CN1610146A - 电压钳制隔膜及其制备方法 - Google Patents

电压钳制隔膜及其制备方法 Download PDF

Info

Publication number
CN1610146A
CN1610146A CNA2004100609478A CN200410060947A CN1610146A CN 1610146 A CN1610146 A CN 1610146A CN A2004100609478 A CNA2004100609478 A CN A2004100609478A CN 200410060947 A CN200410060947 A CN 200410060947A CN 1610146 A CN1610146 A CN 1610146A
Authority
CN
China
Prior art keywords
electroactive polymer
battery
barrier film
poly
derivative
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CNA2004100609478A
Other languages
English (en)
Inventor
艾新平
肖利芬
杨汉西
曹余良
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Wuhan University WHU
Original Assignee
Wuhan University WHU
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Wuhan University WHU filed Critical Wuhan University WHU
Priority to CNA2004100609478A priority Critical patent/CN1610146A/zh
Publication of CN1610146A publication Critical patent/CN1610146A/zh
Pending legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Battery Electrode And Active Subsutance (AREA)
  • Secondary Cells (AREA)

Abstract

电压钳制隔膜及其制备方法,隔膜由两层电活性聚合物多孔薄膜层叠复合而成,其中使用时靠近负极的一层为在所处体系中仅能发生p-掺杂而不能发生n-掺杂的电活性聚合物多孔膜层;而靠近正极的一层为另一种具有较高氧化(p-掺杂)电势的电活性聚合物多孔膜层。所用聚合物材料在本征状态下均为电子绝缘体,而在P-掺杂状态下为电子良导体。该隔膜可为二次电池提供可逆的内部过充保护。

Description

电压钳制隔膜及其制备方法
                             技术领域
本发明为一种电压钳制隔膜的构成原理,属化学电源领域。
                             背景技术
过充状态下电池的安全性一直是有机电解质二次电池所面临的最大应用问题。对于水溶液二次电池来说,处于过充状态时,水在电池的正极氧化产生氧气,在负极还原产生氢气,生成的气体产物在电池内部又能可逆地复合成水。这种水的可逆分解—复合为水溶液二次电池提供了一种内部过充保护机制,使得水溶液二次电池具备良好的耐过充能力。而对于采用有机电解质溶液的非水二次电池体系来说,由于缺乏类似保护机制,电池对过充尤为敏感。处于过充状态时,正极电势随充电时间延长而快速上升,引发正极活性物质结构的不可逆变化及电解液的氧化分解,产生大量的气体并放出大量的热,从而使电池电压及温度急剧上升,导致爆炸、燃烧等不安全行为。因此,加强对有机电解质二次电池的过充保护尤为重要。
为了防止电池过充,实际应用中人们往往采用专用的充电电路来控制电池的充电过程。这种方法直接、有效,但并非万无一失。特别是对于由多电池组合而成的电池组来说,对每一节电池实施单独管理的难度非常大。因此,提高电池自身的耐过充能力或防过充能力非常重要。
                             发明内容
本发明提出了一种电压钳制隔膜及其制备方法,其目的是在有机电解质二次电池内部建立一种过充保护机制,防止电池过充,解决电池过充安全性问题。
本发明的电压钳制隔膜,其特征在于由两层电活性聚合物多孔薄膜层叠复合而成;靠近正极一层的电活性聚合物为聚苯撑、聚萘芬以及他们的衍生物之一,靠近负极一层的电活性聚合物为聚苯胺、聚吡喏、聚噻吩、聚乙炔以及他们的衍生物之一。
本发明所述的电压钳制隔膜由两层电活性聚合物多孔薄膜层叠复合而成。其中使用时靠近负极的一层为在所处体系中仅能发生p-掺杂而不能发生n-掺杂的电活性聚合物多孔膜层;而靠近正极的一层为另一种具有较高氧化(p-掺杂)电势的电活性聚合物多孔膜层。由于所用聚合物材料在本征状态下均为电子绝缘体,而在P-掺杂状态下为电子良导体。因此,隔膜的电子导电性随所在电池的正极电势而改变。在电池正常充放电电压范围内,两种聚合物材料均处于未掺杂状态不具有电子导电性,此时,隔膜能有效地将正极/负极隔离,并提供丰富的液相离子通道;当电池处于过充状态,并且正极电势上升至正极一侧聚合物氧化电势值之上时,靠正极一侧的聚合物膜因发生p-掺杂而转变成导电态,继而氧化与之接触的负极一侧的聚合物(发生p-掺杂),并使之成为导电态。如此一来,整个隔膜表现为电子导体,使电池内部短路,电池电压不再随充电时间而改变;当正极电势低于正极一侧聚合物氧化电势值时,正极一侧p-掺杂聚合物首先脱杂转变为绝缘态,而负极一侧的低掺杂电势聚合物因仅与低电势的负极存在电接触随之脱杂回到绝缘态。此时,隔膜恢复其正常功能,电池可正常地工作。而当电压超过设定值后,又引起短路,导致电压下降。隔膜这种对电势的钳制作用,使得处于过充状态下的电池电压不随充电时间而改变。此时,电池实际上已成为一只纯粹的电阻并用来消耗外部充电电能。因此,这种电压敏感隔膜可为二次电池提供可逆的内部过充保护,防止电池过充。
本发明所采用的电活性聚合物材料有两类,其中靠近正极一侧多孔层中的聚合物要求在所处体系中具有较高氧化(p-掺杂)电势,而靠近负极一侧多孔层中的聚合物要求在所处体系中没有n-掺杂且p-掺杂电势较低。所采用的聚合物在一定电势下均能在所处电池体系中发生可逆的电化学P型掺杂—脱杂反应。在本征状态下,聚合物为电子绝缘体,而在P-掺杂状态为电子良导体。可用于正极一侧的聚合物材料有:聚苯撑、聚萘芬及他们的衍生物;可用于负极一侧的聚合物材料有:聚吡喏、聚噻吩、聚苯胺、聚乙炔等以及他们的衍生物。
隔膜的电势钳制值由靠近正极一侧的电活性聚合物的氧化电势决定,因此,可以通过选择正极一侧电活性聚合物种类来调整隔膜的电势钳制值及适用电压范围。如聚苯撑的电氧化电势为4.3伏(相对于金属锂电极),采用聚苯撑为正极一侧电活性聚合物时,隔膜的钳制电势值就为4.3伏(相对于金属锂电极);当采用卤代聚苯为正极一侧电活性聚合物时,随卤代原子拉电子能力增强,卤代聚苯的氧化电势值逐渐升高,隔膜的钳制电势值也相应升高。
本发明所述的电压钳制隔膜的制备方法,其特征在于:
a、选择聚苯撑、聚萘芬以及他们的衍生物之一为正级层用电活性聚合物,聚苯胺、聚吡喏、聚噻吩、聚乙炔以及他们的衍生物之一为负级层用电活性聚合物;
b、分别将电活性聚合物粉体材料、粘结剂及其他辅助材料混和均匀,再加入适量溶剂制成均匀浆料,然后填充于多孔隔膜基体中,或者采用涂布或碾压方式直接制成两种多孔隔膜;
c、然后将两膜层叠并通过热压使之成为一体。
粘结剂可以是聚四氟乙烯(PTFE)、聚偏氟乙烯(PVDF)及聚偏氟乙烯—六氟丙稀共聚物(PVDF-HFP)等。辅助材料可以是纳米二氧化硅(SiO2)及纳米三氧化二铝(Al2O3)等粉体。根据选用的粘结剂不同,溶剂可分别采用水、N,N-二甲基吡咯烷酮、N,N-二甲基甲酰胺等。
                             附图说明
图1,采用不同隔膜的Li/LiMn2O4电池充放电曲线。充放电电流:25mA/g。
虚线:聚丙烯隔膜,实线:PPP/PAn复合隔膜。
图2,PAn-PPP复合隔膜用于可逆过充保护的原理示意图。
                             具体的实施方式
应用实例.分别采用聚苯胺(PAn)、聚苯撑(PPP)为隔膜负极一侧和正极一侧的电活性聚合物材料、纳米SiO2粉为惰性组分添加剂、聚四氟乙烯(PTFE)乳液为粘结剂,采用滚压方式分别制成厚约25μm的薄膜,然后将两膜层叠并通过热压使之成为一体。以此一体化的PPP/PAn复合膜为隔膜,LiCoO2为正极、Li片为负极、1mol/L LiPF6/EC+DMC溶液为电解液组装成实验锂电池。在所装配电池中,复合膜PPP一面紧挨LiMn2O4电极,而PAn面紧挨Li电极。
图1比较了采用常规聚丙烯隔膜与PPP/PAn复合膜的Li/LiMn2O4电池的充放电行为。由图可见,两种电池首先均以25mA/g电流在3.6~4.3V间恒流充放电时,所得到的充放电曲线几乎完全一致,说明在正常充放电情况下PPP/PAn复合膜表现出与常规隔膜相同的离子导电性质,对电池充放电性能没有任何影响。然后以同样电流过充时,两者表现出完全不同的电压特征。以聚丙烯为隔膜的电池过充8分钟时电压即上升至4.8V。而采用PPP/PAn复合隔膜的电池则在4.30V左右出现一个稳定的电压平台,明显表现出对于过充电压的钳制作用。即使100%过充电后,采用PPP/PAn复合隔膜的电池在放电容量上仍然基本保持不变,说明在过充时的反应仅为电活性聚合物自身的电化学掺杂和脱杂过程,并未引起正极材料的过氧化或电解液的分解,因而对电池起到有效的过充保护。
PAn-PPP复合膜的这种过充保护机理如图2所示。在正常充放电状态下,与正极接触的PPP层的氧化掺杂电势低于4.3V,处于脱杂状态;而与负极接触的PAn层的电势在0V附近,也处于脱杂状态,因此整个隔膜处于绝缘态(图2a)。一旦出现过充电时,锰酸锂正极的电势迅速上升至PPP的氧化电势,PPP发生p-掺杂反应变成导电态(图2b),并使充电电压钳制在4.3V左右,如图1中充电曲线所示。随着PPP掺杂反应向膜内延伸,整个PPP层进入电子导电态并处于高电势,导致邻近的PAn层也开始氧化掺杂而转变为导电体(图2c)。这时,整体呈导电性的隔膜恰如在正负极之间形成一个导电桥,使电池内部短路而发生自放电。由于瞬间自放电必然使PPP发生部分脱杂,同时消除电池内短路,结果在外部充电电流的作用下造成进一步氧化掺杂。这种持续不断的掺杂—脱杂反应使电池的充电电压维持在稳定的范围,同时耗散掉过充的电能。当电池放电时,锰酸锂正极的电势势必逐渐下降。当达到PPP膜的还原电势时,PPP发生脱杂反应恢复绝缘态(图2d),从而也使PAn层和锰酸锂正极断路。一旦PPP的电势降低至PAn的还原电位,PAn即开始脱杂恢复绝缘态。当PPP/PAn复合膜全部恢复绝缘态时,电池也完全恢复到正常的放电状态(图2e)。从上述过程可以看出,由于采用了PAn,避免了PPP膜低电位下的n型掺杂,同时又利用了PPP的高掺杂电位,实现了隔膜整体由绝缘态到导电态的可逆转化。
对PPP/PAn复合隔膜的工作稳定性考察发现,采用这种隔膜的Li/LiMn2O4电池在循环过程中的容量衰减速度和充放电效率与常规隔膜并没有明显差别,说明这种掺杂—脱杂反应是高度可逆的,在有机溶液锂电池中具有良好的化学稳定性。

Claims (2)

1、电压钳制隔膜,其特征在于由两层电活性聚合物多孔薄膜层叠复合而成;靠近正极一层的电活性聚合物为聚苯撑、聚萘芬以及他们的衍生物之一,靠近负极一层的电活性聚合物为聚苯胺、聚吡喏、聚噻吩、聚乙炔以及他们的衍生物之
2、电压钳制隔膜的制备方法,其特征在于:
a、选择聚苯撑、聚萘芬以及他们的衍生物之一为正级层用电活性聚合物,聚苯胺、聚吡喏、聚噻吩、聚乙炔以及他们的衍生物之一为负级层用电活性聚合物;
b、分别将电活性聚合物粉体材料、粘结剂及其他辅助材料混和均匀,再加入适量溶剂制成均匀浆料,然后填充于多孔隔膜基体中,或者采用涂布或碾压方式直接制成两种多孔隔膜;
c、然后将两膜层叠并通过热压使之成为一体。
CNA2004100609478A 2004-10-12 2004-10-12 电压钳制隔膜及其制备方法 Pending CN1610146A (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CNA2004100609478A CN1610146A (zh) 2004-10-12 2004-10-12 电压钳制隔膜及其制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CNA2004100609478A CN1610146A (zh) 2004-10-12 2004-10-12 电压钳制隔膜及其制备方法

Publications (1)

Publication Number Publication Date
CN1610146A true CN1610146A (zh) 2005-04-27

Family

ID=34764383

Family Applications (1)

Application Number Title Priority Date Filing Date
CNA2004100609478A Pending CN1610146A (zh) 2004-10-12 2004-10-12 电压钳制隔膜及其制备方法

Country Status (1)

Country Link
CN (1) CN1610146A (zh)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101373826B (zh) * 2007-08-24 2010-10-06 比亚迪股份有限公司 硅负极和包括该负极的锂离子二次电池及它们的制备方法
CN102151997A (zh) * 2011-01-31 2011-08-17 华中科技大学 一种膜片钳芯片微孔加工方法
CN102514281A (zh) * 2011-12-13 2012-06-27 天津工业大学 聚吡咯涂层复合聚羟基丁酸酯膜电活性材料及其制备方法
CN105283981A (zh) * 2013-05-31 2016-01-27 斯堪尼亚商用车有限公司 用于电池组电池的内在过充电保护
CN105932207A (zh) * 2016-07-15 2016-09-07 中国工程物理研究院化工材料研究所 锂离子电池可逆过充保护用凝胶聚合物复合隔膜及其制备方法
CN106601969A (zh) * 2017-02-23 2017-04-26 深圳市海盈科技股份有限公司 一种电压敏感性隔膜的制备方法
CN108682774A (zh) * 2018-06-12 2018-10-19 桑德集团有限公司 隔膜及其制备方法、锂电池

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101373826B (zh) * 2007-08-24 2010-10-06 比亚迪股份有限公司 硅负极和包括该负极的锂离子二次电池及它们的制备方法
CN102151997A (zh) * 2011-01-31 2011-08-17 华中科技大学 一种膜片钳芯片微孔加工方法
CN102514281A (zh) * 2011-12-13 2012-06-27 天津工业大学 聚吡咯涂层复合聚羟基丁酸酯膜电活性材料及其制备方法
CN102514281B (zh) * 2011-12-13 2014-10-15 天津工业大学 聚吡咯涂层复合聚羟基丁酸酯膜电活性材料及其制备方法
CN105283981A (zh) * 2013-05-31 2016-01-27 斯堪尼亚商用车有限公司 用于电池组电池的内在过充电保护
CN105283981B (zh) * 2013-05-31 2017-10-24 斯堪尼亚商用车有限公司 用于电池组电池的内在过充电保护
CN105932207A (zh) * 2016-07-15 2016-09-07 中国工程物理研究院化工材料研究所 锂离子电池可逆过充保护用凝胶聚合物复合隔膜及其制备方法
CN105932207B (zh) * 2016-07-15 2018-10-19 中国工程物理研究院化工材料研究所 锂离子电池可逆过充保护用凝胶聚合物复合隔膜及其制备方法
CN106601969A (zh) * 2017-02-23 2017-04-26 深圳市海盈科技股份有限公司 一种电压敏感性隔膜的制备方法
CN108682774A (zh) * 2018-06-12 2018-10-19 桑德集团有限公司 隔膜及其制备方法、锂电池
CN108682774B (zh) * 2018-06-12 2022-01-14 桑德新能源技术开发有限公司 隔膜及其制备方法、锂电池

Similar Documents

Publication Publication Date Title
JP5303857B2 (ja) 非水電解質電池及び電池システム
US11651906B2 (en) Voltage-modified hybrid electrochemical cell design
US20180309169A1 (en) Electrolyte system for silicon-containing electrodes
KR101049331B1 (ko) 리튬 이차 전지
KR20040014910A (ko) 재충전가능한 리튬 전기화학 전지
Xiao et al. A composite polymer membrane with reversible overcharge protection mechanism for lithium ion batteries
CN103119773A (zh) 使用离子液体的锂二次电池
CN103443974A (zh) 具有改进的功率特性的复合正极活性材料和包含其的二次电池、电池模块和电池组
US20220255130A1 (en) Gel electrolyte for solid-state battery
CN109429535A (zh) 含有电极保护层的负极和包含该负极的锂二次电池
CN100373682C (zh) 锂离子二次电池及其充电方法
JP2012138335A (ja) 非水電解質二次電池および非水電解質、並びに電池パック、電子機器、電動車両、蓄電装置および電力システム
JP2008041504A (ja) 非水電解質電池
EP1050917A1 (en) Lithium ion secondary battery
KR101768452B1 (ko) 음극, 그를 포함하는 전고체 리튬이차전지 및 그의 제조방법
US20220166031A1 (en) Solid-state bipolar battery having thick electrodes
CN215418233U (zh) 一种集流体、电极极片和锂离子电池
US6277515B1 (en) Solid electrolyte battery with charge accumulating portions surrounding a battery structure portion
CN1610146A (zh) 电压钳制隔膜及其制备方法
CN113394404A (zh) 一种集流体及含该集流体的电极极片和锂离子电池
JP2005347222A (ja) 電解液および電池
CN1595678A (zh) 一种电压敏感性隔膜及制备方法
JP2007180041A (ja) 電池
West et al. Solid-state sodium cells—An alternative to lithium cells?
US9525160B2 (en) High-rate overcharge-protection separators for rechargeable lithium-ion batteries and the method of making the same

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C02 Deemed withdrawal of patent application after publication (patent law 2001)
WD01 Invention patent application deemed withdrawn after publication