CN1657401B - 微机械的半导体元件及其制造方法 - Google Patents

微机械的半导体元件及其制造方法 Download PDF

Info

Publication number
CN1657401B
CN1657401B CN2005100090719A CN200510009071A CN1657401B CN 1657401 B CN1657401 B CN 1657401B CN 2005100090719 A CN2005100090719 A CN 2005100090719A CN 200510009071 A CN200510009071 A CN 200510009071A CN 1657401 B CN1657401 B CN 1657401B
Authority
CN
China
Prior art keywords
porous
layer
ground floor
semiconductor substrate
cavity
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
CN2005100090719A
Other languages
English (en)
Other versions
CN1657401A (zh
Inventor
胡贝特·本泽勒
格哈德·拉梅尔
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Robert Bosch GmbH
Original Assignee
Robert Bosch GmbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from DE102004015444A external-priority patent/DE102004015444A1/de
Application filed by Robert Bosch GmbH filed Critical Robert Bosch GmbH
Publication of CN1657401A publication Critical patent/CN1657401A/zh
Application granted granted Critical
Publication of CN1657401B publication Critical patent/CN1657401B/zh
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B81MICROSTRUCTURAL TECHNOLOGY
    • B81CPROCESSES OR APPARATUS SPECIALLY ADAPTED FOR THE MANUFACTURE OR TREATMENT OF MICROSTRUCTURAL DEVICES OR SYSTEMS
    • B81C1/00Manufacture or treatment of devices or systems in or on a substrate
    • B81C1/00015Manufacture or treatment of devices or systems in or on a substrate for manufacturing microsystems
    • B81C1/00134Manufacture or treatment of devices or systems in or on a substrate for manufacturing microsystems comprising flexible or deformable structures
    • B81C1/00158Diaphragms, membranes
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01LMEASURING FORCE, STRESS, TORQUE, WORK, MECHANICAL POWER, MECHANICAL EFFICIENCY, OR FLUID PRESSURE
    • G01L9/00Measuring steady of quasi-steady pressure of fluid or fluent solid material by electric or magnetic pressure-sensitive elements; Transmitting or indicating the displacement of mechanical pressure-sensitive elements, used to measure the steady or quasi-steady pressure of a fluid or fluent solid material, by electric or magnetic means
    • G01L9/0041Transmitting or indicating the displacement of flexible diaphragms
    • G01L9/0042Constructional details associated with semiconductive diaphragm sensors, e.g. etching, or constructional details of non-semiconductive diaphragms
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01LMEASURING FORCE, STRESS, TORQUE, WORK, MECHANICAL POWER, MECHANICAL EFFICIENCY, OR FLUID PRESSURE
    • G01L9/00Measuring steady of quasi-steady pressure of fluid or fluent solid material by electric or magnetic pressure-sensitive elements; Transmitting or indicating the displacement of mechanical pressure-sensitive elements, used to measure the steady or quasi-steady pressure of a fluid or fluent solid material, by electric or magnetic means
    • G01L9/0041Transmitting or indicating the displacement of flexible diaphragms
    • G01L9/0051Transmitting or indicating the displacement of flexible diaphragms using variations in ohmic resistance
    • G01L9/0052Transmitting or indicating the displacement of flexible diaphragms using variations in ohmic resistance of piezoresistive elements
    • G01L9/0054Transmitting or indicating the displacement of flexible diaphragms using variations in ohmic resistance of piezoresistive elements integral with a semiconducting diaphragm
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B81MICROSTRUCTURAL TECHNOLOGY
    • B81BMICROSTRUCTURAL DEVICES OR SYSTEMS, e.g. MICROMECHANICAL DEVICES
    • B81B2201/00Specific applications of microelectromechanical systems
    • B81B2201/02Sensors
    • B81B2201/0264Pressure sensors
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B81MICROSTRUCTURAL TECHNOLOGY
    • B81CPROCESSES OR APPARATUS SPECIALLY ADAPTED FOR THE MANUFACTURE OR TREATMENT OF MICROSTRUCTURAL DEVICES OR SYSTEMS
    • B81C2201/00Manufacture or treatment of microstructural devices or systems
    • B81C2201/01Manufacture or treatment of microstructural devices or systems in or on a substrate
    • B81C2201/0101Shaping material; Structuring the bulk substrate or layers on the substrate; Film patterning
    • B81C2201/0111Bulk micromachining
    • B81C2201/0115Porous silicon
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B81MICROSTRUCTURAL TECHNOLOGY
    • B81CPROCESSES OR APPARATUS SPECIALLY ADAPTED FOR THE MANUFACTURE OR TREATMENT OF MICROSTRUCTURAL DEVICES OR SYSTEMS
    • B81C2201/00Manufacture or treatment of microstructural devices or systems
    • B81C2201/01Manufacture or treatment of microstructural devices or systems in or on a substrate
    • B81C2201/0101Shaping material; Structuring the bulk substrate or layers on the substrate; Film patterning
    • B81C2201/0128Processes for removing material
    • B81C2201/013Etching
    • B81C2201/0135Controlling etch progression
    • B81C2201/014Controlling etch progression by depositing an etch stop layer, e.g. silicon nitride, silicon oxide, metal

Abstract

本发明描述了一种微机械的半导体元件、以及一种制造微机械的半导体元件的方法,其中,半导体元件尤其设计用作压力传感器。这里,为了制造,在一个半导体衬底上制作出一个局部有限的、埋入的、至少部分氧化的多孔的层。有利的是,接下来通过一个沟槽蚀刻工艺,从背侧直接在该多孔的第一层下面,在半导体衬底中制造出一个空洞。本发明的核心是:该多孔的第一层用作开沟槽的终止层。这样能够制造出具有很小的厚度公差的用于差动压力测量的薄膜片。

Description

微机械的半导体元件及其制造方法
技术领域
本发明涉及一种微机械的半导体元件以及制造微机械的元件的一种方法。
背景技术
已公知了一些半导体元件、尤其是膜片传感器,以及在半导体载体——例如硅晶片——基底上制造膜片传感器的方法。其中,可以在一个半导体载体上设置一个平面的多孔膜片区域,来作为传感器结构的载体层。随后将多孔层(牺牲层)溶解脱出,从而在膜片下面产生一个中间空间用于对膜片的尤其是隔热。
现在市场上供应的膜片传感器,绝大多数都制作为薄层膜片传感器。这里,首先在一个载体衬底上沉积厚度在几十nm至几个微米之间的层系统,随后对载体衬底在预定区域内进行剥离,以便获得一端固定的膜片区域。在膜片中心可以设置传感器结构元件。
将膜片进行显露的另一种可能是表面微机械化(OMM)。其中,一般都要使用一个牺牲层,在沉积膜片之前将它覆设于载体衬底的正面上。该牺牲层随后通过膜片中的“溶解孔”从传感器的正面去除,从而形成一端固定的结构。这种表面微机械化方法,由于必需应用单独的牺牲层而相对繁琐。
在德国专利申请DE 100 32 579 A1中公开了一种制造半导体元件的方法、以及根据此方法制造的半导体元件,其中由多孔的半导体载体材料制成的层被设置于一个空穴上。为了制备这个空穴,借助于相应的蚀刻参数制备出孔隙度不同的两个层。第一层具有较低的孔隙度、并在接下来的第一回火工序中封闭起来,而第二层的孔隙度在该回火工序中增大,使得一个空穴或空洞形成。在由第一多孔层形成的第一膜片层上,在一个较高温度下的第二加工工序中生长出一个相对较厚的外延生长层,来作为第二膜片层。
在DE 100 32 579 A1的扩展中,在第一回火工序中还生长一层薄的外延生长薄层,以便确保多孔的第一层完全闭合起来,它用作厚的外延生长层进行外延生长的起始层。这里,与后续的厚的外延层的沉积过程相比,为其最好选择低温度下的低生长速度。
通过上述措施,能够大大地简化OMM-半导体元件的结构,原因是不再必须额外地制备一个牺牲层,并且膜片自身、或者膜片的主要部分都是由半导体载体材料制成的。
为了避免膜片在制造过程中、或者在规律性的应用情况中发生损坏,在DE 101 38 759 A1中提供了一种带有半导体载体的半导体元件的制造方法,其中,半导体载体在多孔膜片层区域中获得与成为随后的空穴的区域中不同的掺杂浓度。在掺杂之后,膜片层的半导体材料被多孔化,并且将位于多孔化后的半导体材料下面的半导体材料至少部分地去除掉或转移,以便制作出空穴。
DE 101 38 759 A1的扩展中给出了一种在未在先公开的文献DE103 58 859 A1中给出的方法。在该文献中,在由未多孔化的半导体材料制成的区域下面制造一个多孔层。接下来进行外延生长工序,其中,一个构成随后的膜片的外延层,从未多孔化区域开始将表面封闭起来。接下来由多孔层借助于热处理来产生一个空洞。
发明内容
本发明涉及一种微机械的半导体元件以及一种制造微机械的半导体元件的方法,其中,半导体元件尤其设计用作差动压力传感器。按照这里的方案,为了制造,在半导体衬底中制作出一个局部有限的、埋入的、至少部分氧化的多孔的层。该多孔氧化层的制造在此这样实 现:在半导体衬底的正面上制造出一个多孔的第一层,随后该多孔的第一层至少部分地氧化。在另一个进一步方法步骤中,在该多孔的第一层上制备出一个外延层,其中,该外延层同样至少被沉积于该半导体衬底的一个与所述多孔的第一层相邻的部分中。为了能够使该外延层相应地生长于该多孔的第一层上,对第一多孔的层的表面去氧化。最好是接下来借助于一个沟槽蚀刻工艺,在半导体衬底中从背侧直接在该多孔的第一层下面,制造出一个空洞。本发明的核心是:该多孔的第一层用作开沟槽的终止层。因此能够制造具有很小的厚度公差的用于差动测量压力的薄膜片。
特别有利的是,通过沟槽蚀刻工艺从半导体衬底的背侧起始制造所述空洞。在此,特别设计了:可以使用所述埋入的、氧化的、多孔层作为沟槽蚀刻工艺的蚀刻终止层。通过使用该氧化的多孔第一层作为膜片层或者作为膜片层的部分,这样,能够避免蚀刻终止层的溶解脱除。由此,除了降低成本外,还简化了制造工艺过程,原因是能够省掉用于蚀刻终止材料的溶解脱除的方法步骤。
在本发明的另一种方案的设计中,该多孔的第一层的侧向伸展大于空洞的侧向伸展。因此能够避免由于沟槽蚀刻工艺而将半导体衬底蚀刻穿透。这一点体现在稳定的膜片张紧中。在沟槽蚀刻中侧向公差能够被容忍。
有利的方式为;沟槽蚀刻工艺从半导体衬底的背面开始被这样控制,使得该空洞的侧壁最好具有一个负的侧壁角。这样防止例如通过氧沉淀(Sauerstoffpr
Figure 051090719_0
zipitate)而发生微钝化。
为了多孔的第一层具有例如抗潮湿的稳定性、或保护膜片背面免受侵蚀性介质的侵蚀,可以选择性地在空洞侧壁上、所述(氧化的)多孔第一层和/或者在半导体衬底的背面上制备另一个层。其中,它可以是一个氮化物层,它将所述表面封闭或钝化。
有利的是,所述另一个层可以是一个碳化硅层,一个硅烷层,一个聚四氟乙烯层,一个HMOS-O层,或者一个HMOS-N层。
在本发明的另一种构造中,在半导体衬底的正面上产生至少一个压电电阻和/或者一个求值电路的一部分。其中特别是,压电电阻和/或者该求值电路的一部分由该外延层制造、或制造在该外延层中。
有利的是,用硅衬底作为半导体衬底。另外,也可以考虑用一个单晶半导体层来实现该外延层。在本发明的一种特殊构造中,该多孔的第一层通过阳极氧化制得,其中第一多孔层的氧化最好通过热氧化实现。
有利的是,该多孔的第一层具有很少几个微米的厚度。
本发明的微机械的半导体元件,尤其是根据上述制造方法的一个微机械的压力传感器,该半导体元件具有在一个半导体衬底的正面上的一个膜片,和一个至少部分地被氧化的多孔第一层,和一个直接位于该多孔的第一层的下面的、通过一个沟槽蚀刻工艺制造出的空洞,其中,该膜片至少部分地具有该多孔的第一层。
有利的是,该空洞具有到半导体衬底的背面的连通,其中特别设计,该空洞由该多孔的第一层一直伸展到该半导体衬底的背面。
附图说明
图1示意性示出了一个差动压力传感器,如其在现有技术中公开的那样。
图2a至2d中示出了本发明的差动压力传感器的制造工艺过程。
图3示出了一个可利用本发明的制造方法制造的差动压力传感器 的特殊实施形式,
图4为一个完整地加工后的差动压力传感器的具体构造。
图5a至5c中示出了另一种制造本发明的压力传感器的可能性。
具体实施方式
图1中示出了一个微机械的压力传感器,如同在现有技术中已知的那样。在一个半导体衬底100上覆置上一个外延层110。它在一个空腔120的上方形成一个膜片。在外延层110上设置有一些压电敏感的电阻140。当空腔120内的介质与外部空间之间出现压差时,这些电阻将膜片的运动转换成一个可测量的压力量。此外,在外延层110上安置一个求值电路150的至少一部分,来对压力量进行处理。通常,空腔120的一部分由一个多孔层产生,该层在另一个制造方法中通过一个相应的入口130从压力传感器的正面溶解脱出掉。在这种制造方法中,在随后的沟槽开口中、从衬底的背面形成一个环绕的缝隙170,其高度处在原始的多孔层的高度,如同它在图1的区域150中所示出的那样。这样的压力传感器,在使用时可能会有介质中所包含的颗粒进入到所述缝隙(区域160)内,并且固定在那里不动。其后果之一是可能对传感信号产生(负面)影响。
避免产生环绕的缝隙170的一种可能性,是将沟槽开口的侧向伸展尺寸构造成大于被使用作为蚀刻终止层的氧化多孔层。不过,这里必须注意:开沟槽工艺在经过一定时间后要被结束,以避免由半导体衬底100和外延层220构成的衬底被蚀刻穿。为了产生空腔,接下来要将终止层溶解并去除掉。在该制造方法中,终止层的厚度必需足够大,以便对开沟槽工艺的不均匀性进行缓冲。不过,一个这种厚度的氧化层(典型厚度为30微米)在外延生长时是有问题的。
相对于它,在图2a至2d中,描述了一种差动压力传感器的制造方法,它具有一个薄(典型数值为1微米)的氧化多孔层作为沟槽终止层。其中,该层不必被溶解掉。借助于该制造方法,能够避免在膜片框架(区域160)附近产生窄缝隙。此外,膜片尺寸不再由终止层的尺寸来确定,而是通过背面上的沟开口来确定。
例如在图2a中,在一个硅衬底200中,借助于位于硅衬底200 的正面280上的一个相应掩膜局部地将一个区域210阳极氧化。该区域210确定了以后膜片的最大伸展范围。通过阳极氧化,区域210被蚀刻成多孔的,由此形成一个多孔层。接下来对硅至少部分地进行氧化,最好借助于热氧化进行。为了在随后的外延生长工序中生长出的单晶硅,既能够生长于未处理的硅衬底200的表面上、又能够生长在已被氧化的多孔硅层210上,已经氧化的多孔层210的表面被轻微蚀刻,例如使用氢氟酸(HF)。通过这种处理,在氧化的多孔层210的表面上的氧化物被蚀刻去氧化。由于现在单晶的多孔硅裸露着,因此能够在硅衬底200上生长出一个单晶外延层220。该单晶外延层220与多孔层210的至少一部分一起构成后来的膜片。此后,接着能够通过相应的半导体加工工艺,在外延层220的表面上或在其表面中,设置上压电敏感的电阻230、以及选择性地设置上求值电路的一些部分或完整的求值电路240。在半导体加工过程结束后,借助于硅衬底200的背面290的一个开沟槽工艺产生一个空洞250,它使得介质能够接近到膜片。氧化后的多孔硅,在这里作为蚀刻终止层,并位于整个膜片的底侧、以及处于膜片框架(见区域270)附近的窄缝隙内。这样,防止压力传感器工作时发生颗粒侵入并发生倾斜。由此排除了对传感器特性曲线的影响。
在沟槽蚀刻工艺中的侧向公差及其掩蔽(Maskierung)确定了膜片的位置和尺寸。这样能够保证开沟槽工艺终止于膜片平面上。防止了多孔层210附近的蚀刻穿透。膜片的位置和尺寸公差影响到压电电阻相对于膜片边缘的位置,因此对输出信号的灵敏度和偏置(Offset)产生影响。在计划安排所必需的尺寸时,在此必需为可能的求值电路保留出足够的面积。
侧壁角260,在沟槽蚀刻工艺中最好选择稍微为负值。这样,在膜片附近的沟槽开口虽然会略微增大、不过这种加宽能够通过相应的 掩蔽被补偿、即被考虑到。采用负的侧壁角的优点是避免在开沟槽时发生微钝化。在晶体中最小的缺陷、比如氧沉淀能够因此被横向蚀刻(unter
Figure 051090719_1
tzen),因此在“沟槽底部”或者说膜片背面上生成一个平的表面。
图3示出了本发明的另一个构造,其中在膜片背面上制备了一个保护层300或者说多孔硅氧化物层210。通过此保护层300能够使膜片背面钝化而抵抗侵蚀性介质。此外,保护层300还能保护氧化过的多孔层210免受水份潮湿的影响。除了膜片背面外,还可以选择性地将空洞侧壁255以及衬底背面290遮盖起来。已经证实:用一个氮化物层作为保护层300效果特别好。这里,也可以使用碳化硅、硅烷层或者聚四氟乙烯来作为保护层。此外,也可以考虑使用六甲基二硅氮烷(hexamethyldisilalzan)(HMOS-O)和六甲基二硅氧烷(HMOS-N)作为保护层300。不过,如图3所示,一个保护层300纯粹是选择性的,因为完全可以考虑将差动压力传感器使用于没有侵蚀性的介质中。
图4给出了本发明的差动压力传感器的一个具体应用例子。其中,一个半导体元件,它由制造完毕的半导体衬底200、外延层220和一个保护层300组成,被安放于一个支架420上。在支架上的固定,在这里优选通过合适的粘接剂410来实现。在支架420中,设计有一个开口430,通过它能够将介质输送到半导体元件的空洞250中。这样能够检测处于空洞中的介质与半导体元件之外的介质之间的压力差。
然而也可以代替简单的支架420,将半导体元件以其他的构造和连接技术方案屏极地(anodisch)粘贴于一个穿孔的玻璃板上。这里,用一个钻孔作为开口来将压力传递到空洞内或膜片上。玻璃板或玻璃座则能够借助于现有技术粘接或者焊接到一个金属座上、以便继续加 工。这里,最好将玻璃座中的开口用由一种特殊涂层材料制成的层遮盖起来,以便将微裂纹封闭起来,微裂纹会降低传感器的破裂强度。
在图5a-c中示出了另一个实施例。其中,从图2a开始,根据在文献DE 103 58 859 A1中描述的方法,对硅衬底500的硅,在一个晶格状(gitterartig)n型-掺杂520的区域中、在膜片的表面上,在阳极氧化时不进行多孔化蚀刻。由此产生的晶格状结构520,能够例如通过一个同样n型-掺杂、未多孔化蚀刻的区域530框围起来。通过该结构520,能够使得构造以及在后续加工工序中沉积的外延层540达到机械稳定。在随后的热氧化中,衬底表面和多孔硅510被氧化。为了能够使外延层540优选生长于n型-掺杂的区域520上以及在硅衬底500上,在一道另外的加工工序中,对氧化后的多孔硅进行表面轻微蚀刻(an
Figure 051090719_2
tzen),以便将表面上去除氧化。为实现这种氧化的表面脱除蚀刻,一种可能性例如是短时间地浸入氢氟酸(HF)中,即所谓的HF-酸洗(HF-Dip)。
经过HF-酸洗后,在硅衬底500的表面及n型-掺杂区域520上,在一道外延生长工序中生长出单晶硅作为外延层540。“n型-晶格”的小开口,其中有氧化后的多孔硅,被附晶生长,从而形成一个单晶外延层540,它在后来构成传感器的膜片。
最后,这样制备的衬底,在开沟槽工艺从背面通过一个入口通道570将膜片打开之前,由硅衬底500和外延层540组成,对应于关于图2d的描述,可装备压电元件550或装备电路元件560。如前面所述,开沟槽工艺终止于所述氧化过的多孔层处,因此能够制造出具有相同厚度的膜片的压力传感器。通过这样一种制造方法,能够在一个单一的晶片上同时制造出多个具有确定的膜片厚度的压力传感器。

Claims (17)

1.制造微机械的半导体元件的方法,该半导体元件具有一个在一个半导体衬底(200,220,500)的正面(280)上的膜片,其中
—在半导体衬底(100,500)上制作出一个局部有限的、埋入的、至少部分氧化的多孔层(210,510),并且
—该多孔氧化层的制造包括的方法步骤为:
—在一个半导体衬底(200,500)的正面(280)上制造出一个多孔的第一层(210,510),并且
—至少部分地氧化该多孔的第一层(210,510),
并且所述方法具有的进一步方法步骤为:
—在该多孔的第一层表面上去氧化,并且
—在该多孔的第一层(210,510)上以及半导体衬底上至少一个与该多孔的第一层相邻的区域上制备一个外延层(220,540),以及
—在半导体衬底(200,500)中在紧接着该多孔的第一层(210,510)的下面,通过一个沟槽蚀刻工艺,制造出一个空洞(250,570),
其特征为:
该空洞(250,570)具有到半导体衬底(200,220,500)的背面(290)的连通,该多孔的第一层(210,510)是该膜片的至少一部分。
2.如权利要求1所述的方法,其特征为:该沟槽蚀刻工艺从半导体衬底(200,500)的背面(290)产生空洞(250,570),其中,该多孔的第一层(210,510)用作沟槽蚀刻工艺的蚀刻终止层。
3.如权利要求1所述的方法,其特征为:该多孔的第一层(210,510)的侧向伸展大于该空洞(250,570)的侧向伸展。
4.如权利要求1所述的方法,其特征为:该沟槽蚀刻工艺产生空洞(250,570)的负的侧壁角(260),使得在膜片附近的沟槽开口被加宽。
5.如权利要求1或4所述的方法,其特征为:在所述多孔的第一层(210,510)和/或者在空洞(250,570)的侧壁(255)上制备一个钝化的第二层(300)。
6.如权利要求1所述的方法,其特征为:在半导体衬底(200,500)的正面(280)上制造至少一个压电电阻(230,550)和/或者一个求值电路(240,560)的一部分,其中,该至少一个压电电阻(230)和/或者该求值电路(240)的所述部分制造于外延层(220)中。
7.如权利要求1所述的方法,其特征为:设置一个硅衬底作为半导体衬底(200,500)。
8.如权利要求1或7所述的方法,其特征为:设置一个单晶半导体层作为外延层(220,540)。
9.如权利要求1或7所述的方法,其特征为:该多孔的第一层(210,510)具有下述特征中的至少一个:
—该多孔的第一层(210,510)具有很少几个微米的厚度,
—该多孔的第一层(210,510)通过一个阳极氧化产生,
—该多孔的第一层(210,510)借助于热氧化被氧化。
10.如权利要求8所述的方法,其特征为:该多孔的第一层(210,510)具有下述特征中的至少一个:
—该多孔的第一层(210,510)具有很少几个微米的厚度,
—该多孔的第一层(210,510)通过一个阳极氧化产生,
—该多孔的第一层(210,510)借助于热氧化被氧化。
11.如权利要求1所述的方法,其特征为:所述微机械的半导体元件是压力传感器。
12.如权利要求5所述的方法,其特征为:作为钝化的层设置一个氮化物层、一个碳化硅层、一个硅烷层、一个聚四氟乙烯层、一个HMOS-O层或者一个HMOS-N层。
13.微机械的半导体元件,其中,该半导体元件具有:
一在一个半导体衬底(200,220,500)的正面(280)上的一个膜片,和
—一个至少部分地被氧化的多孔第一层(210,510),和
—一个位于紧接着该多孔的第一层(210,510)的下面的、通过一个沟槽蚀刻工艺制造出的空洞(250,570),
其特征为:
该空洞(250,570)具有到半导体衬底(200,220,500)的背面(290)的连通,该膜片至少部分地具有该多孔的第一层(210,510)。
14.如权利要求13所述的微机械的半导体元件,其特征为:该空洞(250,570)由该多孔的第一层(210,510)一直伸展到该半导体衬底(200,220,500)的背面(290)。
15.如权利要求13所述的微机械的半导体元件,其特征为:该空洞(250,570)的侧壁(255)具有一个负的侧壁角(260),使得在膜片附近的沟槽开口被加宽。
16.如权利要求13或14所述的微机械的半导体元件,其特征为:该空洞侧壁(255)和/或者该多孔的第一层(210,510)具有一个钝化的第二层(300)。
17.如权利要求16所述的微机械的半导体元件,其特征为:作为钝化的层(300)设置了一个氮化物层、一个碳化硅层、一个硅烷层、一个聚四氟乙烯层、一个HMOS-O层,或者一个HMOS-N层。
CN2005100090719A 2004-02-17 2005-02-17 微机械的半导体元件及其制造方法 Expired - Fee Related CN1657401B (zh)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
DE102004007519.0 2004-02-17
DE102004007519 2004-02-17
DE102004015444A DE102004015444A1 (de) 2004-02-17 2004-07-28 Differenzdrucksensor
DE102004015444.9 2004-07-28

Publications (2)

Publication Number Publication Date
CN1657401A CN1657401A (zh) 2005-08-24
CN1657401B true CN1657401B (zh) 2011-07-06

Family

ID=34921199

Family Applications (1)

Application Number Title Priority Date Filing Date
CN2005100090719A Expired - Fee Related CN1657401B (zh) 2004-02-17 2005-02-17 微机械的半导体元件及其制造方法

Country Status (2)

Country Link
US (1) US7368313B2 (zh)
CN (1) CN1657401B (zh)

Families Citing this family (21)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20050081638A1 (en) * 2003-09-05 2005-04-21 Couch Philip R. Sensing diaphragm for a differential pressure sensor with over-pressure protection and methods
US7109068B2 (en) * 2004-08-31 2006-09-19 Micron Technology, Inc. Through-substrate interconnect fabrication methods
US7429529B2 (en) 2005-08-05 2008-09-30 Farnworth Warren M Methods of forming through-wafer interconnects and structures resulting therefrom
US7517798B2 (en) * 2005-09-01 2009-04-14 Micron Technology, Inc. Methods for forming through-wafer interconnects and structures resulting therefrom
US7493822B2 (en) * 2007-07-05 2009-02-24 Honeywell International Inc. Small gauge pressure sensor using wafer bonding and electrochemical etch stopping
US20110165719A1 (en) * 2008-03-13 2011-07-07 Florian Solzbacher Methods of forming an embedded cavity for sensors
DE102008002332B4 (de) * 2008-06-10 2017-02-09 Robert Bosch Gmbh Verfahren zur Herstellung einer mikromechanischen Membranstruktur mit Zugang von der Substratrückseite
US8980698B2 (en) * 2008-11-10 2015-03-17 Nxp, B.V. MEMS devices
JP5286153B2 (ja) 2009-04-28 2013-09-11 アズビル株式会社 圧力センサの製造方法
JP5558198B2 (ja) * 2010-05-13 2014-07-23 三菱電機株式会社 半導体圧力センサ
DE102010031197A1 (de) * 2010-07-09 2012-01-12 Robert Bosch Gmbh Piezoresistiver Drucksensor
US8171800B1 (en) * 2011-01-25 2012-05-08 Continental Automotive Systems, Inc. Differential pressure sensor using dual backside absolute pressure sensing
CN103011053A (zh) * 2012-12-28 2013-04-03 矽格微电子(无锡)有限公司 传感器芯片正面向下外露的封装结构及封装方法
US9116057B2 (en) * 2013-02-27 2015-08-25 Honeywell International Inc. Integrated reference vacuum pressure sensor with atomic layer deposition coated input port
FR3011835B1 (fr) 2013-10-16 2015-12-25 Commissariat Energie Atomique Procede de realisation par voie electrochimique d'au moins une zone poreuse d'une structure micro et/ou nanoelectronique
CN103644999A (zh) * 2013-12-19 2014-03-19 中国科学院半导体研究所 一种低量程高灵敏度mems压力传感器及其制作方法
DE102015224499A1 (de) * 2015-12-08 2017-06-08 Robert Bosch Gmbh Spannungsreduzierung beim Laserwiederverschluss durch Temperaturerhöhung
DE102016206549A1 (de) * 2016-04-19 2017-10-19 Robert Bosch Gmbh Sensorelement für thermische Anemometrie
US10809139B2 (en) * 2018-02-14 2020-10-20 Carefusion 303, Inc. Integrated sensor to monitor fluid delivery
DE102020211230A1 (de) 2020-09-08 2021-08-19 Robert Bosch Gesellschaft mit beschränkter Haftung Mikromechanisches Drucksensorelement und Verfahren zum Herstellen eines mikromechanischen Drucksensorelements
CN113432777B (zh) * 2021-05-28 2023-02-28 歌尔微电子股份有限公司 Mems压力传感器制造方法及mems压力传感器

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4672354A (en) * 1985-12-05 1987-06-09 Kulite Semiconductor Products, Inc. Fabrication of dielectrically isolated fine line semiconductor transducers and apparatus
US4784721A (en) * 1988-02-22 1988-11-15 Honeywell Inc. Integrated thin-film diaphragm; backside etch
US5320705A (en) * 1988-06-08 1994-06-14 Nippondenso Co., Ltd. Method of manufacturing a semiconductor pressure sensor
US5357808A (en) * 1991-03-28 1994-10-25 The Foxboro Company Overpressure-protected, differential pressure sensor

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE10032579B4 (de) 2000-07-05 2020-07-02 Robert Bosch Gmbh Verfahren zur Herstellung eines Halbleiterbauelements sowie ein nach dem Verfahren hergestelltes Halbleiterbauelement
DE10138759A1 (de) 2001-08-07 2003-03-06 Bosch Gmbh Robert Verfahren zur Herstellung eines Halbleiterbauelements sowie Halbleiterbauelement, insbesondere Membransensor
DE10241066A1 (de) * 2002-09-05 2004-03-18 Robert Bosch Gmbh Halbleiterbauelement und Verfahren

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4672354A (en) * 1985-12-05 1987-06-09 Kulite Semiconductor Products, Inc. Fabrication of dielectrically isolated fine line semiconductor transducers and apparatus
US4784721A (en) * 1988-02-22 1988-11-15 Honeywell Inc. Integrated thin-film diaphragm; backside etch
US5320705A (en) * 1988-06-08 1994-06-14 Nippondenso Co., Ltd. Method of manufacturing a semiconductor pressure sensor
US5357808A (en) * 1991-03-28 1994-10-25 The Foxboro Company Overpressure-protected, differential pressure sensor

Also Published As

Publication number Publication date
US20050199973A1 (en) 2005-09-15
US7368313B2 (en) 2008-05-06
CN1657401A (zh) 2005-08-24

Similar Documents

Publication Publication Date Title
CN1657401B (zh) 微机械的半导体元件及其制造方法
KR100434537B1 (ko) 다공질 실리콘 혹은 다공질 산화 실리콘을 이용한 두꺼운 희생층을 가진 다층 구조 웨이퍼 및 그 제조방법
US7276277B2 (en) Micromechanical component, in particular a sensor element, having a stabilized membrane and a method of producing such a component
US6928879B2 (en) Episeal pressure sensor and method for making an episeal pressure sensor
US7843025B2 (en) Micromechanical semiconductor sensor
US8519494B2 (en) Method for manufacturing a micromechanical diaphragm structure having access from the rear of the substrate
EP1215476A2 (en) Pressure sensor monolithically integrated and relative process of fabrication
US8344466B2 (en) Process for manufacturing MEMS devices having buried cavities and MEMS device obtained thereby
US20020053242A1 (en) Surface-micromachined pressure sensor and high pressure application
US20100297781A1 (en) Method for manufacturing mems structures
US20040099928A1 (en) Composite dielectric with improved etch selectivity for high voltage mems structures
JPH09181332A (ja) 半導体力学量センサの製造方法および異方性エッチングマスク
US5759870A (en) Method of making a surface micro-machined silicon pressure sensor
US6357299B1 (en) Micromechanical sensor and method for producing the same
US5946549A (en) Method for manufacturing sensor using semiconductor
US20060008098A1 (en) Single crystal silicon micromachined capacitive microphone
US9435699B2 (en) Method for producing a microelectromechanical device and microelectromechanical device
US20090256219A1 (en) Method for manufacturing a semiconductor component, as well as a semiconductor component, in a particular a diaphragm sensor
US7833405B2 (en) Micromechanical component and corresponding production method
JP2000124465A (ja) 半導体力学量センサの製造方法
US20090042372A1 (en) Polysilicon Deposition and Anneal Process Enabling Thick Polysilicon Films for MEMS Applications
US20020179563A1 (en) Application of a strain-compensated heavily doped etch stop for silicon structure formation
US7179668B2 (en) Technique for manufacturing silicon structures
US6506621B1 (en) Method for producing a diaphragm sensor array and diaphragm sensor array
US7494839B2 (en) Method for manufacturing a membrane sensor

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C14 Grant of patent or utility model
GR01 Patent grant
CF01 Termination of patent right due to non-payment of annual fee

Granted publication date: 20110706

Termination date: 20150217

EXPY Termination of patent right or utility model