CN1656692A - 用于迭代硬判决前向纠错译码的装置 - Google Patents

用于迭代硬判决前向纠错译码的装置 Download PDF

Info

Publication number
CN1656692A
CN1656692A CNA038121468A CN03812146A CN1656692A CN 1656692 A CN1656692 A CN 1656692A CN A038121468 A CNA038121468 A CN A038121468A CN 03812146 A CN03812146 A CN 03812146A CN 1656692 A CN1656692 A CN 1656692A
Authority
CN
China
Prior art keywords
decoder
data
group
links
wrapper
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CNA038121468A
Other languages
English (en)
Other versions
CN1656692B (zh
Inventor
M·考施克
C·波平加
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Intel Corp
Original Assignee
Intel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Intel Corp filed Critical Intel Corp
Publication of CN1656692A publication Critical patent/CN1656692A/zh
Application granted granted Critical
Publication of CN1656692B publication Critical patent/CN1656692B/zh
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03MCODING; DECODING; CODE CONVERSION IN GENERAL
    • H03M13/00Coding, decoding or code conversion, for error detection or error correction; Coding theory basic assumptions; Coding bounds; Error probability evaluation methods; Channel models; Simulation or testing of codes
    • H03M13/37Decoding methods or techniques, not specific to the particular type of coding provided for in groups H03M13/03 - H03M13/35
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03MCODING; DECODING; CODE CONVERSION IN GENERAL
    • H03M13/00Coding, decoding or code conversion, for error detection or error correction; Coding theory basic assumptions; Coding bounds; Error probability evaluation methods; Channel models; Simulation or testing of codes
    • H03M13/03Error detection or forward error correction by redundancy in data representation, i.e. code words containing more digits than the source words
    • H03M13/05Error detection or forward error correction by redundancy in data representation, i.e. code words containing more digits than the source words using block codes, i.e. a predetermined number of check bits joined to a predetermined number of information bits
    • H03M13/13Linear codes
    • H03M13/15Cyclic codes, i.e. cyclic shifts of codewords produce other codewords, e.g. codes defined by a generator polynomial, Bose-Chaudhuri-Hocquenghem [BCH] codes

Landscapes

  • Physics & Mathematics (AREA)
  • Probability & Statistics with Applications (AREA)
  • Engineering & Computer Science (AREA)
  • Theoretical Computer Science (AREA)
  • Algebra (AREA)
  • General Physics & Mathematics (AREA)
  • Mathematical Physics (AREA)
  • Pure & Applied Mathematics (AREA)
  • Error Detection And Correction (AREA)
  • Detection And Prevention Of Errors In Transmission (AREA)

Abstract

描述一种用于迭代硬判决前向纠错译码的装置。一种方法包括,二进制接收器将光信号转换成电信号,所述电信号具有一组信息符号和一组冗余符号,所述一组冗余符号由不同的前向纠错(FEC)编码方案生成;以及多个译码器的第一译码器与所述二进制接收器和所述多个译码器连接在一起,所述多个译码器中中的每一个译码器用于根据所述不同FEC编码方案利用所述一组冗余符号对所述一组信息符号译码。

Description

用于迭代硬判决前向纠错译码的装置
发明背景
发明领域
本发明涉及通信领域。更具体地来说,本发明涉及通信中的纠错技术。
发明背景
在通信网络中,前向纠错(FEC)用于保护传送的信息免受在传输系统中传输时发生的损害。在代数块码(例如,里德所罗门码)的情况中,在传输信息符号块之前,在符号中添加了冗余符号。只要被破坏的符号数量不超过该码的特殊构造所给定的某个阈值,则接收该传输的网元可以校正传输差错。
代数编码的一个替代方案是迭代编码。迭代编码算法是为在表示传输信息流接收符号可靠性的标量信息可用的情况下校正传输信息流而开发的。这些迭代编码算法还称为软判决算法。
但是,软判决编码技术常常不适用于光网络,其中高传输速率干扰生成接收符号可靠性信息的能力。再者,软判决编码算法对校正后比特误码概率低的传输信息流(此情况出现在光网络中)往往具有相对较差的性能。
附图简介
参考以下说明以及用于图示本发明实施例的附图,可以更好地理解本发明。附图中:
图1A是根据本发明一个实施例的示范性网元的示意图;
图1B说明根据本发明一个实施例的输入比特误码率(BERi)与输出比特误码率(BERo)关系的图表,其中三个示范性编码方案在传输示范信号时在其中添加了25%的FEC相关开销;
图2说明根据本发明一个实施例对数据进行编码的示范流程图;
图3A是说明根据本发明一个实施例,一个矩阵中两个码类的示范性交织的示意图;
图3B是说明根据本发明一个实施例,第三码类交织到图3A所示矩阵中的示范性交织的示意图;
图3C是说明根据本发明一个实施例,两个码类的备选示范性交织的示意图;
图4是根据本发明一个实施例对数据进行译码的流程图;
图5是说明根据本发明一个实施例的网元的线路卡的部件示意图;
图6A是说明根据本发明一个实施例,图5的迭代译码器505A的示范实施例的示意图;
图6B是说明根据本发明一个实施例,迭代译码器/去封装器(dewraper)和编码器/封装器(wrapper)509的示范实施例的示意图;
图7是说明根据本发明一个实施例,利用后向注释(backwardannotation)的迭代译码器的示意图;
图8是说明根据本发明一个实施例,利用前向注释(forwardannotation)的迭代译码器的示意图。
发明的详细说明
在如下说明中,阐述了许多具体细节,以便透彻地理解本发明。但应理解,本发明还可以在不具有这些特定细节的情况下实施。在其它实例中,熟知的电路、结构和技术未详细说明,以使本发明足够清楚。
图1A是根据本发明一个实施例的示范性网元的示意图。在图1中,网元101与网元103相连。封装/编码单元107(下文将进行更详细的说明)在网元101接收数据105。该数据包含一组信息符号。一个或多个比特可以表示每个信息符号。封装/编码单元107将开销空间添加到数据105中(称为封装)。封装/编码单元107最初以管理信息填充该开销空间。该管理信息可以包括用于码同步的图案。封装/编码单元107然后以从数据105的信息符号派生出的冗余符号填充数据105的剩余开销空间。冗余符号是交织码类的成员,对此将在下文予以详细说明。封装/编码单元107将封装的数据106传递到光发送器109。光发送器109将封装的数据106从电信号转换成光信号108。光发送器109然后将光信号108从网元101传送到网元103。在本发明的一个实施例中,封装/编码单元107和光发送器109是分离的单元。在本发明的替代实施例中,封装/编码单元107和光发送器109是一个单元。
网元103中的光接收器111接收光信号108。光接收器111将光信号108转换成电信号,即接收的封装数据110,并将接收的封装数据110传递给多码类迭代译码单元113。如果封装的数据未受损害,则接收的封装数据110与封装数据106相同。为了进行说明,假定接收的封装数据110是带有损伤的封装数据106。
多码类迭代译码单元113处理含有添加的冗余符号的接收封装数据110,以生成经处理的封装数据112。多码类迭代译码单元113将该经处理的封装数据112传递给去封装单元115。下文将对多码类迭代译码单元113和去封装单元115予以详细说明。
去封装单元115从经处理的封装数据112中去除管理信息和先前携带冗余符号的开销空间。去封装单元115然后输出数据117,与原始数据105相比,除数据117中含有不可校正差错星座(errorconstellation)的那些位置以外完全相同。原始数据105与输出数据117之间的差异称为输出误码率。本发明的不同实施例可以不同方式实现光接收器111、多码类迭代译码单元113及去封装单元115。光接收器111、多码类迭代译码单元113和去封装单元115可以是一个装置;光接收器111和多码类迭代译码单元113也可以是与去封装单元115分离的一个单元;或者,多码类迭代译码单元113和去封装单元115也可以是与光接收器111分离的一个装置。
对以光信号方式传输的具有交织码类的数据应用硬判决FEC可降低输出比特误码率。
图1B说明根据本发明一个实施例的输入比特误码率(BERi)与输出比特误码率(BERo)关系,其中的三个示范性编码方案在传输示范信号时在其中添加了25%的FEC相关开销。BERi是单比特传输误码的概率,而BERo是在根据平均白高斯噪声模型对数据进行译码之后单个比特被破坏的概率。标记为“RS(255,205)”的点划线表示单级里德所罗门编码方案的性能。标记为“简单积译码(simpleproduct decoding)”的虚线表示利用优化码参数的简单的基于里德所罗门的块积编码方案(block product coding scheme)的性能。实线表示使用两次迭代对两个交织码类执行迭代硬判决译码的编码方案的性能。如图B1所示,在光传输中通常出现的输入BER的情况下,对交织码类执行迭代硬判决译码的编码方案性能优于其它示范编码方案。
图2说明根据本发明一个实施例对数据进行编码的示范流程图。在方框201中选择编码方案。选择编码方案包括选择要采用哪个前向纠错(FEC)编码程序(例如BCH编码、里德所罗门编码等)以及选择要配合该编码算法使用的参数。在本发明一个实施例中,预定义了一组参数和程序。在本发明的替代实施例中,参数和编码程序是从存储器中检索出来的;用户选择参数和编码程序;编码程序是随机地从一组编码算法中选择的,每种编码算法具有一组预定义的参数,随机地从一组预定义参数中选择要配合预定编码程序使用的一组参数;所述参数和/或编码程序是从存储在封装/编码单元和/或单独的存储单元等上的不同参数和/或编码程序中选择的。
在方框203中接收数据。在方框205中,利用所选择的编码方案处理数据,以生成第一码类的一组码字(即,附有冗余数据的数据)。术语码类指利用某个编码程序和某组参数生成的所有码字。虽然在本发明一个实施例中,不同的码类由相同的编码程序采用不同的参数生成,但是在本发明的替代实施例中,不同的码类由相同的参数和不同的编码算法或不同的编码算法和不同的参数组生成。
在方框211中,选择一个不同的编码方案。该不同的编码方案至少在一个方面不同于先前选择的编码方案(例如参数不同、编码算法不同等)。
在方框213中,通过对在方框205中处理的编码数据应用选定的编码方案生成下一个码类。在方框215中判断编码是否完成。如果编码未完成,则控制流程返回到方框211。如果编码完成,则控制流程转到方框217。
在方框217中传输编码数据。对数据符号进行编码,以便每个符号成为每个码类的至少一个码字的成员。
虽然图中的流程图显示了由本发明某些实施例执行的操作的特定次序,但应理解,这种次序是示例性的(例如,本发明的替代实施例可以不同的次序来执行某些操作,合并某些操作,并行执行某些操作等)。例如,如果参数组是预定的,则可以不执行方框201和/或方框211的操作。此外,方框203可以在方框201之前执行。在本发明的另一个实施例中,方框201和方框211可依次执行或并行执行。
对符号进行编码,以便每个符号成为每个码类的至少一个码字的成员,每个码类可以用一个矩阵表示。图3A-3C是说明码类交织的示意图。
图3A是说明根据本发明一个实施例,一个矩阵中两个码类的示范性交织的示意图。在图3A中,由编码程序305对封装的数据301进行处理。编码程序305生成第一码类,表示为在矩阵309中按行排列的一组k2个码字。第一码类的每个码字包含n1个符号,其中k1个符号是要保护的信息符号。第一码类的冗余符号在矩阵309中表示为行冗余符号311(每行n1-k1个冗余符号)。第一码类对应于矩阵309的第一维。
随后由编码程序306处理矩阵309的第二维。如上所述,本发明的替代实施例可以采用另一个编码程序、另一个编码程序和另一组参数等来处理矩阵309。编码程序306生成矩阵315。矩阵315的列是第二码类的码字。第二码类的码字块长度为n2,每个码字有k2个信息符号,n2-k2个冗余符号,这些码字表示为列冗余符号313。第二码类包括n1个码字(即矩阵315中的n1列)。第二码类包括由行冗余符号311和用于校正行冗余符号311的冗余符号构成的码字。
图3B是说明根据本发明一个实施例,第三码类交织到图3A所示矩阵中的示范性交织的示意图。在图3B中,编码程序316生成矩阵319。编码程序319对矩阵306的第三维进行编码,以生成具有第三码类的矩阵319。矩阵319包括第三维冗余符号317。第三维冗余符号317对应于第三码类码字的每条对角线。
图3C是说明根据本发明一个实施例,两个码类的备选示范性交织的示意图。图3C说明编码程序105生成一个形式为二维域321的交织码类流。域321包括行码字和列码字。不同于图3A的矩阵315,域321在每行包含多个码字。在域321中,第一码类的码字并不与第二码类的单个码字对齐。
将多码类交织提供了改进的前向纠错。每种单一的FEC编码方案对传输差错分布(如每个码字的固定差错限制)有严格的约束。将多码类交织可使迭代译码普遍地克服FEC编码方案的局限,从而显著改善性能,对平均白高斯噪声(AWGN)模型的情况尤其突出。
图4是根据本发明一个实施例对数据进行译码的流程图。在方框401中接收数据。在方框402中处理最后一个码类(即在传输网元上编码的最后一个码类)。在方框403中,处理下一个码类(即传输网元上对最后一个码类编码之前进行编码的码类)。在方框405中,判断是否已经将所有码类译码。如果尚未将所有码类译码,则控制流程返回到方框403。如果已将所有码类译码,则控制流程返回到方框407。
在方框407中,判断在处理所有码类的同时是否校正了任何差错。如果校正了任何差错,则控制流程从方框407返回到方框402。如果没有其它差错被校正,则在方框409中从接收的数据中去除冗余符号。
图4说明将多码类交织如何使迭代译码能够克服目前FEC编码方案的局限。例如,假定编码程序305和306分别用于校正t1和t2个传输差错。如果第一码类的一个码字中的差错数量超过t1,则通常无法校正该码字。因为已将多个码类交织而后加以迭代译码,所以第二码类中校正的差错可能允许在后续迭代中校正第一码类中的差错。换言之,校正第一和第二码类的码字相交处的不正确的符号可以将第一码类的码字中的差错数量减少至低于t1。因此,该码字在下一轮迭代中变得可校正。
如前所述,图4所示的操作次序是示范性的。例如,可以不执行方框405,因为码类的数量是已知的。本发明的替代实施例可以不同方式执行方框407的步骤。可以给定固定次数的迭代循环而不是观察所执行的差错校正。此外,本发明的另一个实施例还可以接受输出数据中余留某种级别的差错。在本发明的另一个实施例中,处理单个码类(方框402和方框403)可以图5所示的流水线结构形式并行执行。
图5是根据本发明一个实施例的网元的线路卡的部件图。在图5中,线路卡包括一个光接收器501,其接收光信号形式的封装数据。光发送器501将光信号转换成电信号。然后,光接收器501将电信号形式的封装数据传递到解串器503。解串器503将封装的数据进行排列以进行迭代译码。然后,解串器503将封装数据传递给一系列任意数量的迭代译码器505A-505F进行处理。迭代译码器505A-505F中的每一个迭代译码器对封装数据的所有码类执行至少一次迭代译码。迭代译码器505F将封装数据传递给迭代译码器/去封装器和编码器/封装器509。迭代译码器/去封装器和编码器/封装器509对该数据的所有码类执行至少一次以上的迭代译码,并将该数据去封装。迭代译码器/去封装器和编码器/封装器509随后输出该数据。
迭代译码器/去封装器和编码器/封装器509还接收待发送的数据。迭代译码器/去封装器和编码器/封装器509将接收数据如图1A所述进行封装,并如前图1-2中所述将接收数据编码。迭代译码器/去封装器和编码器/封装器509然后将封装且编码的数据传递给串行化器511。串行化器511对封装的数据进行排列以便发送。串行化器511然后将串行化的封装数据传递到光发送器513。光发送器513将串行化的封装数据从电信号转换成光信号,并发送该光信号。
线路卡500和/或线路卡500的部件包括一个或多个机器可读介质。机器可读介质包括任何以机器(如计算机)可读形式提供(例如存储和/或传输)信息的装置。例如,机器可读介质包括只读存储器(ROM);随机存取存储器(RAM);磁碟存储介质;光存储介质;闪速存储器;以及电、光、声或其它形式的传播信号(例如,载波、红外线、数字信号等);等等。
图5所示的本发明实施例就连接在一起的迭代译码器的数量而言是可伸缩的。此外,所示的本发明实施例通过将编码器和译码器实现为一个部件而显著节省了板空间。本发明的各实施例可以不同方式实现迭代译码器。例如,迭代译码器505A-505F可以实现为单个迭代FEC译码器,迭代译码器505A-505F和迭代译码器/去封装器和编码器/封装单元509中的译码功能可以实现为一个单元。
图6A是说明根据本发明一个实施例,图5的迭代译码器505A的示范实施例的示意图。在图6A中,迭代译码器505A用于对两个码类进行译码。在图6A中,迭代译码器505A的列译码器601接收封装的数据。列译码器601对接收数据的每一列进行译码。在将接收数据的每一列译码之后,列译码器601将该数据传递到数据重排序器(reorderer)603A。数据重排序器603A对从列译码器601接收的数据从列到行重新进行排列。数据重排序器603A然后将重排序的数据传递给行译码器605。行译码器605将接收数据译码为矩阵的行。行译码器605然后将该数据传递给数据重排序器603B。数据重排序器603B将该数据从行到列重新进行排列。数据重排序器603B然后将重排序的数据传递给下一个迭代译码器。
图6B是说明根据本发明一个实施例,迭代译码器/去封装器和编码器/封装器509的示范实施例的示意图。在图6B中,迭代译码器505F将数据传递给迭代译码器/去封装器和编码器/封装器(“混和单元”)509。数据通过列译码器601A、数据重排序器603A以及行译码器605A,类似于每个迭代译码器505A-505F。行译码器605A将数据传递给去封装器611。去封装器611将数据去封装,类似于先前图1所述的去封装操作。混和单元509还包括封装器613。封装器613接收要发送的数据并类似于先前图1所述的封装操作对该数据进行封装。封装器613将封装的数据传递给行编码器615。行编码器615用行冗余符号填充封装器613添加的某些空间。行编码器615然后将该数据传递给数据重排序器603B。数据重排序器603B从行到列将该数据重新排序。数据重排序器603A然后将重排序的数据传递给列编码器607。列编码器607用列冗余符号填充封装器613添加的其余空间。列编码器607然后将数据传递出迭代译码器/去封装器和编码器/封装器509。
图7是说明根据本发明一个实施例,利用后向注释(backwardannotation)的迭代译码器的示意图。图7所示的迭代译码器是一个示范性三码类迭代译码器。为简明起见,假定每个码类具有代数性质,包括以计算校正子(syndrome)作为第一步骤。图7所示的迭代译码器700包括校正子计算单元703A-703C。本发明的替代实施例可以包括更多或更少的校正子计算单元。差错模式计算单元709A-709C与校正子计算单元703A-703C相连。迭代译码器700接收具有三码类的数据。接收的数据存储在FIFO 701A中。接收数据还发送到校正子计算单元703A-703C。
校正子计算单元703A计算第三码类的校正子。校正子计算单元703A将校正子传递给差错模式计算单元709A。差错模式计算单元709A计算用于纠错的差错模式,并且还计算后向注释。对存储在FIFO701A中的数据应用由差错模式计算单元709A确定的校正。所得数据存储在FIFO 701B中。计算的向后注释从差错模式计算单元709A传递到校正子计算单元703B和703C。因为校正子计算是线性的,所以校正子计算单元703A-703C以并行方式计算它们的校正子,从而校正子计算单元703B已计算了用于第二码类的校正子。校正子计算单元703B将收到的后向注释添加到其计算的校正子中。校正子计算单元703B随后将含有后向注释的校正子传递给差错模式计算单元709B。差错模式计算单元709B对第二码类执行与差错模式计算单元709A相同的任务。
差错模式计算单元709B将计算得到的差错校正信息应用于存储在FIFO 701B中的数据上。所得数据存储在FIFO 701C中。差错模式计算单元709B将为第二码类计算的后向注释传递给校正子计算单元703C。校正子计算单元703C应该已经计算了第一码类的校正子,以及添加了第一码类后向注释。校正子计算单元703C随后将第二码类的后向注释添加到其校正子中,并将计算得到的校正子传递给差错模式计算单元709C。差错模式计算单元709C确定差错校正信息,并将该信息应用于存储在FIFO 701C中的数据上。然后将所得数据传递给下一个迭代译码器。
利用后向注释对交织码类进行迭代译码减少了对每个码类进行译码导致的等待时间。可以在码类C2的差错模式计算完成之后立即计算码类C1的差错模式。
图8是说明根据本发明一个实施例,利用前向注释的迭代译码器的示意图。图8所示的迭代译码器800类似于图7所示的迭代译码器700。迭代译码器800包括校正子计算单元803A-803C。本发明的替代实施例可以包括更多或更少的校正子计算单元。差错模式计算单元809A-809C与校正子计算单元803A-803C相连。迭代译码器800接收具有三码类的数据。接收的数据存储在FIFO 801A中。接收数据还发送到校正子计算单元803A-803C。
校正子计算单元803A计算三码类的校正子。校正子计算单元809A将校正子传递给差错模式计算单元809A。差错模式计算单元809A计算用于纠错的差错模式,并且还计算后向注释。对存储在FIFO801A中的数据应用由差错模式计算单元809A确定的校正。所得数据存储在FIFO 801B中。计算的向后注释从差错模式计算单元809A传递到校正子计算单元803B和803C。因为校正子计算是线性的,所以校正子计算单元803A-803C并行地计算它们的校正子,从而校正子计算单元803B已计算出用于第二码类的校正子。差错模式计算单元809A还将其计算的结果存储在缓冲器811中,以便传送到下一个迭代译码器的校正子计算单元(“前向注释”)。校正子计算单元803B将收到的后向注释添加到其计算的校正子中。校正子计算单元803B随后将含有后向注释的校正子传递给差错模式计算单元809B。差错模式计算单元809B执行与用于第二码类的差错模式计算单元809A相同的任务。
差错模式计算单元809B将计算得到的差错校正信息应用于存储在FIFO 801B中的数据上。所得数据存储在FIFO 801C中。差错模式计算单元809B将为第二码类计算的后向注释传递给校正子计算单元803C,并将计算得到的差错模式存储在缓冲器811中,以便传送到下一个迭代译码器的校正子计算单元。校正子计算单元803C应该已经计算出第一码类的校正子,并添加了第一码类后向注释。校正子计算单元803C随后将第二码类的后向注释添加到其校正子中,并将计算得到的校正子传递给差错模式计算单元809C。差错模式计算单元809C确定差错校正信息,并将该信息应用于存储在FIFO 801C中的数据上。与差错模式计算单元809A和809B一样,差错模式计算单元809C将其计算得到的差错模式传递到缓冲器811,以便传送到下一个迭代译码器的校正子计算单元。存储在FIFO 801C中的数据传递给下一个迭代译码器。
在本发明的一个实施例中,缓冲器811按照差错模式计算单元的指示临时暂存要传送到下一个迭代译码器的校正子计算单元的计算所得的注释。在本发明的替代实施例中,差错模式计算单元将前向注释信息传递到专门对应于一个迭代译码器的差错模式计算单元和下一个迭代译码器的校正子计算单元的缓冲器。在本发明的另一个实施例中,迭代译码器的差错模式计算单元将计算得到的差错模式直接传递给下一个迭代译码器的与其对应的校正子计算单元。前向注释减少了等待时间。
所述的迭代译码可以通过存储在一个或多个机器可读介质上的指令来实现。因此,机器可读介质包括任何以机器(例如计算机)可读形式提供(例如存储和/或传输)信息的装置。例如,机器可读介质包括只读存储器(ROM);随机存取存储器(RAM);磁碟存储介质;光存储介质、闪速存储器;以及电、光、声或其它形式的传播信号(例如,载波、红外信号、数字信号等);等等。
如前所述,对交织码类的迭代硬判决译码方法允许对光传输进行前向纠错。
虽然已根据本发明的几个实施例对本发明作了描述,但本专业技术人员应知本发明并不限于所述这些实施例。在不背离权利要求书提出的本发明精神和范围的前提下,本发明的方法和装置可以在本发明精神和范围内加以修改和替换而实施。本说明书因此应视为说明性而非限制性的。

Claims (35)

1.一种装置,包括:
用于将光信号转换成电信号的二进制接收器,所述电信号具有一组信息符号和一组冗余符号,所述一组冗余符号由不同的前向纠错(FEC)编码方案生成;以及
多个译码器,其中第一个译码器与所述二进制接收器相连,并且所述多个译码器连接在一起,所述多个译码器中的每一个译码器根据所述不同的FEC编码方案利用所述冗余符号组对所述一组信息符号进行译码。
2.如权利要求1所述的装置,其特征在于:所述多个译码器以串联方式连接在一起。
3.如权利要求1所述的装置,其特征在于:所述不同的FEC编码方案是采用不同参数的相同FEC编码算法。
4.如权利要求1所述的装置,其特征在于:所述不同的FEC编码方案是不同的FEC编码算法。
5.如权利要求1所述的装置,其特征在于还包括与所述二进制接收器相连、用于将所述电信号解串的解串器。
6.如权利要求1所述的装置,其特征在于还包括与所述多个译码器之一相连的译码器/去封装器,所述单元用于根据所述不同的FEC编码方案利用所述冗余符号组对所述一组信息符号进行译码,并去除所述冗余符号组。
7.如权利要求1所述的装置,其特征在于还包括与所述多个译码器之一相连的去封装器,所述去封装器用于去除所述冗余符号组。
8.如权利要求1所述的装置,其特征在于还包括与所述多个译码器之一相连的译码器/去封装器/编码器/封装器单元,所述译码器/去封装器/编码器/封装器单元用于根据所述不同的FEC编码方案利用所述冗余符号组对所述一组信息符号进行译码;去除所述冗余符号组,接收第二组信息符号;添加开销空间和开销信息到所述冗余符号组中;以及利用所述不同的FEC编码方案对所述一组信息符号进行编码。
9.如权利要求8所述的装置,其特征在于还包括与所述译码器/去封装器/编码器/封装器单元相连的二进制发送器,所述二进制发送器用于将从所述译码器/去封装器/编码器/封装器单元接收的电信号转换成光信号。
10.如权利要求8所述的装置,其特征在于还包括与所述译码器/去封装器/编码器/封装器单元相连的串行化器,所述串行化器用于将从所述译码器/去封装器/编码器/封装器单元接收的电信号串行化。
11.一种装置,包括:
用于接收光信号并将所述光信号转换成电信号的二进制接收器;
与所述二进制接收器相连的迭代前向纠错(FEC)译码器,所述迭代FEC译码器用于重复对具有多个交织码类的一组数据的每个码类进行给定次数的译码;以及
与所述迭代FEC译码器相连的去封装器,所述去封装器用于从所述一组数据中去除冗余符号和开销信息。
12.如权利要求11所述的装置,其特征在于还包括与所述去封装器相连的封装器,用于将开销空间和开销信息添加到要从所述装置发送的数据中。
13.如权利要求12所述的装置,其特征在于还包括与所述封装器相连的串行化器。
14.如权利要求13所述的装置,其特征在于还包括与所述串行化器相连的发送器。
15.如权利要求11所述的装置,其特征在于还包括与所述去封装器相连的编码器,所述编码器用于对要从所述装置发送的数据进行编码。
16.一种装置,包括:
第一译码器,其具有:
交替与多个数据重排序器相连的多个前向纠错(FEC)编码方案译码器,所述多个FEC编码方案译码器中的每一个译码器用于根据不同的FEC编码方案对数据进行译码,以及所述多个数据重排序器中的每一个重排序器用于排列所述数据以供所述多个FEC编码方案译码器中的下一个进行处理;以及
与所述第一译码器相连的第二译码器。
17.如权利要求16所述的装置,其特征在于还包括与所述第二译码器相连的去封装器,所述去封装器用于从所述数据中去除冗余符号。
18.如权利要求16所述的装置,其特征在于:所述多个数据重排序器中的每一个根据相应的维数排列数据。
19.如权利要求16所述的装置,其特征在于还包括与所述第一译码器相连的二进制接收器,所述二进制接收器用于将信号从光转换成电,所述信号具有所述一组信息符号和所述第一和第二组冗余符号。
20.一种装置,包括:
第一译码器,其具有:
用于接收一组数据的第一缓冲器,所述一组数据包含一组码字,
第一校正子计算单元,用于接收所述一组数据并根据第一前向纠错(FEC)编码方案计算所述一组数据的第一校正子,
与所述第一校正子计算单元相连的第一差错模式计算单元,所述第一差错模式计算单元用于利用所述第一校正子计算第一差错模式;更新所述第一缓冲器中的所述一组数据;以及计算第一值,
与所述第一缓冲器相连的第二缓冲器,所述第二缓冲器用于接收所述更新的一组数据,
与所述第一差错模式计算单元相连的第二校正子计算单元,所述第二校正子计算单元用于接收所述一组数据并根据第二前向纠错(FEC)编码方案计算所述一组数据的第二校正子,接收所述第一值并以所述第一值更新所述第二校正子。
与所述第二校正子计算单元和所述第二缓冲器相连的第二差错模式计算单元,所述第二差错模式计算单元用于计算第二差错模式并更新所述第二缓冲器中的所述一组数据;以及
与所述第一译码器相连的第二译码器,所述第二译码器用于从所述第一译码器接收所述一组数据。
21.如权利要求20所述的装置,其特征在于还包括与所述第一译码器相连的二进制接收器,所述二进制接收器用于将信号从光转换成电,所述信号具有所述一组数据。
22.如权利要求20所述的装置,其特征在于还包括与所述第二译码器相连的去封装器,所述去封装器用于从所述一组数据中去除冗余符号。
23.如权利要求20所述的装置,其特征在于还包括:
所述第一译码器,其又具有:
用于计算第二值的第二差错模式计算单元;
用于从所述第二缓冲器接收所述更新的一组数据的第三缓冲器;
与所述第一和第二差错模式计算单元相连的第三校正子计算单元,所述第三校正子计算单元用于计算第三校正子,并以所述第二值更新所述校正子;以及
与所述第三校正子计算单元相连的第三差错模式计算单元,所述第三差错模式计算单元用于计算所述一组数据的第三差错模式,以更新所述第三缓冲器中的所述一组数据。
24.如权利要求20所述的装置,其特征在于还包括与所述第一和第二差错模式计算单元及所述第二译码器的第三和第四校正子计算单元相连的第三缓冲器,所述第三缓冲器用于接收所述第一值和所述第二值,并将所述第一值发送到所述第三校正子计算单元以及将所述第二值发送到所述第四校正子计算单元。
25.如权利要求20所述的装置,其特征在于还包括:
所述第二译码器具有:
与所述第一译码器的所述第一和第二差错模式计算单元相连的第三校正子计算单元,所述第三校正子计算单元用于接收所述第一值和第二值;以及
与所述第一译码器的所述第一和第二差错模式计算单元相连的第四校正子计算单元,所述第四校正子计算单元用于接收所述第一值和第二值。
26.一种装置,包括:
二进制接收器,用于接收信号并将所述信号从光转换成电,所述信号具有一组数据;
与所述二进制接收器相连的第一译码器,所述第一译码器用于根据多个不同的前向纠错(FEC)编码方案对所述一组数据进行译码;
与所述第一译码器相连的第二译码器,所述第二译码器用于根据所述多个不同的前向纠错(FEC)编码方案对所述一组数据进行译码;
与所述第二译码器相连的去封装器,所述去封装器用于从所述一组数据中去除冗余符号;
用于接收第二信号的封装器,所述第二信号具有第二组数据,所述封装器用于将开销空间和开销信息添加到所述第二组数据中;
与所述封装器相连的编码器,所述编码器用于采用所述多个不同的FEC编码方案对所述第二组数据进行编码;以及
与所述编码器相连的二进制发送器,所述二进制发送器用于将所述第二信号从电转换成光。
27.如权利要求26所述的装置,其特征在于:所述第一和第二译码器各包括交替与多个数据重排序器相连的多个FEC编码方案译码器,所述FEC编码方案译码器中的每一个译码器根据所述多个不同FEC编码方案之一对所述一组数据进行译码;以及所述多个数据重排序器用于排列所述一组数据。
28.如权利要求26所述的装置,其特征在于:所述第一和第二译码器各包括:
第一缓冲器;
第一校正子计算单元;
与所述第一校正子装置和所述第一缓冲器相连的第一差错模式计算单元;
与所述第一缓冲器相连的第二缓冲器;
与所述第一差错模式计算单元相连的第二校正子计算单元;以及
与所述第二校正子装置和所述第二缓冲器相连的第二差错模式计算单元。
29.如权利要求28所述的装置,其特征在于:所述第一译码器的所述第一和第二差错模式计算单元与所述第二译码器的所述第一和第二校正子计算单元相连。
30.如权利要求28所述的装置,其特征在于:所述第一和第二差错模式计算单元与第三缓冲器相连,所述第三缓冲器与所述第二译码器的所述第一和第二校正子计算单元相连。
31.如权利要求26所述的装置,其特征在于还包括与所述二进制发送器和所述编码器相连的串行化器,所述串行化器用于将所述第二组数据串行化。
32.如权利要求26所述的装置,其特征在于还包括与所述二进制发送器和所述第一译码器相连的解串器,所述解串器用于对所述第二组数据进行解串处理。
33.一种系统,包括:
第一网元,其又具有:
将开销空间和开销信息添加到一组数据中的封装器;
与所述封装器相连的编码器,所述编码器用于根据多个不同的前向纠错(FEC)方案对所述一组数据进行编码;
与所述编码器相连的二进制发送器,所述二进制发送器用于将所述一组数据从电信号转换成光信号;以及
与所述第一网元相连的第二网元,所述第二网元具有:
用于将所述一组数据从光信号转换成电信号的二进制接收器;
与所述二进制接收器相连的第一译码器,所述第一译码器用于根据所述多个不同的FEC编码方案对所述一组数据进行译码;
与所述第一译码器相连的第二译码器,所述第二译码器用于根据所述多个不同的FEC编码方案对所述一组数据进行译码;以及
与所述第二译码器相连的去封装器,所述去封装器用于从所述一组数据中去除开销空间、开销信息以及冗余符号。
34.如权利要求33所述的系统,其特征在于还包括:
第一网元具有:
第三译码器,用于根据所述多个不同的FEC编码方案对第二组数据进行译码;以及
与所述第三译码器相连的第四译码器,所述第四译码器根据所述多个不同的FEC编码方案对所述第二组数据进行译码。
35.如权利要求33所述的系统,其特征在于还包括:
第二网元具有:
将开销空间和开销信息添加到第二组数据中的第二封装器;
与所述第二封装器相连的第二编码器,所述第二编码器用于根据所述多个不同的前向纠错(FEC)方案对所述第二组数据进行编码;以及
与所述第二编码器相连的第二二进制发送器,所述第二二进制发送器将所述第二组数据从第二电信号转换成第二光信号。
CN038121468A 2002-04-01 2003-03-27 用于迭代硬判决前向纠错译码的装置 Expired - Fee Related CN1656692B (zh)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
US10/113,488 2002-04-01
US10/113,488 US7231575B2 (en) 2002-04-01 2002-04-01 Apparatus for iterative hard-decision forward error correction decoding
PCT/US2003/009476 WO2003085841A2 (en) 2002-04-01 2003-03-27 Apparatus for iterative hard-input forward error correction decoding

Publications (2)

Publication Number Publication Date
CN1656692A true CN1656692A (zh) 2005-08-17
CN1656692B CN1656692B (zh) 2011-06-15

Family

ID=28453610

Family Applications (1)

Application Number Title Priority Date Filing Date
CN038121468A Expired - Fee Related CN1656692B (zh) 2002-04-01 2003-03-27 用于迭代硬判决前向纠错译码的装置

Country Status (8)

Country Link
US (1) US7231575B2 (zh)
EP (1) EP1490977A2 (zh)
JP (1) JP4064928B2 (zh)
CN (1) CN1656692B (zh)
AU (1) AU2003223373A1 (zh)
CA (1) CA2480575A1 (zh)
TW (1) TWI309111B (zh)
WO (1) WO2003085841A2 (zh)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101035297B (zh) * 2006-02-23 2011-05-04 塔米拉斯珀私人有限责任公司 基于具有低不可检测错误概率的纠错码的硬判决迭代译码
US8122325B2 (en) 2006-08-11 2012-02-21 Futurewei Technologies, Inc. Forward error correction for 64b66b coded systems
WO2016119120A1 (zh) * 2015-01-27 2016-08-04 华为技术有限公司 一种fec译码的装置及方法
CN108549096A (zh) * 2018-04-17 2018-09-18 中国科学院微电子研究所 Gps导航电文纠错译码的方法及装置
CN109787641A (zh) * 2017-11-15 2019-05-21 中兴通讯股份有限公司 staircase码的解码方法、装置及存储介质
CN110463082A (zh) * 2017-06-07 2019-11-15 华为技术有限公司 具有受控比特概率的传输系统

Families Citing this family (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7415658B2 (en) 2003-09-10 2008-08-19 Intel Corporation Forward error correction mapping and de-mapping techniques
US7418644B2 (en) 2004-03-01 2008-08-26 Hewlett-Packard Development Company, L.P. System for error correction coding and decoding
US7444582B1 (en) * 2004-10-27 2008-10-28 Marvell International Ltd. Architecture and control of reed-solomon error-correction decoding
DE102006026895B3 (de) * 2006-06-09 2007-11-08 Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V. Interleaver-Vorrichtung, Empfänger für ein von der Interleaver-Vorrichtung erzeugtes Signal, Sender zum Erzeugen eines Sendesignals, Verfahren zum Verarbeiten eines Codeworts, Verfahren zum Empfangen eines Signals und Computer-Programm
US8065585B1 (en) * 2007-08-30 2011-11-22 L-3 Communications Corporation High data throughput turbo product encoder
US8296630B2 (en) * 2008-10-02 2012-10-23 Fujitsu Limited Multi-mode forward error correction
US8392788B2 (en) * 2009-11-24 2013-03-05 Cortina Systems, Inc. Transport network system with transparent transport and method of operation thereof
US8959414B2 (en) * 2013-06-13 2015-02-17 Lsi Corporation Systems and methods for hybrid layer data decoding
WO2016110973A1 (ja) * 2015-01-07 2016-07-14 富士通株式会社 伝送装置および伝送方法
US11368170B1 (en) * 2021-04-29 2022-06-21 Marvell Asia Pte, Ltd. Systems and methods for Nyquist error correction

Family Cites Families (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4564945A (en) * 1983-06-20 1986-01-14 Reference Technology, Inc. Error-correction code for digital data on video disc
US5230003A (en) * 1991-02-08 1993-07-20 Ericsson-Ge Mobile Communications Holding, Inc. Decoding system for distinguishing different types of convolutionally-encoded signals
US5392299A (en) 1992-01-15 1995-02-21 E-Systems, Inc. Triple orthogonally interleaed error correction system
US5754563A (en) * 1995-09-11 1998-05-19 Ecc Technologies, Inc. Byte-parallel system for implementing reed-solomon error-correcting codes
US5812601A (en) * 1996-11-15 1998-09-22 Telefonaktiebolaget Lm Ericsson Coding for higher-level modulation
US6189123B1 (en) * 1997-03-26 2001-02-13 Telefonaktiebolaget Lm Ericsson Method and apparatus for communicating a block of digital information between a sending and a receiving station
US6161209A (en) * 1997-03-28 2000-12-12 Her Majesty The Queen In Right Of Canada, As Represented By The Minister Of Industry Through The Communications Research Centre Joint detector for multiple coded digital signals
US6029264A (en) * 1997-04-28 2000-02-22 The Trustees Of Princeton University System and method for error correcting a received data stream in a concatenated system
US5996105A (en) * 1997-11-14 1999-11-30 Cirrus Logic, Inc. ECC system employing a data buffer for storing codeword data and a syndrome buffer for storing error syndromes
US6581178B1 (en) * 1999-02-15 2003-06-17 Nec Corporation Error correction coding/decoding method and apparatus
US6421804B1 (en) * 1999-12-20 2002-07-16 Agere Systems Guardian Corp. Generating reliability values for iterative decoding of block codes
US6622277B1 (en) 2000-06-05 2003-09-16 Tyco Telecommunications(Us)Inc. Concatenated forward error correction decoder
JP3668673B2 (ja) 2000-06-09 2005-07-06 株式会社日立コミュニケーションテクノロジー エラー訂正符号の構成方法、復号方法、伝送装置、ネットワーク
US7246294B2 (en) * 2002-04-01 2007-07-17 Intel Corporation Method for iterative hard-decision forward error correction decoding

Cited By (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101035297B (zh) * 2006-02-23 2011-05-04 塔米拉斯珀私人有限责任公司 基于具有低不可检测错误概率的纠错码的硬判决迭代译码
US8122325B2 (en) 2006-08-11 2012-02-21 Futurewei Technologies, Inc. Forward error correction for 64b66b coded systems
CN101455019B (zh) * 2006-08-11 2012-09-19 华为技术有限公司 64b66b编码系统的前向纠错
CN102891731A (zh) * 2006-08-11 2013-01-23 华为技术有限公司 64b66b编码系统的前向纠错
CN102891731B (zh) * 2006-08-11 2015-03-11 华为技术有限公司 64b66b编码系统的前向纠错
US10505672B2 (en) 2015-01-27 2019-12-10 Huawei Technologies Co., Ltd. FEC decoding apparatus and method
WO2016119120A1 (zh) * 2015-01-27 2016-08-04 华为技术有限公司 一种fec译码的装置及方法
CN110463082A (zh) * 2017-06-07 2019-11-15 华为技术有限公司 具有受控比特概率的传输系统
CN110463082B (zh) * 2017-06-07 2020-11-17 华为技术有限公司 具有受控比特概率的传输系统
US11018768B2 (en) 2017-06-07 2021-05-25 Huawei Technologies Co., Ltd. Transmission systems with controlled bit probabilities
CN109787641A (zh) * 2017-11-15 2019-05-21 中兴通讯股份有限公司 staircase码的解码方法、装置及存储介质
CN109787641B (zh) * 2017-11-15 2024-02-06 中兴通讯股份有限公司 staircase码的解码方法、装置及存储介质
CN108549096A (zh) * 2018-04-17 2018-09-18 中国科学院微电子研究所 Gps导航电文纠错译码的方法及装置
CN108549096B (zh) * 2018-04-17 2021-10-01 中国科学院微电子研究所 Gps导航电文纠错译码的方法及装置

Also Published As

Publication number Publication date
US7231575B2 (en) 2007-06-12
AU2003223373A1 (en) 2003-10-20
US20030188248A1 (en) 2003-10-02
TW200406998A (en) 2004-05-01
WO2003085841A3 (en) 2004-04-01
JP4064928B2 (ja) 2008-03-19
JP2005522139A (ja) 2005-07-21
TWI309111B (en) 2009-04-21
CN1656692B (zh) 2011-06-15
AU2003223373A8 (en) 2003-10-20
EP1490977A2 (en) 2004-12-29
CA2480575A1 (en) 2003-10-16
WO2003085841A2 (en) 2003-10-16

Similar Documents

Publication Publication Date Title
TWI285310B (en) Method and apparatus for iterative hard-decision forward error correction decoding
CN1656692B (zh) 用于迭代硬判决前向纠错译码的装置
US9876607B2 (en) Methods and apparatus employing FEC codes with permanent inactivation of symbols for encoding and decoding processes
CN1264280C (zh) 在通信系统中生成和解码代码的设备和方法
EP2357732B1 (en) Systematic encoding and decoding of chain reaction codes
JP5534528B2 (ja) 信号を復号する装置および方法
KR20060052488A (ko) 연결된 반복 및 대수 코딩
CA3072857C (en) Forward error correction with compression coding
US9071274B2 (en) Systems, methods, apparatus and computer program products for highly reliable file delivery using compound and braided FEC encoding and decoding
CN107423161B (zh) 应用于快闪存储器中的自适应ldpc码纠错码系统和方法
CN100517983C (zh) 联合信源信道可变长符号Turbo编译码方法
CN1656696A (zh) 线性分组码的软解码
US20230268932A1 (en) Ethernet coding method and apparatus
CN1756090A (zh) 信道编码装置和方法
CN103227693B (zh) 增压码
CN115037415B (zh) 基于crc的纠错编码的方法、装置、终端
WO2023029880A1 (zh) 一种数据交织方法及数据交织装置
WO2013157675A1 (ko) 오류정정부호에 대한 인터리빙 방법 및 이를 이용한 정보 송수신 시스템

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C14 Grant of patent or utility model
GR01 Patent grant
CF01 Termination of patent right due to non-payment of annual fee
CF01 Termination of patent right due to non-payment of annual fee

Granted publication date: 20110615

Termination date: 20190327