CN1629960B - 接触探针储存系统的探测器容纳件 - Google Patents

接触探针储存系统的探测器容纳件 Download PDF

Info

Publication number
CN1629960B
CN1629960B CN2004101020206A CN200410102020A CN1629960B CN 1629960 B CN1629960 B CN 1629960B CN 2004101020206 A CN2004101020206 A CN 2004101020206A CN 200410102020 A CN200410102020 A CN 200410102020A CN 1629960 B CN1629960 B CN 1629960B
Authority
CN
China
Prior art keywords
medium
cantilever
detecting element
probe
receiving member
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
CN2004101020206A
Other languages
English (en)
Other versions
CN1629960A (zh
Inventor
R·G·梅加
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hewlett Packard Development Co LP
Original Assignee
Hewlett Packard Development Co LP
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hewlett Packard Development Co LP filed Critical Hewlett Packard Development Co LP
Publication of CN1629960A publication Critical patent/CN1629960A/zh
Application granted granted Critical
Publication of CN1629960B publication Critical patent/CN1629960B/zh
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01QSCANNING-PROBE TECHNIQUES OR APPARATUS; APPLICATIONS OF SCANNING-PROBE TECHNIQUES, e.g. SCANNING PROBE MICROSCOPY [SPM]
    • G01Q60/00Particular types of SPM [Scanning Probe Microscopy] or microscopes; Essential components thereof
    • G01Q60/58SThM [Scanning Thermal Microscopy] or apparatus therefor, e.g. SThM probes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y35/00Methods or apparatus for measurement or analysis of nanostructures
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11BINFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
    • G11B9/00Recording or reproducing using a method not covered by one of the main groups G11B3/00 - G11B7/00; Record carriers therefor
    • G11B9/12Recording or reproducing using a method not covered by one of the main groups G11B3/00 - G11B7/00; Record carriers therefor using near-field interactions; Record carriers therefor
    • G11B9/14Recording or reproducing using a method not covered by one of the main groups G11B3/00 - G11B7/00; Record carriers therefor using near-field interactions; Record carriers therefor using microscopic probe means, i.e. recording or reproducing by means directly associated with the tip of a microscopic electrical probe as used in Scanning Tunneling Microscopy [STM] or Atomic Force Microscopy [AFM] for inducing physical or electrical perturbations in a recording medium; Record carriers or media specially adapted for such transducing of information
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11BINFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
    • G11B9/00Recording or reproducing using a method not covered by one of the main groups G11B3/00 - G11B7/00; Record carriers therefor
    • G11B9/12Recording or reproducing using a method not covered by one of the main groups G11B3/00 - G11B7/00; Record carriers therefor using near-field interactions; Record carriers therefor
    • G11B9/14Recording or reproducing using a method not covered by one of the main groups G11B3/00 - G11B7/00; Record carriers therefor using near-field interactions; Record carriers therefor using microscopic probe means, i.e. recording or reproducing by means directly associated with the tip of a microscopic electrical probe as used in Scanning Tunneling Microscopy [STM] or Atomic Force Microscopy [AFM] for inducing physical or electrical perturbations in a recording medium; Record carriers or media specially adapted for such transducing of information
    • G11B9/1409Heads
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11BINFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
    • G11B9/00Recording or reproducing using a method not covered by one of the main groups G11B3/00 - G11B7/00; Record carriers therefor
    • G11B9/12Recording or reproducing using a method not covered by one of the main groups G11B3/00 - G11B7/00; Record carriers therefor using near-field interactions; Record carriers therefor
    • G11B9/14Recording or reproducing using a method not covered by one of the main groups G11B3/00 - G11B7/00; Record carriers therefor using near-field interactions; Record carriers therefor using microscopic probe means, i.e. recording or reproducing by means directly associated with the tip of a microscopic electrical probe as used in Scanning Tunneling Microscopy [STM] or Atomic Force Microscopy [AFM] for inducing physical or electrical perturbations in a recording medium; Record carriers or media specially adapted for such transducing of information
    • G11B9/1418Disposition or mounting of heads or record carriers
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11BINFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
    • G11B9/00Recording or reproducing using a method not covered by one of the main groups G11B3/00 - G11B7/00; Record carriers therefor
    • G11B9/12Recording or reproducing using a method not covered by one of the main groups G11B3/00 - G11B7/00; Record carriers therefor using near-field interactions; Record carriers therefor
    • G11B9/14Recording or reproducing using a method not covered by one of the main groups G11B3/00 - G11B7/00; Record carriers therefor using near-field interactions; Record carriers therefor using microscopic probe means, i.e. recording or reproducing by means directly associated with the tip of a microscopic electrical probe as used in Scanning Tunneling Microscopy [STM] or Atomic Force Microscopy [AFM] for inducing physical or electrical perturbations in a recording medium; Record carriers or media specially adapted for such transducing of information
    • G11B9/1418Disposition or mounting of heads or record carriers
    • G11B9/1427Disposition or mounting of heads or record carriers with provision for moving the heads or record carriers relatively to each other or for access to indexed parts without effectively imparting a relative movement
    • G11B9/1436Disposition or mounting of heads or record carriers with provision for moving the heads or record carriers relatively to each other or for access to indexed parts without effectively imparting a relative movement with provision for moving the heads or record carriers relatively to each other
    • G11B9/1445Disposition or mounting of heads or record carriers with provision for moving the heads or record carriers relatively to each other or for access to indexed parts without effectively imparting a relative movement with provision for moving the heads or record carriers relatively to each other switching at least one head in operating function; Controlling the relative spacing to keep the head operative, e.g. for allowing a tunnel current flow
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y10/00Nanotechnology for information processing, storage or transmission, e.g. quantum computing or single electron logic
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11BINFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
    • G11B11/00Recording on or reproducing from the same record carrier wherein for these two operations the methods are covered by different main groups of groups G11B3/00 - G11B7/00 or by different subgroups of group G11B9/00; Record carriers therefor
    • G11B11/03Recording on or reproducing from the same record carrier wherein for these two operations the methods are covered by different main groups of groups G11B3/00 - G11B7/00 or by different subgroups of group G11B9/00; Record carriers therefor using recording by deforming with non-mechanical means, e.g. laser, beam of particles
    • G11B11/06Recording on or reproducing from the same record carrier wherein for these two operations the methods are covered by different main groups of groups G11B3/00 - G11B7/00 or by different subgroups of group G11B9/00; Record carriers therefor using recording by deforming with non-mechanical means, e.g. laser, beam of particles with reproducing by mechanical sensing
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11BINFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
    • G11B11/00Recording on or reproducing from the same record carrier wherein for these two operations the methods are covered by different main groups of groups G11B3/00 - G11B7/00 or by different subgroups of group G11B9/00; Record carriers therefor
    • G11B11/08Recording on or reproducing from the same record carrier wherein for these two operations the methods are covered by different main groups of groups G11B3/00 - G11B7/00 or by different subgroups of group G11B9/00; Record carriers therefor using recording by electric charge or by variation of electric resistance or capacitance
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11BINFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
    • G11B13/00Recording simultaneously or selectively by methods covered by different main groups among G11B3/00, G11B5/00, G11B7/00 and G11B9/00; Record carriers therefor not otherwise provided for; Reproducing therefrom not otherwise provided for
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11BINFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
    • G11B5/00Recording by magnetisation or demagnetisation of a record carrier; Reproducing by magnetic means; Record carriers therefor
    • G11B2005/0002Special dispositions or recording techniques
    • G11B2005/0005Arrangements, methods or circuits
    • G11B2005/0021Thermally assisted recording using an auxiliary energy source for heating the recording layer locally to assist the magnetization reversal

Landscapes

  • Chemical & Material Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • General Health & Medical Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Radiology & Medical Imaging (AREA)
  • Health & Medical Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Nanotechnology (AREA)
  • Analytical Chemistry (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Length Measuring Devices With Unspecified Measuring Means (AREA)
  • Investigating Or Analyzing Materials By The Use Of Electric Means (AREA)

Abstract

一种读出机构的实施例,可用于接触原子分辨储存系统,其包括带有介质(101)的悬臂(106),该介质可相对所述悬臂移动;悬臂设有从悬臂延伸的探针(104),探针可与介质表面接触;朝所述介质延伸的容纳件(114),在所述悬臂面对所述介质的侧面形成;和在所述容纳件形成的探测器件(108、116),以便与介质并置。

Description

接触探针储存系统的探测器容纳件
技术领域
本发明大体上涉及一种接触探针储存系统(CPS)装置,具体地涉及可用于CPS的探测器件,其显示出具有提高的反应速度。
背景技术
到目前为止已提出使用支承在悬臂上的接触可移动介质的探针来探测写入可移动介质的数据。利用可移动介质和探针(或悬臂的一部分)之间的传热特性可确定移动介质与载有探针的悬臂之间距离的细微变化,并可利用这种方式作为读出储存在可移动介质的数据的方法。
在上述类型的装置中,使用热机械探测概念来进行成像和读出。利用随温度而变的电阻功能,位于悬臂上只用于写入的加热器也可以用作热读出探测器。也就是说,在这种类型的装置中,当热值/温度从室温上升到500-700℃之间的峰值时,电阻(R)非线性增加。峰值温度由加热器平台中的掺杂浓度决定,掺杂浓度在1×1017至2×1018的范围内。在峰值温度以上电阻降低,因为本征载流子数因热激励而增加。
检测时,电阻工作在大约200℃。该温度不足以达到使聚合物介质软化的程度,而这是写入数据所必需的,但却能够使分子能量在载有探针的悬臂和移动介质之间传输以带走热量,因此提供了一种参数,使得能够测量载有探针的悬臂和探针在其上移动的介质之间的距离。
也就是说,这种热检测基于这样的事实,即加热器平台和储存基片之间的导热性根据其间的距离而变化。悬臂和储存基片之间的媒介,在这种情况下是空气,将热量从加热器/悬臂输送到储存介质/基片。当加热器和样品之间的距离由于探针移动到数据单元凹痕中而减小时,热量能够更加有效地通过空气传输,从而使加热器的温度及其电阻降低。因此,当悬臂在数据单元上扫描时,连续加热的电阻器的温度变化被监测,从而提供了一种探测数据的方法。
在一般的工作条件下,热机械探测的灵敏度比压阻应变检测的灵敏度更高,因为半导体的热效应比应变效应更高。使用热机械探测,40纳米尺寸的数据单元凹痕图像可表现出大约为10-4/纳米的ΔR/R灵敏度。这比通过压阻应变技术取得的结果更好。
然而,已经发现热反应比所希望的慢很多,而且比悬臂机械跟随写入介质的数据模式的能力慢很多。因此,如果不受检测系统热反应限制的话,系统的读出能力将会更快。
发明内容
本发明提出一种读出机构,可用于接触原子分辨储存系统,其包括:
悬臂,带有可相对所述悬臂移动的介质;所述悬臂设有从悬臂延伸的探针,所述探针可与所述介质表面接触;
朝所述介质延伸的容纳件,在所述悬臂面对所述介质的侧面形成;和
探测器件,在所述容纳件形成并能够与介质并置。
本发明还提出一种读出机构,可用于接触原子分辨储存系统,其包括:
悬臂,带有可相对所述悬臂移动的不导电的介质;所述悬臂设有探针,所述探针可遵循所述介质的表面特征;
朝所述介质延伸的探测器容纳件,在所述悬臂上所述探针的附近形成;和
器件(场效应晶体管/加热器),在所述悬臂形成,可对所述悬臂和支承所述介质的基体之间的距离变化作出反应。
本发明还提出一种制造读出机构的方法,所述读出机构可用于接触原子分辨储存系统,其包括步骤:
形成悬臂;
在所述悬臂形成探测器支承延伸容纳件;
在所述悬臂形成探针;与所述容纳件具有预定的空间关系;
朝介质定位所述容纳件和所述探针,所述介质可相对所述探针移动,所述介质形成表示数据的表面特征;
使所述探针遵循所述介质的表示数据的表面特征;和
在所述探测器延伸容纳件与所述介质并置的部分形成探测器件(场效应晶体管/加热器)。
本发明还提出一种使用读出机构的方法,所述读出机构可用于接触原子分辨储存系统,包括以下步骤:
相对介质移动支承于悬臂的探针,所述介质具有所述探针遵循的显示数据的表面特征;和
利用流过与所述介质并置的探针的表面形成的探测器(场效应晶体管/加热器)的电流变化,探测所述悬臂和所述介质之间距离的变化。
附图说明
图1是根据本发明实施例的带有探测器容纳件的悬臂的示意性透视图;
图2是沿图3剖面II-II的示意性截面图,显示了根据本发明的第一实施例的场效应晶体管探测器装置;
图3是从图2所示悬臂的探针侧的示意性平面图;
图4是沿图5的剖面IV-IV的本发明的第二实施例的示意性截面图;
图5是从图3的悬臂装置底面看去的示意性平面图。
具体实施方式
图1-3示出了本发明的第一实施例。图2显示了适当的介质101,如聚碳酸酯或聚甲基丙烯酸甲酯(PMMA)层,其可在适当的支承基体102表面上形成。介质101,在本实施例中是不导电的,已经局部加热(例如)通过形成介质表面特征的变化写入数据,介质的表面特征可通过降低探针104到介质来探测,探针在悬臂106的端部通过图1所示的方式形成。
尽管表面特征显示出包括一连串的数据凹陷或凹痕101A,但也可以用突起来代替(未显示),或用凹陷和突起的组合来代替。应当注意到,这些突起(如果使用的话)应当与凹陷分开,以防止与突起环混在一起。突起环倾向于围绕凹陷口形成,如同月球上的冲击月坑。
因此,当介质101或悬臂106相对另一个移动而确定准确的坐标关系时,可以使悬臂106朝介质101移动。如果有凹坑101A(或孤立的突起)位于探针104的下面,探针104进入凹坑中(或与突起的顶部接合)表示存在数据单元。如果探针104没有发现凹坑或突起,而是落在介质的平面表面上,那么表示没有数据单元。
而且,数据单元还可以这样编码,使得从某一状态(凹陷、突起或平面表面)到另一状态的特定变化表示一个数据单元,而其它状态或变化表示没有数据单元。本发明可以使用其它用于接触储存器探测模式的编码技术,或探测器-介质系统的反应中主要的其他反应。
因此介质101的表面特征使得介质101与上面设有探针104的悬臂106之间的距离或空气隙发生变化。这种距离变化使得设置在悬臂106端部靠近探针104的场效应晶体管(FET)108能够对基片102和悬臂106之间产生的电场变化作出反应,从而根据介质101和悬臂106之间的间隙量对通过场效应晶体管108的电流形式的信号进行调制。
探测器电路110还可以设置成对通过场效应晶体管108的电流变化作出反应,以探测悬臂106和基片101之间的距离变化。
探测器支承延伸件或“容纳件”114通过在本实施例中围绕探针104的方式形成。如图3所示,容纳件114具有朝向介质101的表面,其上形成至少一部分场效应晶体管的源极108A和漏极108B。这样可导致场效应晶体管接近基体102,基体与场效应晶体管相互作用产生电场。在所示实施例中的场效应晶体管是一种耗尽型N沟道场效应晶体管,其包括沟道120,沟道在与介质101并置的容纳件114的表面形成。
在第一实施例中,源极、漏极和基体102的连接电路如图2示意性显示,可在场效应晶体管108的源极、漏极和介质101之间施加偏压。这样使得与基体102的接近可有效地选通场效应晶体管108,并对从源极经过沟道流到漏极的电流量进行调制,其中沟道连接源极和漏极。
由于容纳件114使得场效应晶体管108的元件接近介质101的表面,并减少距基体102的距离,改进了探测器的反应特性。也就是说,通过设置容纳件114,不仅场效应晶体管暴露于更强的电场,场效应晶体管和介质101之间距离“h”的相对变化Δh/h也增加,相对变化发生在当探针104进入介质101上形成的凹陷的情况下。
在图1-3所示的实施例中,介质101与悬臂106可(用机械方法)相互连接,因此通过用119表示的驱动机构(在图2和4中示意性地示出)可以选择性地使介质101相对悬臂106移动。该机构119设置成可使两个部件(即悬臂106和介质101)相对移动,而呈现出选定的坐标关系,并使探针104处于这样的位置,能够探测在此坐标系中是否存在表示数据变化的表面特征(如凹陷101A)。
上述实施例的一种变化使用了感应沟道型场效应晶体管,与耗尽型效应晶体管不同,此感应沟道或增强型场效应晶体管没有本征沟道,漏极到源极的电导非常低,直到栅压施加。当栅压超过给定阈值时,足够多的载流子被拉入沟道区使器件开始导电。在N沟道增强型场效应晶体管中,沟道是p型材料的,当施加有足够正的栅压时可形成导带。当导电时,这种沟道表现出n型材料的性质。
因此,这种可选择的感应沟道型场效应晶体管可响应电场从源极传导电流到漏极,当施加电压到栅极(即基体102)和通过自由电子迁移感应生成了沟道时形成电场。对于耗尽型场效应晶体管,只要源极和漏极电压保持恒定,选通信号确定了流过沟道的电流量。当栅极电压是零时,基本上没有电流流过,因为栅极电压对于形成沟道是必须的。
由于探针104和介质101中任一个或两个是不导电表面,流过场效应晶体管108的电流的调制主要是通过改变在悬臂106和基体102之间产生的电场。基体102当然必须足够导电,允许建立要求的电场。
悬臂106是通过蚀刻硅形成的,如图1所示,悬臂从基座106A延伸,并设有激活材料层106B,激活材料106B由带有固有应力的材料形成,用于使悬臂106产生弯曲,使探针104相对介质101移动。掺杂迹线118A和118B的端部位于基座106A,并设有电触点118E。但激活材料106B不限于使用带固有应力的材料,而是如果需要可用压电材料来形成。
因为掺杂和蚀刻技术属于半导体制造领域的技术人员熟知的技术,为了简化下面不作进一步的介绍。
通过使用场效应晶体管作为探测器,可以预期有良好的探测器带宽,因为电场的响应速度与悬臂的运动速度一样快。因此场效应晶体管能够对电场强度的变化快速作出反应,从而有可能使悬臂的机械结构成为带宽的限制因素。可以预期这种装置的信噪比(SNR)与上述热动式探测器相比能够提高,因为后者的许多有用信号由于热低通作用而滤掉。设置容纳件114可提高这些特性。
由于场效应晶体管能够产生增益,所以可以预期探测器可相对各种噪声源产生较大的输出信号,从而减少因这些噪音引起的信号降低。此外,因为距离的相对变化Δh/h如上所述变大,探测器的信噪比得到改善。
图4和图5显示了本发明的第二实施例。在该实施例中,图1和图2所示的场效应晶体管108用探测器件116代替,该器件与介质101并置,并通过电路连接到探测器电路110使得可对变化进行监测,该变化随探测器件116和介质101之间的间隙的变化而变化。
在第二实施例中,探测器件116包括加热件,其通过流过的电流进行加热,可对介质101和悬臂106之间的距离变化作出反应。在容纳件的端部并置设置的探测器件116代表了对开头段落讨论的设置的改进,因为由于距介质的距离减少,探测器件116处于使其有更快反应的条件下,因为从加热件排出的热量增加,探测装置可显示出更好的反应特性。
但是应当注意到,对加热的探测器件接近介质上表面的程度有限制,因为当空气隙很小时,热流的平均自由路径使得热通量趋于零。
间隙中的气体介质影响到最小间隙量。例如,将装置置于氮气、氩气或其他气体,如二氧化碳、碳氢或碳氟化合物为基的气体,的气氛中,可改善最小间隙。但是,后来提到的气体倾向于存在与其应用相关的缺点,这限制了其使用。
虽然已经参考一些实施例介绍了本发明,但是在不脱离本发明范围的情况下可以作出各种修改和变化,本发明的范围只是由所附权利要求限定。对于原子分辨储存(ARS)和接触探针储存(CPS)技术领域的专业人员是不言而喻的。设置容纳件114使得探测器件设置在悬臂106上靠近介质的位置,因此可提高探测灵敏度。

Claims (10)

1.一种用于接触原子分辨储存系统的读出机构,包括:
悬臂(106),带有可相对所述悬臂移动的介质(101);所述悬臂设有从悬臂延伸的探针(104),所述探针可与所述介质表面接触;和
探测元件(108、116),其对介质接近度作出反应;
所述读出机构的特征在于:
在所述悬臂面对所述介质的侧面形成有容纳件(114),所述容纳件(114)从所述悬臂(106)朝所述介质(101)延伸;而且所述探测元件(108、116)形成在所述容纳件中或所述容纳件(114)上,以致能够与所述介质(101)并置,并且比所述探测元件(108、116)形成在所述悬臂(106)本身上时更靠近所述介质(101)。
2.根据权利要求1所述的读出机构,其特征在于,所述容纳件(114)至少部分地包围所述探针(104)。
3.根据权利要求1所述的读出机构,其特征在于,所述探测元件(108,116)构成器件的一部分,可对所述介质(101)和所述悬臂(106)之间的电场作出反应。
4.根据权利要求3所述的读出机构,其特征在于,所述探测元件构成场效应晶体管FET的一部分。
5.根据权利要求1所述的读出机构,其特征在于,所述探测元件(116)构成如下器件的一部分,该器件加热所述探测元件和通过所述探测元件和气体介质之间的热损失检测与所述介质的接近度,所述气体介质位于所述探测元件和所述介质之间。
6.根据权利要求1所述的读出机构,其特征在于,所述介质是不导电的介质;所述探针遵循所述介质的表面特征;
所述探测元件(108、116)构成如下器件(场效应晶体管/加热器)的一部分,该器件对所述悬臂和支承所述介质的基体之间的距离变化作出反应。
7.根据权利要求6所述的读出机构,其特征在于,所述器件是场效应晶体管FET,所述探测元件形成所述场效应晶体管的操作部分。
8.一种制造读出机构的方法,所述读出机构用于接触原子分辨储存系统,所述方法包括以下步骤:
形成悬臂(106);
在所述悬臂上形成探针(104),与容纳件(114)具有预定的空间关系,并且
使所述探针(104)遵循所述介质的表示数据的表面特征(101A);
形成探测元件(108、116);
所述方法的特征在于:
所述容纳件(114)是形成在所述悬臂(106)上的支承探测器的容纳件(114);
朝介质(101)定位所述容纳件(114)和所述探针(104),所述介质可相对所述探针移动,在所述介质中形成有表示数据的表面特征;
在与所述介质(101)并置的所述支承探测器的容纳件(114)的一部分中形成所述探测元件(108、116)的至少一部分,以致所述探测元件形成在所述容纳件(114)中的部分与所述介质(101)更近地并置,改善了探测器对所述悬臂(106)和所述介质(101)之间距离变化的响应。
9.一种使用读出机构的方法,所述读出机构用于接触原子分辨储存系统,所述方法包括以下步骤:
相对介质(101)移动支承于悬臂(106)的探针(104),所述介质具有所述探针(104)遵循的显示数据的表面特征(101A);和
利用流过探测元件(108、116)的电流变化探测所述悬臂(106)和所述介质(101)之间距离的变化;
所述方法的特征在于:
将探测所述距离变化的探测器的至少一部分布置在支承探测器的容纳件(114)的面中,所述容纳件(114)被布置成带有探针而且与所述介质(101)并置。
10.根据权利要求9所述的方法,其特征在于,所述方法还包括:
使用电加热件(116)作为在所述支承探测器的容纳件中形成的探测元件;和
根据所述探测元件(116)和所述介质(101)之间距离的变化,改变从所述探测元件(116)排出的热量。
CN2004101020206A 2003-12-17 2004-12-16 接触探针储存系统的探测器容纳件 Expired - Fee Related CN1629960B (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US10/736753 2003-12-17
US10/736,753 US7423954B2 (en) 2003-12-17 2003-12-17 Contact probe storage sensor pod

Publications (2)

Publication Number Publication Date
CN1629960A CN1629960A (zh) 2005-06-22
CN1629960B true CN1629960B (zh) 2010-04-28

Family

ID=34523130

Family Applications (1)

Application Number Title Priority Date Filing Date
CN2004101020206A Expired - Fee Related CN1629960B (zh) 2003-12-17 2004-12-16 接触探针储存系统的探测器容纳件

Country Status (3)

Country Link
US (1) US7423954B2 (zh)
EP (1) EP1544864A1 (zh)
CN (1) CN1629960B (zh)

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7233517B2 (en) * 2002-10-15 2007-06-19 Nanochip, Inc. Atomic probes and media for high density data storage
EP1550850A1 (en) * 2003-12-29 2005-07-06 STMicroelectronics S.r.l. Read/Write device for a mass storage device, and Read/Write method thereof
US20070041237A1 (en) * 2005-07-08 2007-02-22 Nanochip, Inc. Media for writing highly resolved domains
US20070008863A1 (en) * 2005-07-07 2007-01-11 Corvin Liaw Memory comprising a memory device and a write unit configured as a probe
KR100849391B1 (ko) 2005-07-14 2008-07-31 전자부품연구원 읽기/쓰기가 가능한 원자력 현미경 캔틸레버
KR100682956B1 (ko) * 2006-01-09 2007-02-15 삼성전자주식회사 반도체 탐침을 이용한 정보 재생 방법 및 이를 적용한 장치
US8018818B2 (en) * 2006-03-30 2011-09-13 International Business Machines Corporation Systems and methods for storing and reading data in a data storage system
US20100116038A1 (en) * 2008-11-12 2010-05-13 International Business Machines Corporation Feedback- enhanced thermo-electric topography sensing
TWI439695B (zh) * 2011-07-12 2014-06-01 Univ Nat Cheng Kung 熱探針

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0984444A3 (en) * 1998-08-19 2001-01-24 Canon Kabushiki Kaisha Probe and information recording/reproduction apparatus using the same
EP1227496A1 (en) * 2001-01-17 2002-07-31 Cavendish Kinetics Limited Non-volatile memory
DE10155930A1 (de) * 2001-11-14 2003-05-22 Univ Gesamthochschule Kassel Feldeffekttransistor-Sensor

Family Cites Families (48)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3842194A (en) 1971-03-22 1974-10-15 Rca Corp Information records and recording/playback systems therefor
US3920930A (en) 1974-04-08 1975-11-18 John James Sobczyk Field effect recordings and semiconductor playback devices
US4340956A (en) 1980-04-10 1982-07-20 Rca Corporation Minimum tracking force stylus
US4398016A (en) * 1980-09-30 1983-08-09 Dainippon Ink And Chemicals, Inc. Process for producing a resin for printing ink, and a composition comprising said resin
US4450550A (en) 1981-09-30 1984-05-22 Rca Corporation Pickup circuit for video disc including dual-gate FET with injected RF
US5994698A (en) 1987-09-24 1999-11-30 Canon Kabushiki Kaisha Microprobe, preparation thereof and electronic device by use of said microprobe
US4906840A (en) 1988-01-27 1990-03-06 The Board Of Trustees Of Leland Stanford Jr., University Integrated scanning tunneling microscope
JP2547869B2 (ja) 1988-11-09 1996-10-23 キヤノン株式会社 プローブユニット,該プローブの駆動方法及び該プローブユニットを備えた走査型トンネル電流検知装置
JPH02206043A (ja) 1989-02-03 1990-08-15 Olympus Optical Co Ltd 記憶装置
DE69031053T2 (de) 1989-04-25 1998-01-29 Canon Kk Informationsaufzeichnungs-/Wiedergabegerät und Informationsaufzeichnungsträger
US5015850A (en) 1989-06-20 1991-05-14 The Board Of Trustees Of The Leland Stanford Junior University Microfabricated microscope assembly
US5289004A (en) 1990-03-27 1994-02-22 Olympus Optical Co., Ltd. Scanning probe microscope having cantilever and detecting sample characteristics by means of reflected sample examination light
JP2761801B2 (ja) 1990-10-04 1998-06-04 キヤノン株式会社 角度的位置関係検出方法及びこれを用いたエンコーダ
US5283437A (en) 1990-12-21 1994-02-01 International Business Machines Corporation Pneumatically and electrostatically driven scanning tunneling microscope
JPH05196458A (ja) 1991-01-04 1993-08-06 Univ Leland Stanford Jr 原子力顕微鏡用ピエゾ抵抗性片持ばり構造体
US5235187A (en) 1991-05-14 1993-08-10 Cornell Research Foundation Methods of fabricating integrated, aligned tunneling tip pairs
JP3109861B2 (ja) 1991-06-12 2000-11-20 キヤノン株式会社 情報の記録及び/又は再生装置
US5138174A (en) 1991-07-16 1992-08-11 E. I. Du Pont De Nemours And Company Nanometer-scale structures and lithography
EP0871165B1 (en) * 1991-07-17 2002-10-02 Canon Kabushiki Kaisha Information recording/reproducing apparatus and method for recording and/or reproducing information on information recording carrier by use of probe electrode
US5537372A (en) 1991-11-15 1996-07-16 International Business Machines Corporation High density data storage system with topographic contact sensor
JP3029916B2 (ja) 1992-03-07 2000-04-10 キヤノン株式会社 情報処理装置
JP3029499B2 (ja) 1992-05-07 2000-04-04 キヤノン株式会社 記録再生装置
US5398299A (en) 1992-09-29 1995-03-14 Motorola, Inc. Min-max computing circuit for fuzzy inference
JP3025120B2 (ja) 1992-12-21 2000-03-27 キヤノン株式会社 記録再生装置
JP3073616B2 (ja) 1992-12-24 2000-08-07 キヤノン株式会社 マルチプローブを具備する情報処理装置
JP3162883B2 (ja) 1993-09-29 2001-05-08 キヤノン株式会社 情報記録再生装置
US5883705A (en) 1994-04-12 1999-03-16 The Board Of Trustees Of The Leland Stanford, Jr. University Atomic force microscope for high speed imaging including integral actuator and sensor
US5679952A (en) 1994-05-23 1997-10-21 Hitachi, Ltd. Scanning probe microscope
US5751683A (en) 1995-07-24 1998-05-12 General Nanotechnology, L.L.C. Nanometer scale data storage device and associated positioning system
JPH0862230A (ja) 1994-08-24 1996-03-08 Olympus Optical Co Ltd 集積型spmセンサー
JPH08329538A (ja) 1995-05-30 1996-12-13 Hewlett Packard Co <Hp> プローブ装置
JP3576677B2 (ja) 1996-01-19 2004-10-13 キヤノン株式会社 静電アクチュエータ及び、該アクチュエータを用いたプローブ、走査型プローブ顕微鏡、加工装置、記録再生装置
JPH09293283A (ja) 1996-04-25 1997-11-11 Hewlett Packard Co <Hp> プローブ装置およびその製造方法、ならびにメディア移動型メモリ装置
US5856672A (en) 1996-08-29 1999-01-05 International Business Machines Corporation Single-crystal silicon cantilever with integral in-plane tip for use in atomic force microscope system
US5969345A (en) 1997-04-30 1999-10-19 University Of Utah Research Foundation Micromachined probes for nanometer scale measurements and methods of making such probes
JPH10312592A (ja) 1997-05-13 1998-11-24 Canon Inc 情報処理装置および情報処理方法
US5880676A (en) * 1997-06-09 1999-03-09 Tsou; Peiki F. Christmas tree ornament-shaped fire alarm
WO2004074766A1 (en) * 1997-07-17 2004-09-02 Gerd Karl Binnig Investigation and/or manipulation device
WO2004074765A1 (en) 1997-07-17 2004-09-02 Gerd Karl Binnig Method of forming ultrasmall structures and apparatus therefor
JP2000035396A (ja) 1998-07-16 2000-02-02 Canon Inc 微小突起を有するプローブ、及びその製造方法
US6369385B1 (en) 1999-05-05 2002-04-09 Applied Materials, Inc. Integrated microcolumn and scanning probe microscope arrays
TW476957B (en) 1999-09-08 2002-02-21 Mitsubishi Chem Corp Rewritable compact disk and manufacturing method thereof
WO2001018866A1 (en) 1999-09-10 2001-03-15 Starmega Corporation Strongly textured atomic ridges and dots
US6515957B1 (en) 1999-10-06 2003-02-04 International Business Machines Corporation Ferroelectric drive for data storage
US6401526B1 (en) 1999-12-10 2002-06-11 The Board Of Trustees Of The Leland Stanford Junior University Carbon nanotubes and methods of fabrication thereof using a liquid phase catalyst precursor
US6479892B1 (en) * 2000-10-31 2002-11-12 Motorola, Inc. Enhanced probe for gathering data from semiconductor devices
US6440820B1 (en) 2001-05-21 2002-08-27 Hewlett Packard Company Process flow for ARS mover using selenidation wafer bonding after processing a media side of a rotor wafer
US6436794B1 (en) 2001-05-21 2002-08-20 Hewlett-Packard Company Process flow for ARS mover using selenidation wafer bonding before processing a media side of a rotor wafer

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0984444A3 (en) * 1998-08-19 2001-01-24 Canon Kabushiki Kaisha Probe and information recording/reproduction apparatus using the same
EP1227496A1 (en) * 2001-01-17 2002-07-31 Cavendish Kinetics Limited Non-volatile memory
DE10155930A1 (de) * 2001-11-14 2003-05-22 Univ Gesamthochschule Kassel Feldeffekttransistor-Sensor

Also Published As

Publication number Publication date
US7423954B2 (en) 2008-09-09
US20050135203A1 (en) 2005-06-23
EP1544864A1 (en) 2005-06-22
CN1629960A (zh) 2005-06-22

Similar Documents

Publication Publication Date Title
CN1629960B (zh) 接触探针储存系统的探测器容纳件
US5583286A (en) Integrated sensor for scanning probe microscope
US6111280A (en) Gas-sensing semiconductor devices
EP1544858A1 (en) Contact probe storage fet sensor and write heater arrangements
KR100389903B1 (ko) 접촉 저항 측정을 이용한 정보 저장 장치 및 그 기록과재생 방법
EP0442329B1 (en) Sliding contact mechanical/electrical displacement transducer
Lantz et al. A micromechanical thermal displacement sensor with nanometre resolution
US5879630A (en) Semiconductor chemical sensor device and method of forming a thermocouple for a semiconductor chemical sensor device
JP2785841B2 (ja) 熱量センサ
Aigner et al. Si-planar-pellistor: designs for temperature modulated operation
US7212487B2 (en) Data readout arrangement
US5576563A (en) Chemical probe field effect transistor for measuring the surface potential of a gate electrode in response to chemical exposure
Johnson et al. Integrated ultra-thin-film gas sensors
CN1629959A (zh) 接触探针储存场效应晶体管探测器
US6944114B2 (en) Contact probe storage device including conductive readout medium
JP2004513466A (ja) Afmベースのデータストレージおよび顕微鏡
US7106049B2 (en) Zero-temperature-gradient zero-bias thermally stimulated current technique to characterize defects in semiconductors or insulators
RU2178558C1 (ru) Газовый датчик
CN108155179A (zh) 一种具有气体检测功能半导体器件
US7885168B2 (en) Read/write device for a mass storage device, and read/write method thereof
EP1544859A1 (en) Read/write arrangements for probes
RU2185615C2 (ru) Датчик угарного газа
RU2178559C2 (ru) Полупроводниковый газовый датчик
RU2206083C1 (ru) Датчик монооксида углерода
US20200096396A1 (en) Gas Sensors

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C14 Grant of patent or utility model
GR01 Patent grant
C17 Cessation of patent right
CF01 Termination of patent right due to non-payment of annual fee

Granted publication date: 20100428

Termination date: 20101216