194A (zh) 高热流热环境模拟装置
JP2014065039A (ja) 製鋼用レードルの予熱方法
CN108531697A (zh) 一种安全性能高的金属生产用淬火装置
KR101907428B1 (ko) 고온수증기 산화성능 시험장치
US2445457A (en) Pot furnace
JP3230921U (ja) 工業炉
MXPA04009660A (es) Horno de induccion para operacion a alta temperatura.
CN113008733B (zh) 一种上进料式热态修补料铺展性试验炉及试验方法
CN102878796A (zh) 一种热处理pan基碳毡的井式高温电阻炉
Rao et al. Vacuum furnaces for metallurgical processing
TWI784215B (zh) 熱處理裝置
Kennedy Resistance Heated Furnaces for Reaction‐Formed Silicon Carbide Articles
RU2147109C1 (ru) Индукционная печь
Bol’shakov et al. New methods for monitoring the technical state of blast furnace enclosure without stopping the technological process
Equipment ii Ill
KR20120015981A (ko) 실리콘 잉곳의 전자 주조 장치
RU39331U1 (ru) Печь обжига
RU9115U1 (ru) Индукционная печь
Parshakov et al. Multipoint thermal-probe monitoring the radial gas distribution in blast furnaces with nonconical charging systems at OAO MMK
KR101365520B1 (ko) 방향성 전기강판의 열처리장치

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C14 Grant of patent or utility model
GR01 Patent grant
C17 Cessation of patent right
CF01 Termination of patent right due to non-payment of annual fee

Granted publication date: 20100526

Termination date: 20130403