CN1637161A - 柱状超细晶材料的制备方法 - Google Patents

柱状超细晶材料的制备方法 Download PDF

Info

Publication number
CN1637161A
CN1637161A CN 200410079066 CN200410079066A CN1637161A CN 1637161 A CN1637161 A CN 1637161A CN 200410079066 CN200410079066 CN 200410079066 CN 200410079066 A CN200410079066 A CN 200410079066A CN 1637161 A CN1637161 A CN 1637161A
Authority
CN
China
Prior art keywords
crystal material
bar
shaped metal
metal materials
columnar
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN 200410079066
Other languages
English (en)
Other versions
CN1332057C (zh
Inventor
杜随更
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Northwestern Polytechnical University
Original Assignee
Northwestern Polytechnical University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Northwestern Polytechnical University filed Critical Northwestern Polytechnical University
Priority to CNB2004100790660A priority Critical patent/CN1332057C/zh
Publication of CN1637161A publication Critical patent/CN1637161A/zh
Application granted granted Critical
Publication of CN1332057C publication Critical patent/CN1332057C/zh
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Crystals, And After-Treatments Of Crystals (AREA)

Abstract

本发明公开了一种柱状超细晶材料的制备方法,其特征是把待细化组织的棒状金属材料(1)放入冷却套筒(55)中并与底部紧密接触,棒状金属材料(1)由机器带动高速旋转,并施加一定压力,接触端面处棒状金属材料(1)产生剧烈的剪切塑性变形,晶粒碎化,形成扭转变形层(56),同时,向冷却套筒(55)的水冷腔(54)注入冷却水,由于扭转变形层(56)上侧温度高于下侧,扭转变形层(56)由初始摩擦面向上侧高温区域转移,在扭转变形层(56)的下面就形成了超细晶材料堆积层(57),连续压扭、冷却,直至全部变成柱状超细晶材料;对已成型的柱状超细晶材料进行退火处理。本发明一次成形,变形程度高,所用设备吨位低,并可降低超细晶材料的成本。

Description

柱状超细晶材料的制备方法
技术领域:
本发明涉及一种柱状超细晶材料的制备方法。
背景技术:
制备超细晶材料的一般方法有:惰性气体凝聚法、气相沉淀法、机械法、机械合金化法、强烈塑性变形法等。强烈塑性变形法又分为两种,一种是高压扭转塑性变形法,另一种是S型等径侧向挤压法。
参见图6,在1999年第四期《材料导报》中,沈辉的“剧烈塑性变形法制备纳米材料Ni和Ni/SiO2”一文中采用高压扭转塑性变形法,对厚度为0.2mm、直径为8mm的圆片状Ni试样进行高压扭转,制备出平均晶粒尺寸约为52nm的超细晶材料。V.R.Gertsman在《scripta metallurgica and mechanical》1994年第229页,“On the structure and strength ofultrafine-grained copper produced by severe plastic deformation”一文中记载了采用高压扭转塑性变形法,对厚度为200μm,直径为3mm的金属圆片状材料进行高压扭转,制备出平均晶粒直径为170nm的超细晶组织。该方法缺陷是,只能对小片材料进行处理,制备不出大面积或块状的超细晶组织材料,不能应用于工业生产。
参见图7,Z.Y.Liu在《Materials science and Engineering》1998年A242卷137~140页“The effect of cumulative large plastic strain on the structure and properties of a Cu-Znalloy”一文中,记载了采用S型等径侧向挤压法,在高温条件下,对含锌38%的钢锌合金棒材进行多次挤压,最后生成平均晶粒直径为0.3~0.4μm的超细晶材料。该方法的缺陷是设备吨位高,变形程度低,需要多次反复进行。
发明内容:
本发明目的是提供一种制备柱状超细晶材料的方法。
本发明解决其技术问题所采用的技术方案是:一种柱状超细晶材料的制备方法,其特征在于:
1)把待细化组织的棒状金属材料(1)放入冷却套筒(55)中,使棒状金属材料(1)与冷却套筒(55)底部紧密接触,棒状金属材料(1)由机器带动在冷却套筒(55)底部高速旋转,并施加一定压力,接触端面处棒状金属材料(1)产生剧烈的剪切塑性变形,晶粒碎化,形成扭转变形层(56),同时,通过进水口(52)向冷却套筒(55)的水冷腔(54)注入冷却水,由于扭转变形层(56)上下两侧散热程度不同,扭转变形层(56)上侧温度高于下侧,扭转变形层(56)由初始摩擦面向上侧高温区域转移,在扭转变形层(56)的下面就形成了超细晶材料堆积层(57),连续压扭、冷却,直至整个棒状金属材料(1)全部变成柱状超细晶材料;
2)对已成型的柱状超细晶材料进行退火处理。
本发明相比现有技术的优点在于,由于采用摩擦压扭横向转移法,可制备整块的柱状超细晶材料,而且一次成形,变形程度高,所用设备吨位低。降低了超细晶材料的成本。
附图说明:
图1为摩擦压扭横向转移法制备表面超细晶材料示意图
图2为摩擦压扭横向转移法在紫铜表面制备的超细晶材料金相组织
图3为摩擦压扭横向转移法在紫铜表面制备的超细晶材料透射电镜组织
图4为热扭转偏移法制备棒状超细晶材料示意图
图5为摩擦压扭轴向转移法制备柱状超细晶材料示意图
图6为高压扭转塑性变形法制备超细晶材料示意图
图7为S型等径侧向挤压法制备超细晶材料示意图
图6和图7为背景技术附图
图中1-材料,2-轴承,3-旋转夹具,4-伺服电机,5-温度传感器,6-中频电源,7-感应线圈,8-冷却系统,9-变形区 10-固定夹具,11-压扭头,21-超细晶材料层,22-基材,41-扭矩传感器,42、46-固定台,43-平台,44-滑台,45-冷却圈,52-进水口,53-出水口,54-水冷腔,55-冷却套筒,56-扭转变形层,57-超细晶材料堆积层,61-压扭模具,71-压头,72-挤压模具。
具体实施方式:
实施例1:参照图1,本例属于变形区转移法制备超细晶材料的一种方法。是利用摩擦压扭横向转移法在板状金属材料表面制备大面积超细晶材料、进行表面硬化处理。具体过程如下:
所用设备压扭头11的转速应可调,并能承受一定的轴向压力;压扭头11横向移动速度可调,压紧力可调。
先将压扭头11的转速设定为200~500r/min,启动机器,使压扭头11按设定速度旋转,调节压扭头11与被成型的材料1之间的距离,使压扭头11和材料1紧密接触。
启动移动机构,使压扭头11在材料1上实现相对横向移动,移动速度为20~60mm/min,对材料1表面进行逐行处理。
通过控制压扭头11的转速和横向移动速度,可以调节压扭变形过程的热输入能量和变形程度,以在材料表面形成最细化晶粒或最佳性能。在压扭力作用下,材料1表面和压扭头11接触处发生剧烈剪切塑性变形,形成纳米超细晶组织。
然后,对经过摩擦压扭横向转移法处理过的金属板状材料1进行退火处理,以消除残余应力,稳定组织。
本例的应用实施例:利用摩擦压扭横向转移法对紫铜的表面进行处理。压扭头11的转速设定为300r/min,压扭头11的横向移动速度设定为37.5mm/min,对紫铜的表面进行逐行压扭处理后,将压扭处理过的紫铜材料放入热处理炉中进行退火处理,退火温度为140~160℃。经采用本发明方法处理过的紫铜表面超细晶层厚度约100μm,平均晶粒尺寸为300nm左右,硬度可达HV180,比紫铜基材硬度HV88高一倍,提高了紫铜表面的硬度与耐磨性。从图2可明显分出经过摩擦压扭横向转移法处理的紫铜表面超细晶材料层21,以及未经过处理的紫铜基材22。从图3显示的是经过摩擦压扭横向转移法处理的紫铜表面超细晶材料层21的透射电镜组织,具有明显的超细晶组织结构。
实施例2:参照图4,本例是利用热扭转偏移法制备棒状超细晶材料,属于变形区转移法制备棒(块)状超细晶材料的一种方法。具体过程如下:待细化组织的棒状金属材料1卡在固定夹具10与旋转夹具3之间。旋转夹具3由伺服电机4驱动,在旋转夹具3与伺服电机4中间安装有扭矩传感器41。感应线圈7与中频电源6可对棒状金属材料1进行局部加热。冷却圈45与冷却系统8可对棒状金属材料1进行局部冷却。由温度传感器5用来测量加热区温度。
通过中频电源6与感应线圈7对棒状金属材料1进行局部加热,加热温度低于材料的动态再结晶温度;
当温度达到设定值后,由伺服电机4带动旋转夹具3旋转。由于感应加热的区域温度相对其他区域高,变形抗力小,故塑性变形集中在加热变形区9。由于变形集中,变形区9的变形速率高,容易达到大应变程度,在扭转剪切应力作用下,金属晶粒易于破碎,形成细化晶粒。同时由于是局部变形,设备加载能力要求低,变形过程便于控制。
当起始加热变形区9的温度、变形程度达到设定值,使晶粒细化到一定程度后,通过控制滑台44的移动,使感应线圈7逐渐沿材料1轴向移动,变换加热区域。同时,冷却圈45随滑台44的移动与感应线圈7同步移动,启动冷却系统8,冷却棒状金属材料1上变形区9后方的区域,保持已细化的细晶组织。这样,随着滑台44的移动,棒状金属材料1上的加热变形区9跟随感应线圈7一起移动,使新的加热变形区9的晶粒得到细化、保持。随着加热变形区9的不断移动,就会形成连续的棒(块)状细化金属体。
当感应线圈7从待细化的棒状金属材料1的一端移动到另一端时,依次停止加热、冷却及扭转。从夹具上取下棒状金属材料1,去掉两头过渡段,即可得到一段超细晶组织棒材。
通过控制加热温度、扭转速度和移动速度,可以调节扭转变形过程的变形程度和动态再结晶程度,以在棒状金属材料1内部得到不同程度的细化晶粒。
最后,将已细化晶粒的棒状金属材料1进行适当的回火热处理,以降低残余应力,稳定组织。
实施例3:参照图5,本例是利用摩擦压扭轴向转移法制备柱状超细晶材料,属于变形区转移法制备超细晶材料的另一种方法。具体过程如下:把待细化组织的棒状金属材料1放入冷却套筒55中,使棒状金属材料1与冷却套筒55底部紧密接触,棒状金属材料1由机器带动在冷却套筒55底部高速旋转,并施加一定压力。接触端面处棒状金属材料1产生剧烈的剪切塑性变形,晶粒碎化,形成扭转变形层56。同时,通过进水口52向冷却套筒55的水冷腔54注入冷却水,冷却水由出水口53排出。由于摩擦界面的散热条件不同,沿棒状金属材料1的散热速度小于冷却套筒55的散热速度,最高温度区域由初始摩擦界面沿棒状金属材料1向上移动,根据最小阻力原理,扭转变形层56由初始摩擦面向高温区域转移,在扭转变形层56的下面就形成了超细晶材料堆积层57。此过程持续下去,整个棒状金属材料1全部变成柱状超细晶材料。将已成为细晶组织的柱状金属材料1进行适当的回火热处理,以降低残余应力,稳定组织。通过调节旋转速度与冷却条件,改变接触面的变形温度、变形速度与变形程度,就可以得到表面形貌、组织及性能的最佳配合。
本例的应用实施例:冷却套筒55材质为纯铜,套筒内孔直径为φ12mm,深度为50mm,冷却水流量60L/min。
待细化晶粒的棒状金属材料1选LY12铝合金,直径φ10mm。棒状金属材料1由机器带动高速旋转,旋转速度为1400r/min,压力为27KN,扭转变形层56移动速度约5mm/s。

Claims (1)

1、一种柱状超细晶材料的制备方法,其特征在于:
1)把待细化组织的棒状金属材料(1)放入冷却套筒(55)中,使棒状金属材料(1)与冷却套筒(55)底部紧密接触,棒状金属材料(1)由机器带动在冷却套筒(55)底部高速旋转,并施加一定压力,接触端面处棒状金属材料(1)产生剧烈的剪切塑性变形,晶粒碎化,形成扭转变形层(56),同时,通过进水口(52)向冷却套筒(55)的水冷腔(54)注入冷却水,由于扭转变形层(56)上下两侧散热程度不同,扭转变形层(56)上侧温度高于下侧扭转变形层(56)由初始摩擦面向上侧高温区域转移,在扭转变形层(56)的下面就形成了超细晶材料堆积层(57),连续压扭、冷却,直至整个棒状金属材料(1)全部变成柱状超细晶材料;
2)对已成型的柱状超细晶材料进行退火处理。
CNB2004100790660A 2003-01-10 2003-01-10 棒状超细晶材料的制备方法 Expired - Fee Related CN1332057C (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CNB2004100790660A CN1332057C (zh) 2003-01-10 2003-01-10 棒状超细晶材料的制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CNB2004100790660A CN1332057C (zh) 2003-01-10 2003-01-10 棒状超细晶材料的制备方法

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
CN 03114419 Division CN1446935A (zh) 2003-01-10 2003-01-10 超细晶材料的制备方法

Publications (2)

Publication Number Publication Date
CN1637161A true CN1637161A (zh) 2005-07-13
CN1332057C CN1332057C (zh) 2007-08-15

Family

ID=34847094

Family Applications (1)

Application Number Title Priority Date Filing Date
CNB2004100790660A Expired - Fee Related CN1332057C (zh) 2003-01-10 2003-01-10 棒状超细晶材料的制备方法

Country Status (1)

Country Link
CN (1) CN1332057C (zh)

Cited By (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101294238B (zh) * 2008-06-12 2010-10-06 昆明理工大学 制备超细晶材料的大塑性变形方法
CN101966536A (zh) * 2010-09-22 2011-02-09 上海交通大学 扭转式往复挤压装置及其加工方法
CN102112251A (zh) * 2008-07-31 2011-06-29 高周波热錬株式会社 工件的扩大加工方法
CN102839265A (zh) * 2012-09-25 2012-12-26 江苏科技大学 一种细晶棒料的制备装置及方法
CN104785784A (zh) * 2015-04-03 2015-07-22 北京赛福斯特技术有限公司 一种摩擦堆积增材装置及方法
CN104862628A (zh) * 2015-05-27 2015-08-26 西南大学 一种提高铜拉伸强度的方法
CN105107914A (zh) * 2015-08-17 2015-12-02 盐城工学院 一种高压扭转成形机
CN105296903A (zh) * 2015-10-29 2016-02-03 燕山大学 一种ZrTiAlV合金高压旋扭-电场辅助热处理细晶方法
CN106011417A (zh) * 2016-07-29 2016-10-12 何东 一种制备棒状金属梯度纳米结构的方法
CN109554638A (zh) * 2019-01-10 2019-04-02 北京理工大学 一种高熵合金梯度纳米材料制备方法
CN111349768A (zh) * 2018-12-20 2020-06-30 波音公司 高压扭转设备及使用该设备改变工件的材料性能的方法
CN113249664A (zh) * 2021-05-14 2021-08-13 安徽力幕新材料科技有限公司 一种轻量高强度铝合金加工方法及加工设备
CN113695597A (zh) * 2021-08-30 2021-11-26 中国兵器工业第五九研究所 基于感应加热补偿高性能合金钢固相增材成形装置与工艺
CN115652138A (zh) * 2022-10-27 2023-01-31 陕西天成航空材料有限公司 一种航空发动机转子用超细晶钛合金棒材的制备方法

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2159162C2 (ru) * 1998-10-01 2000-11-20 Институт проблем сверхпластичности металлов РАН Способ обработки заготовок из металлов и сплавов
RU2191652C1 (ru) * 2001-04-04 2002-10-27 Глухов Дмитрий Евгеньевич Способ получения заготовок с мелкозернистой структурой

Cited By (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101294238B (zh) * 2008-06-12 2010-10-06 昆明理工大学 制备超细晶材料的大塑性变形方法
CN102112251A (zh) * 2008-07-31 2011-06-29 高周波热錬株式会社 工件的扩大加工方法
CN102112251B (zh) * 2008-07-31 2013-07-10 高周波热錬株式会社 工件的扩大加工方法
CN101966536A (zh) * 2010-09-22 2011-02-09 上海交通大学 扭转式往复挤压装置及其加工方法
CN101966536B (zh) * 2010-09-22 2012-08-22 上海交通大学 扭转式往复挤压装置及其加工方法
CN102839265A (zh) * 2012-09-25 2012-12-26 江苏科技大学 一种细晶棒料的制备装置及方法
CN104785784B (zh) * 2015-04-03 2017-03-15 北京赛福斯特技术有限公司 一种摩擦堆积增材装置及方法
CN104785784A (zh) * 2015-04-03 2015-07-22 北京赛福斯特技术有限公司 一种摩擦堆积增材装置及方法
CN104862628A (zh) * 2015-05-27 2015-08-26 西南大学 一种提高铜拉伸强度的方法
CN105107914A (zh) * 2015-08-17 2015-12-02 盐城工学院 一种高压扭转成形机
CN105296903A (zh) * 2015-10-29 2016-02-03 燕山大学 一种ZrTiAlV合金高压旋扭-电场辅助热处理细晶方法
CN106011417A (zh) * 2016-07-29 2016-10-12 何东 一种制备棒状金属梯度纳米结构的方法
CN111349768A (zh) * 2018-12-20 2020-06-30 波音公司 高压扭转设备及使用该设备改变工件的材料性能的方法
CN111349768B (zh) * 2018-12-20 2023-09-15 波音公司 高压扭转设备及使用该设备改变工件的材料性能的方法
CN109554638A (zh) * 2019-01-10 2019-04-02 北京理工大学 一种高熵合金梯度纳米材料制备方法
CN113249664A (zh) * 2021-05-14 2021-08-13 安徽力幕新材料科技有限公司 一种轻量高强度铝合金加工方法及加工设备
CN113695597A (zh) * 2021-08-30 2021-11-26 中国兵器工业第五九研究所 基于感应加热补偿高性能合金钢固相增材成形装置与工艺
CN113695597B (zh) * 2021-08-30 2023-02-28 中国兵器工业第五九研究所 基于感应加热补偿高性能合金钢固相增材成形装置与工艺
CN115652138A (zh) * 2022-10-27 2023-01-31 陕西天成航空材料有限公司 一种航空发动机转子用超细晶钛合金棒材的制备方法

Also Published As

Publication number Publication date
CN1332057C (zh) 2007-08-15

Similar Documents

Publication Publication Date Title
CN1446935A (zh) 超细晶材料的制备方法
CN1637161A (zh) 柱状超细晶材料的制备方法
EP3391976B1 (en) Magnesium alloy sheet rolling and preparation method
CN105107840B (zh) 镁合金板材表面剧烈变形轧制装置及方法
CN1308465C (zh) 由金属和合金加工坯料的方法及产品
CN103898424B (zh) 一种镁合金晶粒细化方法
JP4305151B2 (ja) 材料のねじり押出し加工法
CN102814325B (zh) 一种大规格细晶镁合金板材的轧制方法
CN102601141A (zh) 镁合金的复合挤压加工方法
CN104438536A (zh) 一种镁合金筒形件的超声旋压成型工艺
CN111389910A (zh) 一种基于凸轮轧制制备混晶异构材料的系统和方法
CN108126981B (zh) 一种基于非对称轧制设备的大变形量轧制工艺
CN108326041B (zh) 一种大尺寸钛合金超细晶棒材的螺线圆锥辊等距轧制方法
CN100343406C (zh) 一种微米晶铁基形状记忆合金块材的制备方法
CN109252115B (zh) 一种超高强度铝合金材料及其制备方法
CN1332058C (zh) 棒状超细晶材料的制备方法
JP3863074B2 (ja) 塑性加工用マグネシウム合金凹凸板材とその製造方法
CN102304685A (zh) 一种细晶镁合金的制备方法
CN1647870A (zh) 金属薄板双辊异步铸轧机
CN109127754B (zh) 一种超细晶镁合金挤压棒材的制备方法
He et al. Grain refinement of magnesium alloys by CONFORM: a continuous severe plastic deformation route?
JP2005000996A (ja) 材料のねじり据え込み側方押出し法およびその装置
CN110369498B (zh) 一种柔性轧制制备块体细晶材料的方法
CN101624690B (zh) 难变形金属块材室温等径弯曲通道变形制备方法
CN100340678C (zh) 一种使高钒高钴高速钢获得超塑性性能的方法

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C14 Grant of patent or utility model
GR01 Patent grant
C19 Lapse of patent right due to non-payment of the annual fee
CF01 Termination of patent right due to non-payment of annual fee