CN1599950A - 用于确定源和漏以及中间间隙的方法 - Google Patents

用于确定源和漏以及中间间隙的方法 Download PDF

Info

Publication number
CN1599950A
CN1599950A CNA028242254A CN02824225A CN1599950A CN 1599950 A CN1599950 A CN 1599950A CN A028242254 A CNA028242254 A CN A028242254A CN 02824225 A CN02824225 A CN 02824225A CN 1599950 A CN1599950 A CN 1599950A
Authority
CN
China
Prior art keywords
monolayer
metal layer
die
mask
source
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CNA028242254A
Other languages
English (en)
Inventor
M·H·布里斯
M·R·博赫梅
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Koninklijke Philips NV
Original Assignee
Koninklijke Philips Electronics NV
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Koninklijke Philips Electronics NV filed Critical Koninklijke Philips Electronics NV
Publication of CN1599950A publication Critical patent/CN1599950A/zh
Pending legal-status Critical Current

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y30/00Nanotechnology for materials or surface science, e.g. nanocomposites
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C18/00Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating
    • C23C18/16Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating by reduction or substitution, e.g. electroless plating
    • C23C18/1601Process or apparatus
    • C23C18/1603Process or apparatus coating on selected surface areas
    • C23C18/1605Process or apparatus coating on selected surface areas by masking
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y10/00Nanotechnology for information processing, storage or transmission, e.g. quantum computing or single electron logic
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C18/00Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating
    • C23C18/16Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating by reduction or substitution, e.g. electroless plating
    • C23C18/1601Process or apparatus
    • C23C18/1633Process of electroless plating
    • C23C18/1646Characteristics of the product obtained
    • C23C18/165Multilayered product
    • C23C18/1651Two or more layers only obtained by electroless plating
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C18/00Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating
    • C23C18/16Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating by reduction or substitution, e.g. electroless plating
    • C23C18/31Coating with metals
    • C23C18/42Coating with noble metals
    • C23C18/44Coating with noble metals using reducing agents
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic Table or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/28Manufacture of electrodes on semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/268
    • H01L21/283Deposition of conductive or insulating materials for electrodes conducting electric current
    • H01L21/288Deposition of conductive or insulating materials for electrodes conducting electric current from a liquid, e.g. electrolytic deposition
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/40Electrodes ; Multistep manufacturing processes therefor
    • H01L29/41Electrodes ; Multistep manufacturing processes therefor characterised by their shape, relative sizes or dispositions
    • H01L29/417Electrodes ; Multistep manufacturing processes therefor characterised by their shape, relative sizes or dispositions carrying the current to be rectified, amplified or switched
    • H01L29/41725Source or drain electrodes for field effect devices
    • H01L29/41733Source or drain electrodes for field effect devices for thin film transistors with insulated gate
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/40Electrodes ; Multistep manufacturing processes therefor
    • H01L29/43Electrodes ; Multistep manufacturing processes therefor characterised by the materials of which they are formed
    • H01L29/45Ohmic electrodes
    • H01L29/456Ohmic electrodes on silicon
    • H01L29/458Ohmic electrodes on silicon for thin film silicon, e.g. source or drain electrode
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/66007Multistep manufacturing processes
    • H01L29/66075Multistep manufacturing processes of devices having semiconductor bodies comprising group 14 or group 13/15 materials
    • H01L29/66227Multistep manufacturing processes of devices having semiconductor bodies comprising group 14 or group 13/15 materials the devices being controllable only by the electric current supplied or the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched, e.g. three-terminal devices
    • H01L29/66409Unipolar field-effect transistors
    • H01L29/66477Unipolar field-effect transistors with an insulated gate, i.e. MISFET
    • H01L29/66742Thin film unipolar transistors
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C18/00Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating
    • C23C18/16Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating by reduction or substitution, e.g. electroless plating
    • C23C18/31Coating with metals
    • C23C18/38Coating with copper
    • C23C18/40Coating with copper using reducing agents

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Power Engineering (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Nanotechnology (AREA)
  • Computer Hardware Design (AREA)
  • Materials Engineering (AREA)
  • Ceramic Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Organic Chemistry (AREA)
  • Metallurgy (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Manufacturing & Machinery (AREA)
  • Mathematical Physics (AREA)
  • Theoretical Computer Science (AREA)
  • Composite Materials (AREA)
  • Electrodes Of Semiconductors (AREA)
  • Thin Film Transistor (AREA)

Abstract

公开了一种用于制造图形化金属层的方法。该方法包括在衬底上形成单分子层掩模的步骤(106)。该掩模将被用于金属层(108)的选择性无电镀沉积。这样,金属层就会在没有单分子层的区域生长。因此,长出的金属层就能形成薄膜晶体管的中间有间隙的源电极和漏电极,间隙部分的单分子层阻止沉积。

Description

用于确定源和漏以及中间间隙的方法
本发明涉及一种用于确定薄膜晶体管的源和漏以及中间间隙的方法。该方法包括步骤:在衬底上沉积第一金属层,以及通过微接触印刷在第一金属层上形成单分子层掩模。
目前非常渴望改善基于薄膜结构的大面积电子器件的制造。大面积电子器件,例如有源矩阵液晶显示器(AM-LCDs)的制造,是基于集成电路的制造。然而,减小集成电路的尺寸并不能直接降低大面积电子器件的成本。因此,更多的努力被放在发展制造大面积电子器件的新技术上。
这些大面积电子器件大多数是基于晶体管组合。因此,所关心的是同时制作多个晶体管的制造工艺。为使用相对低迁移率半导电材料,如多晶Si、非晶Si、或者甚至有机半导体获得足够高的开关速度,保持晶体管中的源和漏之间的间隙小是很重要的。
传统上,使用光刻制作晶体管结构。然而,对于大面积电子器件这种技术变得非常昂贵,因此替代技术得到了关注。
现在已经发展了一些用于制造薄膜晶体管的新技术。在Y.Xia和G.M.Whitesides:软蚀刻微影(Soft Lithography,Angew.Chem.Int.Ed.1998,37,550-575)中,介绍了一种用于在表面上确定自组装单分子层(SAM)的掩模或图形的新技术。该技术被称作微接触印刷。对微接触印刷通常的理解是使用印模接触表面,该印模具有突出的元件并与形成单分子层的分子一起浸泡。当印模接触表面时在接触区域的表面上形成一层单分子层。这样,就很容易的在表面上形成掩模。然后这种SAM掩模就可以用来阻止被掩模覆盖的区域中的下面的层被腐蚀。这样就可以通过选择性的腐蚀形成晶体管或大面积电子器件所要求的图形。然而,这种技术具有在腐蚀过程中浪费很多材料的缺点。更重要的是,SAM掩模的选择性并不能好到足以用来直接腐蚀几百纳米厚的层。在所需的腐蚀时间内,单分子层将被侵蚀,在应该保留的图形中腐蚀出洞。
Xia和Whitesides的文章中也介绍了在带有印刷的SAM的衬底上选择性的化学气相沉积(CVD),参照第561页。然而,CVD是一种在表面分解特殊的(通常是剧毒的)的气态金属有机化合物以形成金属层的工艺。这也需要真空或减压工艺,相对比较昂贵。
本发明的一个目的是提供一种通过印刷技术确定中间有间隙的源和漏的方法。
本发明的这一目的通过根据权利要求1的方法实现。
这样,提供了一种用于确定薄膜晶体管的中间有间隙的源和漏的方法,该方法包括步骤:
在衬底上沉积第一金属层,
通过微接触印刷在该第一金属层上形成单分子层掩模,
沉积第二无电镀金属层,所述第二无电镀金属层选择性地沉积在第一金属层上未被单分子层覆盖的区域上,以及
除去单分子层以及至少被该单分子层覆盖的区域中的第一金属层。
由于本发明,提供了一种衬底,可以通过简单无害的无电镀沉积实现在该衬底上选择性地沉积金属层。这样,由于第一层可以很薄(在10-20nm的量级),不需要过多的腐蚀和沉积产生大量废料。使用该方法,可以在具有相对厚的金属层(~1μm)结构之间获得小到2μm的间隙尺寸。这样,制造用于形成如AM-LCD的大面积电子器件的薄膜晶体管变得便宜且简单。
除去单分子层和被单分子层覆盖的区域中的第一金属层的步骤可以分为两个步骤。在第一步骤中,可以使用任一下述几种不同的方法除去单分子层。然后,在第二步骤中,深腐蚀被单分子层覆盖的区域中的第一金属层。
然而,如果使用的腐蚀剂可以快速侵蚀单分子层,则可以将单分子层的除去与第一金属层的深腐蚀结合起来。然后,单分子层将被快速地除去,且腐蚀剂在腐蚀开始后不久就开始深腐蚀被单分子层覆盖的区域中的第一金属层。在这种方法中,第二金属层相对于第一金属层受影响较小。这样,由于第二金属层比第一金属层厚很多,腐蚀剂对第二金属层只有很小的影响。
这样,如果用于深腐蚀第一金属层的腐蚀剂可以快速侵蚀单分子层,则可以省去单独除去单分子层的步骤。换句话说,如果该腐蚀剂对单分子层没有选择性,则可以省去单独除去单分子层的步骤。例如,可以使用KI/I2(碘化钾和碘)的水溶液作为这样一种腐蚀剂。
根据权利要求2的方法的优点在于图形化的接触控制掩模的图形。可以根据所要求的掩模图形设计印模的突出的元件。
使用权利要求3的方法,印模和第一金属层之间的接触将形成单分子层的分子从印模转移到第一金属层上。
根据权利要求4,使用十八烷基硫醇(octadecylthiol)作为单分子层材料是合适的,这是由于十八烷基硫醇会结合在第一金属层上形成单分子层。此外,十八烷基硫醇适于阻止金属的沉积。这样十八烷基硫醇的掩模会形成用于选择性沉积的图形,但很多其它的硫醇分子也是可以的,如二十烷基硫醇(eicosanethiol)、十六烷基硫醇(hesdeccanethiol)等。
根据权利要求5的方法的优点在于在使用单分子层之前就可以使第一金属层图形化。
由于银和铜是适合在电子器件中使用的金属,根据权利要求6使用银或铜作为沉积的金属是方便的。此外,银和铜不是很贵,这使得使用该方法制作的器件便宜。
在权利要求7中规定的,或作为选择在权利要求8、9或10中规定的方法可以除去单分子层。单分子层既可以通过加热这一很简单的步骤除去,也可以用氩等离子体处理除去,这种方法没有加热简单,但是相当快。
单分子层也可以相对于NHE(标准氢电极)约-1V下在KOH水溶液(例如在0.5M KOH中)中还原解吸除去。见例如D.Losic,J.G.Shapter,和J.J.Gooding的“表面形貌对来自溶液并通过微接触印刷组装的烷硫醇SAM的影响(Influence of Surface Topography onAlkanethiol SAMs Assembled from Solution and by MicrocontactPrinting)”(Langmuir;2001;17(11);3307-3316)。或者可以通过在升高的温度下在有机溶剂中加热衬底一段时间除去单分子层,例如在环己烷中接近沸点的情况下。
当源和漏制成后,可以适宜地在结构上沉积钝化层。这样,可以保证器件的电稳定性。本发明地这些和其它方面可以通过结合下面所述的实施例阐述而变得明显。
现在将参照附图描述本发明的优选实施例,其中:
图1和3-5是根据所发明的方法在生长源和漏的不同的步骤中衬底的剖面图。
图2是图1中区域A的放大的剖面图。
图6是根据本发明的方法的流程图。
图7是使用本发明的方法所生长的结构的AFM图象。
现在参照图1-5和6描述根据本发明的方法。在图1-5中,示出了在衬底2上产生源和漏的工艺的不同阶段中的衬底2。在图6中,示出了该工艺的流程图。首先,提供衬底2,步骤100。合适的衬底2是例如玻璃、聚合物或复合材料,但也可以使用Si、GaAs或石英。然后,在衬底2上沉积第一金属层4,步骤102。优选,该金属层由2-20nm的如Ti、TiW、Mo或Cr的底层金属或合金的薄层以及20nm银组成。根据在第二无电镀金属层中使用的金属,可用作第一金属层的金属的替换材料是例如Pd或Au。然而,由于希望在第一金属层中和第二金属层中以同样的速度腐蚀,优选第一金属层中由与第二金属层同样的金属构成。第一金属层可以通过无电镀沉积、高真空(<10-6mbar)蒸发,或溅射沉积。
然后,通过微接触印刷在第一金属层4上形成单分子层掩模6,步骤106,参照图1。掩模6是通过在印模(未示出)与衬底2上的第一金属层4之间建立接触形成的,印模上有形成单分子层的分子。
印模根据下面所述制作。首先,制作底版(master)。在直径6英寸的Si(100)晶片上覆盖一层(~150nm)的Si3N4。这一层是在大约800℃的温度下在低压化学气相沉积(LPCVD)工艺中通过SiH2Cl2-和NH3-气沉积。在该晶片上通过旋转涂敷的方法提供一薄层正性光刻胶。在通过掩模的UV照射以及显影的步骤后,在晶片上得到光刻胶图形。然后,使用CHF3/O2等离子体刻蚀露出的Si3N4。在刻蚀过程中温度保持在100℃以下。使用氧等离子体除去光刻胶。产生的Si3N4图形用作Si(100)反应离子刻蚀中的刻蚀掩模。晶片再次经过氧等离子体处理后与大约0.5ml(十七氟(heptadecafluoro)-1,1,2,2-四氢癸基(tetrahydrodecy))三氯硅烷一起被放入干燥器中。干燥器抽气降成约0.2mbar的压强。60分钟以后,给干燥器通风,并将晶片放入预热的炉子(100℃)中一个小时。然后,用于制作印模的印模底版就准备好了。
然后印模作为底版的负片被制作出来。底版的负片用Dow Corning公司生产的Sylgard184硅树脂橡胶制作。将22g Sylgard184“坯”与2.2g Sylgard184“固化剂”在一次性聚苯乙烯容器中搅拌充分混合。通过将聚苯乙烯容器放入干燥器中并降压(多步)到0.2mbar的压强,除去由此产生的封闭的气泡。将Si-底版晶片放在真空吸盘上,慢慢的将硅树脂混合物倒在底版上。将100μm厚的聚碳酸酯板(3M公司)固定在真空吸盘中的平盖的底部。小心的将盖子降低到硅树脂上到底版表面上大约1mm的高度。在65℃的温度下固化16小时后,打开盖子,从底版上剥离聚碳酸酯板和印模。从聚碳酸酯板上剥离印模,并将其切成1-2cm2的片。
在微接触印刷前,需要给印模提供形成单分子层的分子,步骤104。这样,1-2cm2的片状的印模通过在新鲜的2mM的十八烷基硫醇的乙醇溶液中浸泡1-2小时得到浸染(ink)。印模从溶液中取出后用乙醇清洗,并在氮气流中吹干。然后,在印模上提供有十八烷基硫醇。然后在步骤106中将印模的印刷面与衬底表面接触,大约15秒后将印模移开。在此过程中,在第一金属层的表面产生了十八烷基硫醇的自组装单分子层(SAM;厚~2nm),参照图2。每个分子8自发地结合在金属表面4上。这样,相邻的分子8形成了紧密的单分子层10。
移开印模后,进行无电镀,步骤108,其中无电镀生长仅限于不包含单分子层10的区域,特别是源和漏之间的间隙。在此步骤中,沉积了厚度约为500nm的第二无电镀金属层12。在此步骤中,衬底2浸入以氨银溶液和还原剂为主要成分的无电镀银槽中。在美国专利US-3,960,564的例6中描述了该槽。过一段时间后,将衬底2从该溶液中取出,用去离子水漂洗,并在氮气流中吹干。在光学显微镜、原子力显微镜或扫描电子显微镜下的观察显示银沉积只在印刷步骤106中未被印模接触的区域发生,参照图3。产生的图形的厚度依赖于沉积时间(15分钟-4小时)以及溶液温度。
最后,通过腐蚀除去在第二金属层的沉积的银之间的非常薄的银薄膜(20nm)。首先,参照图4步骤110,通过将衬底2加热到约100-150℃一段时间(几分钟到几个小时),或通过在0.2mbar的压强、2.45GHz的放电频率下300W功率下,用Ar-等离子体处理5-10分钟除去SAM。Ar-等离子体处理可以使用TePla公司的TePla 300E完成。单分子层也可以通过相对于NHE约-1V下在KOH水溶液(例如在0.5M KOH中)中还原解吸除去。或者,可以通过在升高的温度下在有机溶剂中加热衬底一段时间除去单分子层(例如在环己烷中接近沸点)。
然后,将衬底2浸入含有0.1M K2S2O3和0.01M K3Fe(CN)6的腐蚀水溶液中10秒钟。经过这项处理,第二金属层上沉积的银薄膜的一小部分也会被除去,参照图5。这样,掩模6不允许沉积第二金属层12的区域中的第一金属层4被除去,步骤112。
接下来,可以涂敷钝化层。为了保证源和象素电极之间的良好接触,可以采用另一无电镀步骤以用金属至少部分地填充接触孔。
现在参照图7,示出了衬底的AFM图象,已根据上述方法在该衬底上进行了金属层的选择性沉积。此处,示出了沉积的金属区域之间的间隙,其可以对应于中间有间隙的源和漏。从这张图象中清楚地看到长出了1.65μm高、之间有下至5μm间隙的金属层。
由于本发明,可以采用金属层的选择性无电镀沉积用于在源和漏之间形成间隙。虽然所发明的方法不能达到与光刻同样的分辨率,但是所发明的方法便宜很多并且足以获得大面积电子器件所需的分辨率。这样,公开了大面积电子器件的制作工艺的大幅度改善。
应该强调的是,此处描述的优选实施例绝无限定性,并且在附属权利要求确定的保护范围内可能有很多可替换的实施例。例如,可以使用其它的印模材料,例如其它类型的硅树脂或聚亚安酯橡胶。此外,该方法可用于制作其它器件如“电子纸”,便宜的射频标记的标签或可调谐光纤器件。
也可以在沉积第一金属层时就已经制作相对粗糙的图形。这可以使用印刷敏化剂作为催化剂获得。在H.Kind、M.Geissler、H.Schmid、B.Michel、K.Kern和E.Delamarche:“在覆盖钛的表面微接触印刷钯(II)络合物图形化无电镀铜(Patterned Electroless Deposition ofCopper by Microcontact Printing Palladium(II)Complexes onTitanium-Covered Surfaces”,Langmuir;2001;16(16);6367-6373,可以找到印刷敏化剂的工艺的例子。或者,可以使用喷墨印刷或其它如胶印的印刷技术使如有机溶剂中的胶质银粒子的含银的溶液粗糙地图形化。

Claims (11)

1.确定薄膜晶体管的中间有间隙的源和漏的方法,包括步骤:
在衬底上沉积第一金属层,
使用微接触印刷在第一金属层上形成单分子层掩模,
沉积第二无电镀金属层,所述第二无电镀金属层选择性地沉积在第一金属层未被单分子层覆盖的区域上,以及
除去单分子层和至少被单分子层覆盖的区域中的第一金属层。
2.根据权利要求1的方法,其中形成单分子层掩模的步骤包括:使用带有突出的元件的印模,通过在第一层和印模之间建立图形化的接触,将形成单分子层的分子从印模转移到第一金属层上。
3.根据权利要求2的方法,其中形成单分子层掩模的步骤包括为印模提供形成单分子层的分子的步骤。
4.根据权利要求3的方法,其中为印模的表面提供形成单分子层的分子的步骤包括为印模的表面提供将形成单分子层的十八烷基硫醇。
5.根据前面权利要求的任一项的方法,其中沉积第一金属层的步骤包括使用印刷敏化剂作为催化剂形成图形化层的步骤。
6.根据前面权利要求的任一项的方法,其中沉积各金属层的步骤包括沉积银或铜的步骤。
7.根据前面权利要求的任一项的方法,其中除去单分子层的步骤包括加热该结构的步骤。
8.根据权利要求1-6中任一项的方法,其中除去单分子层的步骤包括氩等离子体处理的步骤。
9.根据权利要求1-6中任一项的方法,其中除去单分子层的步骤包括还原解吸。
10.根据权利要求1-6中任一项的方法,其中除去单分子层的步骤包括在升高的温度下在有机溶剂中加热衬底的步骤。
11.根据前面权利要求的任一项的方法,还包括在源和漏制作完成后在该结构上沉积钝化层的步骤。
CNA028242254A 2001-12-06 2002-11-25 用于确定源和漏以及中间间隙的方法 Pending CN1599950A (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
EP01204703 2001-12-06
EP01204703.1 2001-12-06

Publications (1)

Publication Number Publication Date
CN1599950A true CN1599950A (zh) 2005-03-23

Family

ID=8181365

Family Applications (1)

Application Number Title Priority Date Filing Date
CNA028242254A Pending CN1599950A (zh) 2001-12-06 2002-11-25 用于确定源和漏以及中间间隙的方法

Country Status (8)

Country Link
US (1) US20050003590A1 (zh)
EP (1) EP1459367A2 (zh)
JP (1) JP2005521238A (zh)
KR (1) KR20040068572A (zh)
CN (1) CN1599950A (zh)
AU (1) AU2002348870A1 (zh)
TW (1) TW200409294A (zh)
WO (1) WO2003049176A2 (zh)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102516841A (zh) * 2011-11-21 2012-06-27 广西师范学院 酞菁锌配合物作为墨水在微接触印刷中的应用
CN103221907A (zh) * 2010-11-22 2013-07-24 3M创新有限公司 具有内含位置图案的电极的触敏装置的制造方法
CN106206402A (zh) * 2016-08-16 2016-12-07 苏州华博电子科技有限公司 一种曲面上精密薄膜电路制作方法

Families Citing this family (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7229847B2 (en) * 2002-03-15 2007-06-12 Lucent Technologies Inc. Forming electrical contacts to a molecular layer
US7160583B2 (en) * 2004-12-03 2007-01-09 3M Innovative Properties Company Microfabrication using patterned topography and self-assembled monolayers
US20060226442A1 (en) 2005-04-07 2006-10-12 An-Ping Zhang GaN-based high electron mobility transistor and method for making the same
US20080095988A1 (en) * 2006-10-18 2008-04-24 3M Innovative Properties Company Methods of patterning a deposit metal on a polymeric substrate
US8764996B2 (en) 2006-10-18 2014-07-01 3M Innovative Properties Company Methods of patterning a material on polymeric substrates
US7968804B2 (en) 2006-12-20 2011-06-28 3M Innovative Properties Company Methods of patterning a deposit metal on a substrate
JP4962500B2 (ja) * 2006-12-28 2012-06-27 大日本印刷株式会社 有機トランジスタ素子、その製造方法、有機発光トランジスタ及び発光表示装置
JP2009069588A (ja) 2007-09-14 2009-04-02 Konica Minolta Opto Inc 光学ユニットおよび撮像装置
US8284332B2 (en) * 2008-08-01 2012-10-09 3M Innovative Properties Company Touch screen sensor with low visibility conductors
WO2009108765A2 (en) 2008-02-28 2009-09-03 3M Innovative Properties Company Touch screen sensor having varying sheet resistance
KR101397200B1 (ko) 2008-02-28 2014-05-20 쓰리엠 이노베이티브 프로퍼티즈 컴파니 저 가시성 도체를 구비한 터치 스크린 센서
US8425792B2 (en) 2008-02-28 2013-04-23 3M Innovative Properties Company Methods of patterning a conductor on a substrate
CN107272978B (zh) 2008-02-28 2020-09-15 3M创新有限公司 触屏传感器
US10620754B2 (en) 2010-11-22 2020-04-14 3M Innovative Properties Company Touch-sensitive device with electrodes having location pattern included therein
JP5807374B2 (ja) * 2011-04-28 2015-11-10 大日本印刷株式会社 薄膜トランジスタ基板の製造方法およびトップゲート構造薄膜トランジスタ基板
JP5224203B1 (ja) 2012-07-11 2013-07-03 大日本印刷株式会社 タッチパネルセンサ、タッチパネル装置および表示装置

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5900160A (en) * 1993-10-04 1999-05-04 President And Fellows Of Harvard College Methods of etching articles via microcontact printing
US6329226B1 (en) * 2000-06-01 2001-12-11 Agere Systems Guardian Corp. Method for fabricating a thin-film transistor

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103221907A (zh) * 2010-11-22 2013-07-24 3M创新有限公司 具有内含位置图案的电极的触敏装置的制造方法
CN102516841A (zh) * 2011-11-21 2012-06-27 广西师范学院 酞菁锌配合物作为墨水在微接触印刷中的应用
CN102516841B (zh) * 2011-11-21 2013-08-07 广西师范学院 酞菁锌配合物作为墨水在微接触印刷中的应用
CN106206402A (zh) * 2016-08-16 2016-12-07 苏州华博电子科技有限公司 一种曲面上精密薄膜电路制作方法

Also Published As

Publication number Publication date
AU2002348870A1 (en) 2003-06-17
WO2003049176A3 (en) 2003-09-25
TW200409294A (en) 2004-06-01
WO2003049176A2 (en) 2003-06-12
AU2002348870A8 (en) 2003-06-17
EP1459367A2 (en) 2004-09-22
KR20040068572A (ko) 2004-07-31
US20050003590A1 (en) 2005-01-06
JP2005521238A (ja) 2005-07-14

Similar Documents

Publication Publication Date Title
CN1599950A (zh) 用于确定源和漏以及中间间隙的方法
US10571803B2 (en) Sequential infiltration synthesis for enhancing multiple-patterning lithography
US8138097B1 (en) Method for processing semiconductor structure and device based on the same
US6736985B1 (en) High-resolution method for patterning a substrate with micro-printing
Moffat et al. Patterned metal electrodeposition using an alkanethiolate mask
Djenizian et al. Electron beam-induced carbon masking for electrodeposition on semiconductor surfaces
EP1831763A1 (en) Surface patterning and via manufacturing employing controlled precipitative growth
Sugimura et al. Scanning probe lithography for electrode surface modification
CN101251713A (zh) 深紫外光刻制作“t”型栅的方法
US7041232B2 (en) Selective etching of substrates with control of the etch profile
CN113892192A (zh) 制造光伏电池的方法
US20080283405A1 (en) Method for Producing Patterned Structures by Printing a Surfactant Resist on a Substrate for Electrodeposition
US20050191437A1 (en) Method of forming a catalytic surface comprising at least one of Pt, Pd, Co and Au in at least one of elemental and alloy forms
Djenizian et al. Electron-beam induced nanomasking for metal electrodeposition on semiconductor surfaces
US20050069645A1 (en) Method of electrolytically depositing materials in a pattern directed by surfactant distribution
US7211520B2 (en) Method for fabricating a field effect transistor
CN1263096C (zh) 干光刻法及用其形成栅图案的方法
EP0058214B1 (en) Method for increasing the resistance of a solid material surface against etching
US7718228B2 (en) Composition for forming silicon-cobalt film, silicon-cobalt film and method for forming same
CN101017781A (zh) 异质结双极晶体管t型发射极金属图形制作方法的改进
Djenizian et al. Electron-beam induced carbon deposition used as a mask for cadmium sulfide deposition on Si (100)
EP0783176B1 (en) Improved masking methods during semiconductor device fabrication
WO2005015308A2 (en) Fabrication process for high resolution lithography masks using evaporated or plasma assisted electron sensitive resists with plating image reversal
US20110244263A1 (en) Patterning using electrolysis
EP3882955A1 (en) A method of manufacturing a semi-conducting thin film device

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C02 Deemed withdrawal of patent application after publication (patent law 2001)
WD01 Invention patent application deemed withdrawn after publication