CN1625528A - 测定固体水处理产物溶解速率的方法 - Google Patents

测定固体水处理产物溶解速率的方法 Download PDF

Info

Publication number
CN1625528A
CN1625528A CNA038030411A CN03803041A CN1625528A CN 1625528 A CN1625528 A CN 1625528A CN A038030411 A CNA038030411 A CN A038030411A CN 03803041 A CN03803041 A CN 03803041A CN 1625528 A CN1625528 A CN 1625528A
Authority
CN
China
Prior art keywords
treatment product
water treatment
solid
water
dissolution rate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CNA038030411A
Other languages
English (en)
Other versions
CN1328174C (zh
Inventor
S·R·哈奇
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
ChampionX LLC
Original Assignee
Ondeo Nalco Co
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Family has litigation
First worldwide family litigation filed litigation Critical https://patents.darts-ip.com/?family=27610442&utm_source=google_patent&utm_medium=platform_link&utm_campaign=public_patent_search&patent=CN1625528(A) "Global patent litigation dataset” by Darts-ip is licensed under a Creative Commons Attribution 4.0 International License.
Application filed by Ondeo Nalco Co filed Critical Ondeo Nalco Co
Publication of CN1625528A publication Critical patent/CN1625528A/zh
Application granted granted Critical
Publication of CN1328174C publication Critical patent/CN1328174C/zh
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/68Treatment of water, waste water, or sewage by addition of specified substances, e.g. trace elements, for ameliorating potable water
    • C02F1/685Devices for dosing the additives
    • C02F1/688Devices in which the water progressively dissolves a solid compound
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/50Treatment of water, waste water, or sewage by addition or application of a germicide or by oligodynamic treatment
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2103/00Nature of the water, waste water, sewage or sludge to be treated
    • C02F2103/02Non-contaminated water, e.g. for industrial water supply
    • C02F2103/023Water in cooling circuits
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2303/00Specific treatment goals
    • C02F2303/04Disinfection
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2305/00Use of specific compounds during water treatment
    • C02F2305/14Additives which dissolves or releases substances when predefined environmental conditions are reached, e.g. pH or temperature

Landscapes

  • Chemical & Material Sciences (AREA)
  • Environmental & Geological Engineering (AREA)
  • Medicinal Chemistry (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Hydrology & Water Resources (AREA)
  • Engineering & Computer Science (AREA)
  • Health & Medical Sciences (AREA)
  • Water Supply & Treatment (AREA)
  • Organic Chemistry (AREA)
  • Preventing Corrosion Or Incrustation Of Metals (AREA)
  • Investigating, Analyzing Materials By Fluorescence Or Luminescence (AREA)
  • Agricultural Chemicals And Associated Chemicals (AREA)
  • Investigating Or Analysing Materials By The Use Of Chemical Reactions (AREA)

Abstract

本发明描述和要求具有最优溶解速率的固体水处理产物的制备方法。荧光示踪剂用于测定固体水处理产物的溶解速率和如需要调节固体水处理产物的组成和制造方法以使溶解速率最优。固体水处理产物可用于许多工业水处理系统。当使用固体水处理产物时,可以通过使用荧光计测量产物中存在的荧光示踪剂的荧光信号和将测量值与水自身中的产物数量相关联,测定和调节工业水系统的水中存在的固体水处理产物数量。

Description

测定固体水处理产物溶解速率的方法
发明领域
本发明涉及水处理产物领域。具体地,本发明涉及用于工业水系统的水处理产物领域。
发明背景
工业水系统的存在使得可以进行必要的化学、机械和生物工艺以达到所需的结果。工业水系统包括如下:冷却水系统,该冷却水系统包括开放循环,密闭和单程冷却水系统;锅炉和锅炉水系统;石油井、井底地岩层、地热井和其它油田应用;包括矿物质洗涤、浮选和捐助的矿物质工艺水;造纸厂蒸煮器、洗涤器、漂白装置和白水系统;纸浆工业中的黑液蒸发器;气体洗涤器和空气洗涤器;冶金工业中的连续铸造工艺;空调和致冷系统;工业和石油工艺水;间接接触冷却和加热水,如巴氏消毒水;水再生和精制系统;膜过滤水系统;食品加工系统(肉、蔬菜、甜菜、甘蔗、谷粒、家禽、水果和大豆);和废物处理系统以及在澄清器中、液固应用、市政污水处理和工业或市政水系统。
普遍存在类型工业水系统的例子是冷却水系统,其中冷却水系统包括冷却塔,换热器,泵和使水移动通过系统的所有必须管道。冷却水系统的控制是基于平衡在可能的最高浓度循环下操作系统的需要,而不引起有害的结垢,腐蚀,污染,或微生物控制模式。
如采用许多工业水系统的情况,许多冷却水系统使用处理产物以控制不所需的现象如结垢,腐蚀,污染和微生物生长。这些处理产物包括化学物质如聚合物、磷酸盐、膦酸盐、吡咯、锌、钼酸盐、杀虫剂、和其它物质且是冷却水系统领域中技术人员已知的。
典型地通过取这些化学物质和配制它们成分布到和输送入冷却水系统的含水液体相而制备处理产物。输送入冷却水系统可以由泵进料或喷射器进料系统或甚至由处理产物的手动加入完成。可以根据渗出/进料机构设定冷却水系统以加入处理产物,其中排料的作用触发加入处理产物的化学进料泵或阀,或者,冷却水系统根据计量器使用“进料程序”加入处理产物,或在补充水管线上的流量计根据被泵送的确定数量补充水触发处理产物的泵送。这些控制方法的限制在于这些系统没有一个直接在线测量处理产物浓度,故如果存在机械问题,例如,如果泵停机,罐排空,或高,低或未知排料发生,系统体积变化或补充水质量变化,不能保持正确的处理产物浓度。由于此问题是通常的,典型地向冷却水系统过度加入处理产物以保证系统中处理产物的水平不由于产物计量的高可变性而下降太低,或不能意识到未加够处理产物。由于成本和性能缺点,处理产物的过度进料和不足够进料两者不是所需的。
已知控制方案的一个方面是采用已知比例向处理产物的活性成分中加入惰性荧光化学示踪剂和将处理产物和示踪剂的此混合物加入到冷却水系统中。然后荧光计用于监测惰性荧光化学品的荧光信号。此技术可以TRASAR购得,它是Ondeo Nalco Company,Ondeo NalcoCenter,1601 W.Diehl Road,Naperville IL60563((630)305-1000)的注册商标。惰性荧光化学品的荧光信号用于确定存在多少惰性荧光示踪剂,和通过知道存在的惰性荧光示踪剂数量,可以确定冷却塔中存在的处理产物的数量。如果存在的处理产物数量不是所需的数量,则可以调节处理产物的进料速率以提供处理产物的所需数量。
当水从冷却塔蒸发时,塔中不所需物质的浓度增加。在已知为排料的工艺中,控制方法,如塔中的水电导率可用于开始水从塔的释放。在已知为补充的工艺中,为保持恒定的水体积,将含有低浓度不所需物质的额外水加入到塔中。排料也降低系统中惰性示踪剂和处理化学品的数量。降低系统中惰性示踪剂的数量,降低从惰性示踪剂的荧光信号。当从示踪剂的荧光信号降低时,设定示踪剂控制系统以加入处理产物和惰性示踪剂化学品的新鲜混合物,以补偿排料中损失的惰性荧光示踪剂和处理化学品的降低。
控制向冷却水系统的产物进料的另一种已知方法包括使用示踪剂技术的另一方面。这包括使用包含分子或聚合物的处理产物,该分子或聚合物是固有荧光的或由荧光部分“标记”。与较早描述的惰性荧光示踪剂形成对照,这些荧光部分不是惰性的,反而,由于它们起作用以处理设计它们以处理的无论什幺性能相关状况,推想它们被消耗。因此,通过测量标记的处理部分的荧光信号,可以测定标记处理部分的消耗数量。通过知道标记处理聚合物的消耗数量,可以使用该信息以控制包含标记处理部分的新处理产物的进料。
由于它们输送入冷却水系统的相对容易和与产物配制变化有关的优点,液相处理程序有利于冷却水处理。可以将活性组分在液相中配制和相对容易地与其它活性组分结合。液相产物输送的这些相同优点可以由与输送和配制有关的其它缺点抵消。例如,由于锁气室的泵故障,加油启动的损失,或其它机械原因可导致进入冷却水系统的不足够产物输送。可以由固有的原材料不兼容性如酸/碱行为或pH依赖性溶解度限制液相产物结合和浓度。原材料的一些结合物不能简单地结合成所需的产物配制剂。此外,液相产物可随时间和温度变得不稳定,通常导致输送容器中的不所需产物组分分离,或更差,输送罐和管线中的沉降物和沉淀物积累。一些配制剂易于受微生物攻击和必须采取措施以排除产物中的微生物生长。这些故障可导致向冷却塔系统的不足够或不所需组分输送。
克服与液相产物输送有关的缺点的一种方式是以固体或干燥相输送产物入冷却系统。存在先前以固体形式提供的某些水处理产物。这些固体材料典型地由铬酸盐和其它成分组成和发现为冷却水系统中的有效污垢和腐蚀抑制剂,甚至不采用浓度控制。发现使用固体“含铬酸盐”处理产物的处理程序是有效的,甚至当固体不完全溶解或在非最优速率下溶解时。这些产物的主要成功是由于铬酸盐作为腐蚀抑制剂的效力。在大多数区域环境和健康规范现在禁止在冷却水处理系统中使用铬酸盐和进化液相处理程序以满足变化的市场需求。
对固体水处理产物成功使用的进一步限制在于固体水处理产物的使用要求以所需的分率或浓度在所需的时间间隔内,将水处理产物中存在的所有活性水处理化学品输送入工业水系统的水中。活性材料的此输送取决于固体处理产物在工业水系统的水中的溶解速率。
因此需要具有提供具有最优溶解速率的固体水处理产物的能力。
发明概述
本发明的第一方面是一种制备具有最优溶解速率的固体水处理产物的方法,它包括如下步骤:
1)提供成分以制备固体水处理产物,其中该成分选自:
a)活性成分;
b)非必要的非活性成分;和
c)荧光示踪剂,其中该荧光示踪剂选自惰性荧光示踪剂和活性荧光示踪剂;其中该固体水处理产物基本由约10%-约99.99%该活性成分,约0%-约98%该非必要的非活性成分和约0.01%-约10%该荧光示踪剂组成;
2)制备固体水处理产物;
3)将固体水处理产物放入测试水中;
4)提供荧光计;
5)使用该荧光计测量该测试水中该荧光示踪剂的荧光信号;
6)在一定间隔下重复步骤5)的荧光信号测量;
7)通过分析步骤5)中测量的荧光信号随时间的增加测定固体水处理产物的溶解速率,其中如果该处理产物的该溶解速率是最优的,则步骤8)和9)是非必要的,如果该处理产物的该溶解速率不是最优的,则要求步骤8)和9);
8)非必要地根据步骤7)中测定的溶解速率调节该固体水处理产物的制备,以制备具有最优溶解速率的固体水处理产物;和
9)如需要非必要地重复步骤3),4),5),6),7)和8)以获得具有最优溶解速率的固体水处理产物。
本发明的第二方面是一种在工业水系统中采用固体水处理产物处理水的方法,其中该固体水处理产物具有最优的溶解速率,该方法包括如下步骤:
a)提供工业水系统;
b)提供固体水处理产物,其中该固体水处理产物具有最优的溶解速率;
c)向该工业水系统中的水中加入约1ppb-约10,000ppm该固体水处理产物,其中该固体水处理产物具有最优的溶解速率;
d)使该固体水处理产物溶解并处理该工业水系统中的水。
本发明的第三方面是一种控制工业水系统中固体水处理产物数量的方法,其中该固体水处理产物具有最优的溶解速率,该方法包括如下步骤:
a)提供工业水系统;
b)提供固体水处理产物,其中该固体水处理产物具有最优的溶解速率,其中该固体水处理产物包括荧光示踪剂;
c)向该工业水系统中的水中加入约1ppb-约10,000ppm该固体水处理产物,其中该固体水处理产物具有最优的溶解速率;
d)使该固体水处理产物溶解并处理该工业水系统中的水;
e)提供荧光计;
f)使用该荧光计测量该荧光示踪剂的荧光信号;
g)将该荧光示踪剂的荧光信号与该工业水系统的水中存在的荧光示踪剂数量关联;
h)将该工业水系统的水中存在的荧光示踪剂数量与该工业水系统中存在的水处理产物数量关联;
i)将该工业水系统的水中存在的水处理产物数量与最优存在的水处理产物数量进行比较;
j)调节加入到该工业水系统的水中的固体水处理产物流量,使得该工业水系统的水中存在的水处理产物数量是最优的。
发明详述
在整个此专利申请中,如下术语具有所示的定义:
“aka”表示“也称为”。
Aldrich表示Aldrich,P.O.Box 355,Milwaukee,WI 53201 USA,电话号码(800)558-9160。
Nalco表示Ondeo Nalco Company,Ondeo Nalco Center,1601 W.DiehlRoad,Naperville IL60563电话号码(630)305-1000。
本发明的第一方面是一种制备具有最优溶解速率的固体水处理产物的方法,它包括如下步骤:
1)提供成分以制备固体水处理产物,其中该成分选自:
a)活性成分;
b)非必要的非活性成分;和
c)荧光示踪剂,其中该荧光示踪剂选自惰性荧光示踪剂和活性荧光示踪剂;其中该固体水处理产物基本由约10%-约99.99%该活性成分,约0%-约98%该非必要的非活性成分和约0.01%-约10%该荧光示踪剂组成;
2)制备固体水处理产物;
3)将固体水处理产物放入测试水中;
4)提供荧光计;
5)使用该荧光计测量该测试水中该荧光示踪剂的荧光信号;
6)在一定间隔下重复步骤5)的荧光信号测量;
7)通过分析步骤5)中测量的荧光信号随时间的增加测定固体水处理产物的溶解速率,其中如果该处理产物的该溶解速率是最优的,则步骤8)和9)是非必要的,如果该处理产物的该溶解速率不是最优的,则要求步骤8)和9);
8)非必要地根据步骤7)中测定的溶解速率调节该固体水处理产物的制备,以制备具有最优溶解速率的固体水处理产物;
9)如需要非必要地重复步骤3),4),5),6),7)和8)以获得具有最优溶解速率的固体水处理产物。
该方法中的第一步骤是提供成分以制备固体水处理产物。当然要求的成分取决于制备的固体水处理产物。例如,适用于冷却水的水处理产物可以分成几类,钼酸盐-膦酸盐、碱-锌、稳定的磷酸盐、全有机物、分散剂、和杀虫剂。对于用于工业水系统的所有类型处理产物,已知是否可以采用固体物理形式获得成分。
以下列出一些代表性固体产物配制剂。基于原料,以wt%给出配方。配方1-10是用作冷却水系统处理产物的配制剂的代表物,然而,可以理解,这些配制剂的一些,特别是1,2,7,和8也可用作热水锅炉和低压锅炉中的处理产物。配方11-13是用于锅炉处理产物的配制剂代表物。
采用“A”表示在这些固体水处理产物中存在的活性成分。采用“I”表示在这些固体水处理产物中存在的非活性成分。采用“FT”表示在这些固体水处理产物中存在的荧光示踪剂。
配制剂1-产生一些腐蚀抑制的“全有机物”污垢抑制剂
27.6%苯并三唑A
70.4%1-羟基亚乙基-1,1-二膦酸A
2%1,3,6,8-芘四磺酸钠盐FT
配制剂2-产生一些污垢抑制的“碱性磷酸盐”缓蚀剂
1.9%苯并三唑A
48.2%膦基琥珀酸类低聚物A
8.4%六偏磷酸钠A
39.5%胺取代的磺甲基化丙烯酰胺丙烯酸酯三元共聚物A
2.0%1,3,6,8-芘四磺酸钠盐FT
配制剂3-分散剂包
98%胺取代的磺甲基化丙烯酰胺丙烯酸酯三元共聚物A
2%1,3,6,8-芘四磺酸钠盐FT
配制剂4
1%-99%刃天青,钠盐FT
99%-1%1-羟基亚乙基-1,1-二膦酸A
2%-98%惰性赋形剂如氯化钠I
配制剂5
1%-99%刃天青,钠盐FT
99%-1%2,2-二溴-3-次氮基丙酰胺A
2%-98%惰性赋形剂如氯化钠I
配制剂6-“锌-磷酸盐”缓蚀剂
10.2%氯化锌A
15.3%膦基琥珀酸类低聚物A
35.7%磷酸钠A
35.7%胺取代的磺甲基化丙烯酰胺丙烯酸酯三元共聚物A
2.6%苯并三唑A
0.5%1,3,6,8-芘四磺酸钠盐FT
配制剂7-碱性磷酸盐缓蚀剂
36.2%磷酸钠A
9.3%膦基琥珀酸类低聚物A
23.3%胺取代的磺甲基化丙烯酰胺丙烯酸酯三元共聚物A
4.7%苯并三唑A
0.3%1,3,6,8-芘四磺酸钠盐FT
配制剂8-钼酸盐膦酸盐污垢/腐蚀控制产物
25.2%胺取代的磺甲基化丙烯酰胺丙烯酸酯三元共聚物A
16.5%苯并三唑A
38.9%1-羟基亚乙基-1,1-二膦酸(59.2%活性)A
18.9%钼酸钠二水合物A
0.5%1,3,6,8-芘四磺酸钠盐FT
配制剂9-碱性污垢/腐蚀控制产物,用于在补充水中存在磷酸盐的情况
18.9%膦基琥珀酸类低聚物A
75.4%胺取代的磺甲基化丙烯酰胺丙烯酸酯三元共聚物A
4.7%苯并三唑A
1.0%1,3,6,8-芘四磺酸钠盐FT
配制剂10-杀虫剂
99%2,2-二溴-3-次氮基丙酰胺A
1%1,3,6,8-芘四磺酸钠盐FT
配制剂11-“采用清除剂和聚合物的磷酸盐残余程序”锅炉处理产物
15%六偏磷酸钠A
15%聚丙烯酸酯A
15%亚硫酸钠A
1%钴盐A
5%氢氧化钠A
48%粘结剂材料I
1%荧光素FT
配制剂12-采用清除剂的全聚合物锅炉处理产物
25%聚丙烯酸酯A
15%亚硫酸钠A
1%钴盐A
5%氢氧化钠A
53%粘结剂I
1%荧光素FT
配制剂13-锅炉凝结程序
40%苏打灰A
10%六偏磷酸钠A
20%磷酸二钠A
15%木素磺酸盐A
10%亚硫酸钠A
1%钴盐A
3%粘结剂I
1%荧光素FT
在所有这些配制剂中,可以理解的是,采用相似官能度的产物取代是可能的。例如,在几种配制剂中作为“黄铜缓蚀剂”存在的苯并三唑可以由具有相似官能度的另一种“三唑”如甲苯基三唑和卤化甲苯基三唑替代。
在几种配制剂中作为“污垢抑制剂”存在的1-羟基亚乙基-1,1-二膦酸可以由具有相似官能度的另一种“膦酸”如2-膦酰基丁烷-1,2,4-三羧酸和氨基三亚甲基膦酸酯替代。
在几种配制剂中作为“缓蚀剂”存在的膦基琥珀酸类低聚物可以由具有相似官能度的另一种“膦基琥珀酸缓蚀剂”如购自Rhodia,Inc.,259 Prospect Plains Rd.,CN7500,Cranbury,NJ085 12-7500(609)860-4000的Bricorr 288,和购自Great Lakes Chemical Corp.,500E.96th St.Suite500,Indianapolis,IN 46240(317)715-3000的Belcor 575替代。
在几种配制剂中作为“缓蚀剂,碱性源或污垢控制剂”存在的六偏磷酸钠可以由具有相似官能度的另一种“分子脱水磷酸盐”如三聚磷酸钠替代。
在几种配制剂中作为分散剂存在的“胺取代磺甲基化丙烯酰胺丙烯酸酯三元共聚物”可以由具有相似官能度的另一种“聚合物”如聚丙烯酸酯、磺化苯乙烯马来酸酐、磺甲基化丙烯酰胺丙烯酸酯三元共聚物替代。
在两种配制剂中作为荧光示踪剂存在的刃天青可以由具有相似官能度的另一种反应性荧光染料如芘3,6,8-三磺酸的乙酸酯、羧基荧光素二乙酸酯、3-羧基伞基β-D-半乳吡喃糖苷、3-羧基伞基β-D-葡糖苷酸、9H-(1,3-二氯-9,0-二甲基吖啶-2-酮-7-基)D-葡糖苷酸、9H-(1,3-二氯-9,9-二甲基吖啶-2-酮-7-基)、试卤灵β-D-半乳吡喃糖苷、荧光素二-β-D-半乳吡喃糖苷、荧光素二-β-D-葡糖苷酸、试卤灵β-D-葡糖苷酸、荧光素二磷酸酯、亚甲基蓝、4-甲基伞基磷酸酯、4-甲基伞基β-D-葡糖苷酸、吡喃素磷酸酯、和芘3,6,8-三磺酸1-磷酸酯。
起惰性赋形剂作用的氯化钠可以由其它惰性赋形剂如聚乙二醇、硅酸钠和其它已知碳酸盐替代。
起缓蚀剂作用的磷酸钠可以由具有相同官能度的其它化合物如三聚磷酸钠替代。
起污垢抑制剂作用的聚丙烯酸酯可以由具有相同官能度的其它化合物如甲基丙烯酸酯聚合物和丙烯酸酯/苯乙烯磺酸酯聚合物替代。
起清除剂作用的亚硫酸钠可以由具有相同官能度的其它化合物如卡巴肼、异抗坏血酸、没食子酸和亚硫酸氢钠替代。亚硫酸钠也可以起缓蚀剂的作用,在该情况下,它可以由具有相同官能度的其它化合物如对苯二酚或其它固体还原剂替代。
起催化剂作用的钴盐可以由具有相同官能度的其它化合物如其它金属盐如铜盐和铁盐替代。
起pH调节剂(碱性源)作用的氢氧化钠可以由具有相同官能度的其它化合物如氢氧化钾替代。
粘结剂材料选自淀粉和其它已知的惰性材料,其中“惰性材料”定义为会溶于系统的水中而没有有害效果的那些材料。
起缓蚀剂、碱性源或污垢控制剂作用的磷酸二钠可以由具有相同官能度的其它化合物如磷酸盐如磷酸三钠和磷酸一钠替代。
苏打灰起碱性源的作用。
起分散剂作用的木素磺酸盐可以由具有相同官能度的其它化合物如可能达到干燥的任何丙烯酸聚合物或木质素替代。
可以固体形式获得的荧光示踪剂包括如下物质:1,3,6,8-芘四磺酸钠盐、荧光素、钼酸盐、钒酸盐和萘二磺酸钠盐。用于固体水处理产物的优选荧光示踪剂是1,3,6,8-芘四磺酸钠盐和荧光素。
所有这些活性,非活性和荧光示踪剂化合物可购自Aldrich或如果它们不可市购,它们能够使用文献中报导的方法合成。
在制备这些固体水处理产物中,可以使用固体产物制备领域技术人员已知的所有技术。这些技术包括,但不限于:研磨成粉末、造粒、压块、胶囊化、淤浆化和凝胶化。固体水处理产物的优选形式是粒度为约半英寸的粒料。粒料的优选尺寸取决于粒料将用于其中的工业水系统中水的体积。粒料尺寸是可以在制造工艺期间变化的参数,以保证粒料溶解速率和尺寸与处理的工业水系统相称,使得在冷却水系统中保持最优的产物浓度。根据如下通用概念确定最优溶解速率:需要在向水中加入随后粒料之前粒料完全溶解,使得在工业水系统的水中保持相对恒定的产物浓度。荧光示踪剂向产物中的加入使得可以测定尺寸和溶解速率的这种平衡。
在制备固体水处理产物中,可以将荧光示踪剂与其它成分预共混以制备均匀的固体水处理产物,或可以将荧光示踪剂放置在固体水处理产物的中心使得它最终由其它成分涂敷。
在形成固体水处理产物之后,必须测试它以测定它在水中的溶解速率。提供测试水,配制该测试水以紧密匹配目标工业水系统中发现的水类型。例如,用于冷却塔中冷却水的“标准”测试水典型地具有如下特征:60ppm Ca2+,18ppm Mg2+,134ppm HCO3 -,53ppm Cl-和72ppmSO4 2-。用于模型或模拟锅炉的典型污垢形成测试典型地具有锅炉水中结垢污染物的这些浓度;作为CaCO3的10ppm钙,作为CaCO3的5ppm镁,作为SiO2的5ppm二氧化硅。以足够的数量加入碱如苛性碱(NaOH)以在锅炉水中保持典型地在10.0-11.0之间的pH值。
为测定固体水处理产物的溶解速率,将固体水处理产物放入测试水并使其溶解。提供荧光计和使用荧光计测量固体水处理产物中存在的荧光示踪剂的荧光信号。在一定间隔下测量荧光信号。
适用于本发明的荧光计来自Nalco。优选的荧光计是TRASAR3000单元。
如何设定和编程荧光计和使用它测量荧光示踪剂的荧光信号是荧光测定领域技术人员已知的。
在测定固体水处理产物的溶解速率之后,将该速率与固体水处理产物的最优溶解速率比较。最优溶解速率典型地取决于固体水处理产物和它要用于其中的工业水系统且是本领域技术人员已知的。如果测量的溶解速率匹配固体水处理产物的最优溶解速率,则不需要改变固体水处理产物的溶解速率。
如果测量的溶解速率太快,或不足够快以匹配固体水处理产物的最优溶解速率,则可以再配制固体水处理产物。在再配制固体水处理产物之后,可以使用本发明的方法测定它的溶解速率。
固体水处理产物的再配制可持续直到固体水处理产物的溶解速率是最优的。
本发明的第二方面是一种在工业水系统中采用固体水处理产物处理水的方法,其中该固体水处理产物具有最优的溶解速率,所述方法包括如下步骤:
a)提供工业水系统;
b)提供固体水处理产物,其中该固体水处理产物具有最优的溶解速率;
c)向该工业水系统中的水中加入约1ppb-约10,000ppm该固体水处理产物,其中该固体水处理产物具有最优的溶解速率;
d)使该固体水处理产物溶解并处理该工业水系统中的水。
能够由固体水处理产物处理的工业水系统包括冷却塔水系统(包括开放再循环,密闭和单程冷却塔水系统);石油井、井底地岩层、地热井和其它油田应用;锅炉和锅炉水系统;包括矿物质洗涤、浮选和精选的矿物质工艺水;造纸厂蒸煮器、洗涤器、漂白装置和白水系统;纸浆工业中的黑液蒸发器;气体洗涤器和空气洗涤器;冶金工业中的连续铸造工艺;空调和致冷系统;工业和石油工艺水;间接接触冷却和加热水,如巴氏消毒水;水再生和精制系统;膜过滤水系统;食品加工流(肉、蔬菜、甜菜、甘蔗、谷粒、家禽、水果和大豆);和废物处理系统以及在澄清器中、液固应用、市政污水处理和工业或市政水系统。
加入到该工业水系统的水中的固体水处理产物的优选数量是约1ppb-约10,000ppm。加入到该工业水系统的水中的固体水处理产物的更优选数量是约10ppb-约1000ppm。加入到该工业水系统的水中的固体水处理产物的最优选数量是约1ppm-约300ppm。
向工业水系统的水中加入固体水处理产物的方法取决于要处理的工业水系统和选择的固体水处理产物。固体水处理产物的重力进料是通常优选的方法,但重力进料可以由空气输送、输送带、螺杆驱动和蜗杆传动补充。
本发明的第三方面是一种控制工业水系统中固体水处理产物数量的方法,其中该固体水处理产物具有最优的溶解速率,所述方法包括如下步骤:
a)提供工业水系统;
b)提供固体水处理产物,其中该固体水处理产物具有最优的溶解速率,其中该固体水处理产物包括荧光示踪剂;
c)向该工业水系统中的水中加入约1ppb-约10,000ppm该固体水处理产物,其中该固体水处理产物具有最优的溶解速率;
d)使该固体水处理产物溶解并处理该工业水系统中的水;
e)提供荧光计;
f)使用该荧光计测量该荧光示踪剂的荧光信号;
g)将该荧光示踪剂的荧光信号与该工业水系统的水中存在的荧光示踪剂数量关联;
h)将该工业水系统的水中存在的荧光示踪剂数量与该工业水系统中存在的水处理产物数量关联;
i)将该工业水系统的水中存在的水处理产物数量与最优存在的水处理产物数量进行比较;
j)调节加入到该工业水系统的水中的固体水处理产物流量,使得该工业水系统的水中存在的水处理产物数量是最优的。
给出如下实施例以说明本发明和教导本领域技术人员如何制备和应用本发明。这些实施例不意欲以任何方式限制本发明或它的保护范围。
实施例
制备配制剂1,{27.6%苯并三唑,70.4%1-羟基亚乙基-1,1-二膦酸和2%1,3,6,8-芘四磺酸钠盐}的固体冷却水处理产物的片剂。片剂重0.9081克。将片剂放入标准冷却水{60ppm Ca2+,18ppm Mg2+,134ppmHCO3 -,53ppm Cl-和72ppm SO4 2-}中并测量片剂中每种成分的溶解速率。使用适用于分析每种成分的分析技术测量存在的每种成分的溶解速率。使用分析三唑领域中已知的荧光分析技术测量苯并三唑(缩写为“BZT”)的溶解速率。使用二膦酸分析领域中已知的标准“比色测定”分析技术测量1-羟基亚乙基-1,1-二膦酸(缩写为“HEDP”)的溶解速率。使用荧光分析技术测量1,3,6,8-芘四磺酸钠盐(缩写为“PTSA”)的溶解速率。
此测试的结果见表1。
以毫克(“mg”)每分钟(“min.”)给出每种成分的释放速率。
                          表I
 时间(分钟)  BZT的释放速率  HEDP的释放速率  PTSA的释放速率
    0     *     *     *
    1     *     *     *
    5     8.75     10.5     0.5925
    10     13.8     20     0.98
    15     11.4     11.4     0.5
    30     2.167     0.933     0.143
    60     0.5     1.03     *
    130     0.493     0.0143     *
·数值在此部分的检测下限以下
实施例2
制备与实施例1中相同的片剂,区别在于这次,采用分子量大约为15,000的聚环氧乙烷材料涂敷片剂使得成品片剂的最终重量是1.411克。使用与实施例1相同的分析技术,测量此片剂中三种成分的溶解速率。
                         表II
 时间(分钟)  BZT的释放速率  HEDP的释放速率  PTSA的释放速率
    0     *     *     *
    5     *     *     *
    15     *     *     *
    30     *     *     *
    40     0.2     1.2     0.052
    50     2.6     2.55     0.121
    61     5.545     8.091     0.33
    75     4.393     4.893     0.190
    110     0.829     1.7     0.0571
    180     0.236     0.329     0.00493
*数值在此部分的检测下限以下
相对于实施例1中的释放速率,实施例2中片剂的释放速率延迟。从最初的释放情况,最大释放速率延迟大约50分钟并降低超过33%。相比于实施例1中片剂溶解需要的30分钟,实施例2中片剂溶解需要的总时间是110分钟。
也证实的是发现在两个实施例中加入到片剂的荧光示踪剂数量与其它两种组分溶解速率成比例。
以说明性的方式描述本发明的方法。按照以上的教导许多改进和变化是可能的。因此理解在所附权利要求的范围内,可以采用具体描述以外的方式实施本发明。

Claims (9)

1.一种制备固体水处理产物的方法,其中该固体水处理产物具有最优的溶解速率,该方法包括如下步骤:
1)提供成分以制备固体水处理产物,其中该成分选自:
a)活性成分;
b)非必要的非活性成分;和
c)荧光示踪剂,其中该荧光示踪剂选自惰性荧光示踪剂和活性荧光示踪剂;其中该固体水处理产物基本由约10%-约99.99%该活性成分,约0%-约98%该非必要的非活性成分和约0.01%-约10%该荧光示踪剂组成;
2)制备固体水处理产物;
3)将固体水处理产物放入测试水中;
4)提供荧光计;
5)使用该荧光计测量该测试水中该荧光示踪剂的荧光信号;
6)在一定间隔下重复步骤5)的荧光信号测量;
7)通过分析步骤5)中测量的荧光信号随时间的增加测定固体水处理产物的溶解速率,其中如果该处理产物的该溶解速率是最优的,则步骤8)和9)是非必要的,如果该处理产物的该溶解速率不是最优的,则要求步骤8)和9);
8)非必要地根据步骤7)中测定的溶解速率调节该固体水处理产物的制备,以制备具有最优溶解速率的固体水处理产物;
9)如需要非必要地重复步骤3),4),5),6),7)和8)以获得具有最优溶解速率的固体水处理产物。
2.一种在工业水系统中采用固体水处理产物处理水的方法,其中该固体水处理产物具有最优的溶解速率,该方法包括如下步骤:
a)提供工业水系统;
b)提供固体水处理产物,其中该固体水处理产物具有最优的溶解速率;
c)向该工业水系统中的水中加入约1ppb-约10,000ppm该固体水处理产物,其中该固体水处理产物具有最优的溶解速率;
d)使该固体水处理产物溶解并处理该工业水系统中的水。
3.一种控制工业水系统中固体水处理产物数量的方法,其中该固体水处理产物具有最优的溶解速率,该方法包括如下步骤:
a)提供工业水系统;
b)提供固体水处理产物,其中该固体水处理产物具有最优的溶解速率,其中该固体水处理产物包括荧光示踪剂;
c)向该工业水系统中的水中加入约1ppb-约10,000ppm该固体水处理产物,其中该固体水处理产物具有最优的溶解速率;
d)使该固体水处理产物溶解并处理该工业水系统中的水;
e)提供荧光计;
f)使用该荧光计测量该荧光示踪剂的荧光信号;
g)将该荧光示踪剂的荧光信号与该工业水系统的水中存在的荧光示踪剂数量关联;
h)将该工业水系统的水中存在的荧光示踪剂数量与该工业水系统中存在的水处理产物数量关联;
i)将该工业水系统的水中存在的水处理产物数量与最优存在的水处理产物数量进行比较;
j)调节加入到该工业水系统的水中的固体水处理产物流量,使得该工业水系统的水中存在的水处理产物数量是最优的。
4.如权利要求1所述的方法,其中该工业水系统是冷却水系统。
5.如权利要求2所述的方法,其中该工业水系统是冷却水系统。
6.如权利要求3所述的方法,其中该工业水系统是冷却水系统。
7.如权利要求1所述的方法,其中该工业水系统是锅炉。
8.如权利要求2所述的方法,其中该工业水系统是锅炉。
9.如权利要求3所述的方法,其中该工业水系统是锅炉。
CNB038030411A 2002-01-31 2003-01-15 测定固体水处理产物溶解速率的方法 Expired - Lifetime CN1328174C (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US10/066,168 2002-01-31
US10/066,168 US6685840B2 (en) 2002-01-31 2002-01-31 Method for determining the dissolution rate of a solid water treatment product

Publications (2)

Publication Number Publication Date
CN1625528A true CN1625528A (zh) 2005-06-08
CN1328174C CN1328174C (zh) 2007-07-25

Family

ID=27610442

Family Applications (1)

Application Number Title Priority Date Filing Date
CNB038030411A Expired - Lifetime CN1328174C (zh) 2002-01-31 2003-01-15 测定固体水处理产物溶解速率的方法

Country Status (9)

Country Link
US (1) US6685840B2 (zh)
EP (1) EP1483207B1 (zh)
JP (1) JP2005515891A (zh)
CN (1) CN1328174C (zh)
AU (1) AU2003203011B2 (zh)
CA (1) CA2473134C (zh)
ES (1) ES2588153T3 (zh)
MX (1) MXPA04007297A (zh)
WO (1) WO2003064325A1 (zh)

Families Citing this family (38)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
IL138771A0 (en) * 2000-09-28 2001-10-31 Bromine Compounds Ltd A compacted 2,2-dibromo-3-nitrilopropionamide
US7060136B1 (en) * 2002-03-28 2006-06-13 Nalco Company Method of monitoring membrane cleaning processes
US8668779B2 (en) * 2002-04-30 2014-03-11 Nalco Company Method of simultaneously cleaning and disinfecting industrial water systems
US7252096B2 (en) * 2003-04-08 2007-08-07 Nalco Company Methods of simultaneously cleaning and disinfecting industrial water systems
US6901945B2 (en) * 2003-09-30 2005-06-07 Nalco Company System for feeding solid materials to a pressurized pipeline
US20060254624A1 (en) * 2003-12-17 2006-11-16 Zeiher E H K Method of monitoring membrane cleaning processes
US7095500B2 (en) * 2004-01-30 2006-08-22 Nalco Company Interchangeable tip-open cell fluorometer
US7179384B2 (en) * 2004-04-30 2007-02-20 Nalco Company Control of cooling water system using rate of consumption of fluorescent polymer
GB0418207D0 (en) * 2004-08-14 2004-09-15 Otv Sa "Improvement relating to sanitisation"
US7910371B2 (en) * 2005-01-20 2011-03-22 Nalco Company Method of monitoring treating agent residuals in water treatment processes
US7932091B2 (en) * 2006-07-18 2011-04-26 Prochemtech International, Inc. Colorant tracer for cooling water treatment formulations
US20080169243A1 (en) * 2007-01-11 2008-07-17 Dave Bhasker B Method of inhibiting scale formation and deposition in desalination systems
US7985318B2 (en) * 2007-05-10 2011-07-26 Nalco Company Method of monitoring and inhibiting scale deposition in pulp mill evaporators and concentrators
US20090101587A1 (en) 2007-10-22 2009-04-23 Peter Blokker Method of inhibiting scale formation and deposition in desalination systems
GB0813278D0 (en) * 2008-07-18 2008-08-27 Lux Innovate Ltd Method for inhibiting corrosion
GB0818921D0 (en) * 2008-10-16 2008-11-19 Otv Sa Method of TOC monitoring
CN102666403A (zh) * 2009-11-19 2012-09-12 日本曹达株式会社 压载水的还原处理方法
US8352207B2 (en) * 2010-03-31 2013-01-08 Ecolab Usa Inc. Methods for calibrating a fluorometer
WO2012061068A2 (en) * 2010-10-25 2012-05-10 Diversey, Inc. Method of using a tracer for monitoring water treatment agents in a wet air scrubber
US20130233796A1 (en) * 2012-03-06 2013-09-12 Narasimha M. Rao Treatment of industrial water systems
US9023784B2 (en) * 2012-09-13 2015-05-05 Ecolab Usa Inc. Method of reducing soil redeposition on a hard surface using phosphinosuccinic acid adducts
US9752105B2 (en) 2012-09-13 2017-09-05 Ecolab Usa Inc. Two step method of cleaning, sanitizing, and rinsing a surface
US8871699B2 (en) 2012-09-13 2014-10-28 Ecolab Usa Inc. Detergent composition comprising phosphinosuccinic acid adducts and methods of use
US9994799B2 (en) 2012-09-13 2018-06-12 Ecolab Usa Inc. Hard surface cleaning compositions comprising phosphinosuccinic acid adducts and methods of use
US9028747B2 (en) 2012-12-28 2015-05-12 Ecolab Usa Inc. Corrosion and fouling mitigation using non-phosphorus based additives
US9341058B2 (en) 2013-03-14 2016-05-17 Ecolab Usa Inc. Monitoring produced water
US9477238B2 (en) 2013-03-15 2016-10-25 Ecolab Usa Inc. Monitoring hydraulic fracturing
US9169164B2 (en) 2013-04-05 2015-10-27 Ecolab Usa Inc. Polymers useful in agricultural applications
PL3010621T3 (pl) * 2013-06-11 2022-01-31 Evapco, Inc. Układ podawania substancji stałych z monitorowanym uwalnianiem
WO2014201115A1 (en) * 2013-06-11 2014-12-18 Evapco, Inc. Monitored release solid feed system
US10139385B2 (en) * 2013-08-12 2018-11-27 Ecolab Usa Inc. Method of tracing chemical quantities using encapsulated fluorescent dyes
JP6245444B2 (ja) * 2014-03-27 2017-12-13 三浦工業株式会社 水処理剤
US11136529B2 (en) 2016-09-07 2021-10-05 Ecolab Usa Inc. Solid detergent compositions and methods of adjusting the dispense rate of solid detergents using solid anionic surfactants
RU2686249C2 (ru) * 2016-10-03 2019-04-24 Общество с ограниченной ответственностью "Газпром трансгаз Уфа" Система тепловодоснабжения компрессорной станции
US10793809B2 (en) 2017-02-28 2020-10-06 Ecolab Usa Inc. Alkaline cleaning compositions comprising a hydroxyphosphono carboxylic acid and methods of reducing metal corrosion
WO2018160488A1 (en) 2017-02-28 2018-09-07 Ecolab Usa Inc. Alkaline cleaning compositions comprising an alkylamino hydroxy acid and/or secondary amine and methods of reducing metal corrosion
IT201800006764A1 (it) * 2018-06-28 2019-12-28 Trattamento delle acque reflue delle cartiere.
DE102019114638A1 (de) * 2019-05-31 2020-12-03 Orben Wasseraufbereitung Gmbh & Co. Kg Heizungswasserzusatz

Family Cites Families (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4783314A (en) 1987-02-26 1988-11-08 Nalco Chemical Company Fluorescent tracers - chemical treatment monitors
US4992380A (en) 1988-10-14 1991-02-12 Nalco Chemical Company Continuous on-stream monitoring of cooling tower water
US5041386A (en) 1988-12-19 1991-08-20 Nalco Chemical Company Concentration cycles, percent life holding time and continuous treatment concentration monitoring in boiler systems by inert tracers
JPH03223386A (ja) * 1990-01-30 1991-10-02 Nippon Soda Co Ltd 便器防汚・脱臭方法
JPH05163591A (ja) * 1990-11-13 1993-06-29 Kurita Water Ind Ltd 水処理用ポリマー及び水処理方法
US5433867A (en) * 1994-01-14 1995-07-18 Kisner; Kim T. Environmentally friendly chlorine or bromine dispenser
US5440919A (en) * 1994-08-29 1995-08-15 Spectronics Corporation Method of introducing leak detection dye into an air conditioning or refrigeration system
US5741433A (en) 1996-06-21 1998-04-21 Betzdearborn Inc. Controlled release supplemental coolant additive
JP2000171397A (ja) * 1998-12-04 2000-06-23 Touzai Kagaku Sangyo Kk 水処理用薬品の濃度管理方法
US6447722B1 (en) * 1998-12-04 2002-09-10 Stellar Technology Company Solid water treatment composition and methods of preparation and use
JP3998168B2 (ja) * 1999-12-13 2007-10-24 日本曹達株式会社 抗菌剤組成物及び成形体
US6329165B1 (en) * 1999-12-30 2001-12-11 Nalco Chemical Company Measurement and control of sessile and planktonic microbiological activity in industrial water systems
US6315909B1 (en) * 2000-05-01 2001-11-13 Nalco Chemical Company Use of control matrix for cooling water systems control

Also Published As

Publication number Publication date
EP1483207A4 (en) 2006-06-07
WO2003064325A1 (en) 2003-08-07
EP1483207A1 (en) 2004-12-08
MXPA04007297A (es) 2005-05-16
AU2003203011B2 (en) 2008-05-01
US20030141258A1 (en) 2003-07-31
ES2588153T3 (es) 2016-10-31
CN1328174C (zh) 2007-07-25
CA2473134A1 (en) 2003-08-07
JP2005515891A (ja) 2005-06-02
US6685840B2 (en) 2004-02-03
EP1483207B1 (en) 2016-08-10
CA2473134C (en) 2013-12-03

Similar Documents

Publication Publication Date Title
CN1625528A (zh) 测定固体水处理产物溶解速率的方法
CN1244503C (zh) 用于水系统的缓蚀剂
CN1041099C (zh) 制备氨基酸聚合物的酸催化方法
CN1127563C (zh) 酞菁化合物的水溶性颗粒
CN1098217C (zh) 含氟和表面活性剂的污水和/或废气的处理装置和方法
CN1242936C (zh) 用于减少工业装置中的残渣和沉积物形成的无硫木素及其衍生物
CN1200888C (zh) 生产高分子絮凝剂的方法
CN1189566C (zh) 用频繁供给酵母生产乙醇的方法
CN1196773C (zh) 洗涤剂助剂、其制备方法和聚(甲基)丙烯酸(或盐)及用途
CN87104090A (zh) 吸水树脂组合物
CN1382213A (zh) 喷雾干燥的酶产品
CN1065276A (zh) 衣康酸聚合方法
CN1163137C (zh) 抗微生物组合物
CN1916031A (zh) 杂化共聚物
CN1250463C (zh) 抑制钙盐污垢的组合物及方法
CN1927984A (zh) 铁精矿粉防尘剂及其制备方法
CN1869105A (zh) 制备巯基聚天冬氨酸与壳聚糖共聚物的方法与用途
CN1817820A (zh) 用于生产像成熟堆肥一样的物质的方法
CN1122683C (zh) 稳定聚氯乙烯用β-二酮乙酰丙酮化合物基组合物
CN1101535C (zh) 冷冻循环
CN1038921A (zh) 用碱性过氧化物处理非木质的木素纤维素基料的改进方法
CN1784359A (zh) 用于水处理的聚合物
CN1134394C (zh) 涂敷乙酰丙酮钙或镁及其作为卤化聚合物稳定剂的用途
CN1470464A (zh) 高效节水无膦环保水处理剂
CN1536016A (zh) 偏氯乙烯系树脂组合物、其制造方法及其薄膜

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C14 Grant of patent or utility model
GR01 Patent grant
CX01 Expiry of patent term

Granted publication date: 20070725

CX01 Expiry of patent term