CN1561554A - 在采用固体阴极的非水溶液电池的有机电解质中直接加入β-氨基烯酮 - Google Patents
在采用固体阴极的非水溶液电池的有机电解质中直接加入β-氨基烯酮 Download PDFInfo
- Publication number
- CN1561554A CN1561554A CNA028193326A CN02819332A CN1561554A CN 1561554 A CN1561554 A CN 1561554A CN A028193326 A CNA028193326 A CN A028193326A CN 02819332 A CN02819332 A CN 02819332A CN 1561554 A CN1561554 A CN 1561554A
- Authority
- CN
- China
- Prior art keywords
- alloy
- electrolyte
- battery
- beta
- aminoenones
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
Classifications
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M10/00—Secondary cells; Manufacture thereof
- H01M10/05—Accumulators with non-aqueous electrolyte
- H01M10/056—Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes
- H01M10/0564—Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes the electrolyte being constituted of organic materials only
- H01M10/0566—Liquid materials
- H01M10/0567—Liquid materials characterised by the additives
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M10/00—Secondary cells; Manufacture thereof
- H01M10/05—Accumulators with non-aqueous electrolyte
- H01M10/052—Li-accumulators
- H01M10/0525—Rocking-chair batteries, i.e. batteries with lithium insertion or intercalation in both electrodes; Lithium-ion batteries
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M4/00—Electrodes
- H01M4/02—Electrodes composed of, or comprising, active material
- H01M4/13—Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
- H01M4/131—Electrodes based on mixed oxides or hydroxides, or on mixtures of oxides or hydroxides, e.g. LiCoOx
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M4/00—Electrodes
- H01M4/02—Electrodes composed of, or comprising, active material
- H01M4/13—Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
- H01M4/133—Electrodes based on carbonaceous material, e.g. graphite-intercalation compounds or CFx
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M4/00—Electrodes
- H01M4/02—Electrodes composed of, or comprising, active material
- H01M4/36—Selection of substances as active materials, active masses, active liquids
- H01M4/48—Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides
- H01M4/50—Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of manganese
- H01M4/505—Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of manganese of mixed oxides or hydroxides containing manganese for inserting or intercalating light metals, e.g. LiMn2O4 or LiMn2OxFy
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M4/00—Electrodes
- H01M4/02—Electrodes composed of, or comprising, active material
- H01M4/36—Selection of substances as active materials, active masses, active liquids
- H01M4/48—Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides
- H01M4/52—Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of nickel, cobalt or iron
- H01M4/525—Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of nickel, cobalt or iron of mixed oxides or hydroxides containing iron, cobalt or nickel for inserting or intercalating light metals, e.g. LiNiO2, LiCoO2 or LiCoOxFy
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M4/00—Electrodes
- H01M4/02—Electrodes composed of, or comprising, active material
- H01M4/36—Selection of substances as active materials, active masses, active liquids
- H01M4/58—Selection of substances as active materials, active masses, active liquids of inorganic compounds other than oxides or hydroxides, e.g. sulfides, selenides, tellurides, halogenides or LiCoFy; of polyanionic structures, e.g. phosphates, silicates or borates
- H01M4/581—Chalcogenides or intercalation compounds thereof
- H01M4/5815—Sulfides
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M4/00—Electrodes
- H01M4/02—Electrodes composed of, or comprising, active material
- H01M4/36—Selection of substances as active materials, active masses, active liquids
- H01M4/58—Selection of substances as active materials, active masses, active liquids of inorganic compounds other than oxides or hydroxides, e.g. sulfides, selenides, tellurides, halogenides or LiCoFy; of polyanionic structures, e.g. phosphates, silicates or borates
- H01M4/583—Carbonaceous material, e.g. graphite-intercalation compounds or CFx
- H01M4/587—Carbonaceous material, e.g. graphite-intercalation compounds or CFx for inserting or intercalating light metals
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M6/00—Primary cells; Manufacture thereof
- H01M6/14—Cells with non-aqueous electrolyte
- H01M6/16—Cells with non-aqueous electrolyte with organic electrolyte
- H01M6/162—Cells with non-aqueous electrolyte with organic electrolyte characterised by the electrolyte
- H01M6/168—Cells with non-aqueous electrolyte with organic electrolyte characterised by the electrolyte by additives
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M10/00—Secondary cells; Manufacture thereof
- H01M10/05—Accumulators with non-aqueous electrolyte
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M10/00—Secondary cells; Manufacture thereof
- H01M10/05—Accumulators with non-aqueous electrolyte
- H01M10/054—Accumulators with insertion or intercalation of metals other than lithium, e.g. with magnesium or aluminium
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M4/00—Electrodes
- H01M4/02—Electrodes composed of, or comprising, active material
- H01M4/36—Selection of substances as active materials, active masses, active liquids
- H01M4/48—Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides
- H01M4/483—Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides for non-aqueous cells
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E60/00—Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
- Y02E60/10—Energy storage using batteries
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y10—TECHNICAL SUBJECTS COVERED BY FORMER USPC
- Y10T—TECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
- Y10T29/00—Metal working
- Y10T29/49—Method of mechanical manufacture
- Y10T29/49002—Electrical device making
- Y10T29/49108—Electric battery cell making
Landscapes
- Chemical & Material Sciences (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Electrochemistry (AREA)
- General Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- Inorganic Chemistry (AREA)
- Materials Engineering (AREA)
- Manufacturing & Machinery (AREA)
- Physics & Mathematics (AREA)
- Condensed Matter Physics & Semiconductors (AREA)
- General Physics & Mathematics (AREA)
- Primary Cells (AREA)
- Battery Electrode And Active Subsutance (AREA)
- Secondary Cells (AREA)
- Conductive Materials (AREA)
- Electrolytic Production Of Non-Metals, Compounds, Apparatuses Therefor (AREA)
Abstract
公开了一种制造应用阳极、阴极和有机电解质的非水溶液型电池的方法,其中所述阴极包含一种活性的阴极材料,有机电解质含有基于有机溶剂的体积计0.1-5.0vol%的β-氨基烯酮,以有助于降低通常在采用诸如FeS2的阴极时可观测到的不希望的高开路电压。
Description
发明概述
技术领域
本发明涉及采用了阳极、包含活性阴极材料的阴极和有机电解质的非水溶液电池的制造方法。该方法包括向电解质中直接加入β-氨基烯酮(Aminoeneone),如4-氨基-3-戊烯-2-酮以有助于减少任何不希望的高起始开路电压,如使用诸如FeS2阴极时所观测到的。
背景技术
高能电池体系的研发要求具有所需电化学性能的电解质和高活性的阳极材料如锂、钙、钠等之间有相容性以及对高能量密度阴极材料的充分利用。此类合用的高能量密度的阴极材料包括铁的硫化物,如FeS2和FeS,碳的氟化物如CFx,金属氧化物如V2O5、WO3、MoO3,铅的氧化物如Pb3O4、PbO2和PbO,钴的氧化物如Co3O4,锰的氧化物如MnO2,In2S3,NiS,金属铬酸盐如Ag2CrO4,金属磷酸盐如Ag3PO4,LiCoO2,LiMn2O4,Bi2O3,CuO和Cu2O以及金属硫酸盐如CuSO4。由于阳极材料的活性足以与水发生化学反应,在这些体系中不能使用水溶液电解质。因此,为了通过使用高活性阳极和高能量密度的阴极获得高能量密度,就必须使用非水溶液电解质体系。
许多电池的应用领域,特别是装有晶体管的装置,如助听器、钟表、计算器等为了正常运行需要基本为单电位放电的电源。然而,发现在许多采用了阳极活性材料的非水溶液电池中,放电一开始,所述电池显示出高电压,然后,只有在过去几个小时以后,电池才能逐渐达到其较低的工作放电电压,其中所述的阳极活性材料包含导电添加剂如石墨和/或碳。电池达到其希望的工作放电电压所需的时间通常依赖于通过负载的放电速率,因此依赖于该电池所驱动的装置,这可导致长达几个小时或者甚至几天的时间。当计划将电池用在正常运行需要基本为单电位放电电源的电子装置中时,这一现象成为严重缺陷。在一些这样的电子装置中,任何明显超过该装置所需运行电压的起始电压峰值会造成对该装置电子元件的严重损坏。
当电池稳定在其所需的工作电压之前会处于高电压下时,保护这些装置不受该电池影响的一种方法是加入另外的电子电路组件来保护所述装置的主要工作组件。然而,这样做不仅会增加装置的成本,还会导致所述装置为容纳保护电路而变大。较大的装置与当今对装置小型化的注重背道而驰,而小型化要求电池行业设计出越来越小的电化学原理驱动的电池。
设计用以降低起始时高的、有潜在危害的电压的另外一种方法是在最终用户开始使用之前使此类电池经历一个预放电过程。但是这种预放电过程消耗时间和成本并会降低电池的容量。因此,希望减少或消除任何需要的预放电操作。
美国专利4489144建议向电解质中加入异噁唑衍生物如3,5-二甲基异噁唑可以抵消或消除非水溶液电池放电过程中的这一起始高电压。据信异噁唑衍生物与假定会造成起始高电压的不需要的物质发生了反应而还原了这些物质。美国专利4489144的全部公开内容引入作为参考,如同在此将其全文重写。
现已确定,通过向电解质中加入β-氨基烯酮可以令人满意地降低非水溶液电池的起始开路电压。因此,本发明的一个目的是提供一种电池的制造方法,所述电池包含高活性的阳极如锂,包含活性材料如FeS2的阴极和包含β-氨基烯酮如4-氨基-3-戊烯-2-酮的非水溶液电解质。
发明详述
本发明主要涉及非水溶液电池的制造方法,其包含提供阳极、有机电解质和固体阴极的步骤。该方法包括向电解质中加入基于电解质溶剂体积为0.1-5.0vol%的β-氨基烯酮的步骤。
向非水溶液有机电解质中加入β-氨基烯酮如4-氨基-3-戊烯-2-酮,可有效地降低和稳定当使用诸如FeS2的阴极材料时观测到的不希望的高起始开路电压。本文中使用的术语“β-氨基烯酮”用来描述包含以下任一结构的物质:
-CO-CR=C(NH2)-
其中R是氢或烷基;或
-CO-CR=C(NR2R3)-
其中R、R2、R3是氢或烷基;或
-CO-CRR′-C(NR2R3)(R″)-
其中R、R′、R″、R2和R3是氢或烷基。
对于大多数非水溶液电化学电对而言,所述β-氨基烯酮添加剂的使用浓度为0.1-5.0vol%,基于电解质溶剂的体积计,优选为0.2-4.0vol%,更优选0.2-2.0vol%。
在检测采用了含碳和/或石墨的FeS2阴极和锂阳极的非水溶液电池的电解质溶液时,首先发现了β-氨基烯酮控制起始高开路电压的效用。使用包含3,5-二甲基异噁唑(DMI),一种异噁唑衍生物的电解质溶液制造这些电池,如美国专利4489144所述。随着老化,对未放电电池的电解质的气相色谱(GC)研究表明已不能再检测到DMI。取而代之,检测到一种起始时在电解质中不存在的胺。经鉴定,该胺为4-氨基-3-戊烯-3-酮(AP),一种β-氨基烯酮类化合物。还检测到第二种起始时在电解质中不存在的化合物:2,4-戊二酮(PD)。据信PD的存在部分是由于GC样品制备过程中所述电解质向水暴露的人为结果。
通过对小瓶贮存研究的电解质的GC分析进一步研究了涉及DMI和AP的反应机理。在这些研究中,对Li/FeS2电池的各种组分进行了分离并与含DMI的电解质相混合。通常方法如下:将一个3/4平方英寸的电池组分样品放置在一个1盎司的广口瓶中。制备在1升体积比为25∶75∶0.2的DIOX∶DME∶DMI中含1摩尔LiCF3SO3的电解质溶液,其中DIOX是1,3-二氧戊环,DME是1,2-二甲氧基乙烷。向小瓶中加入100微升的电解质。然后将小瓶密封并在干燥箱中贮存3小时。在该时间段结束时,在二氯甲烷中回收电解质,用水萃取溶液并对二氯甲烷层进行分析。
开始时,检测到电解质与锂、隔离材料和阴极材料的反应。结果示于表1中。
表1:
反应物 | GC峰区的百分数或PPM浓度 | |||
%DIOX | %DME | %DMI | ppm AP | |
电解质+锂箔 | 23.42 | 76.14 | .44 | ND* |
电解质+隔离器 | 23.66 | 75.91 | .44 | ND* |
电解质+阴极材料 | 21.97 | 77.87 | .09 | 614 |
电解质 | 25.48 | 74.14 | .38 | ND* |
*未检测到。
以上数据表明,在涉及阴极的反应中DMI发生了降解。为进一步确定DMI的降解点,从铝箔基片上分离出阴极混合物并分别对阴极混合物和该铝箔进行小瓶测试。将所述混合物和铝基片重新组合并再次进行小瓶测试。对阴极混合物和新的铝再次进行小瓶测试。结果示于表2中。
表2:
反应物 | GC峰区的百分数或PPM浓度 | ||||
%DIOX | %DME | %DMI | ppm AP | ppm PD | |
电解质+阴极混合物 | 23.88 | 75.52 | .44 | ND* | ND* |
电解质+铝质基片 | 24.04 | 75.46 | .43 | ND* | ND* |
电解质+阴极混合物+铝质基片 | 23.61 | 76.06 | .25 | 362 | 534 |
电解质+阴极混合物+新铝 | 24.18 | 75.45 | .31 | 47 | 477 |
*未检测到。
在另外的尝试中,为了从DMI降解与AP的生成中分离反应性物质,使阴极混合物各组分与新铝质基片组合在一起单独进行小瓶测试。结果示于表3中。
表3:
反应物 | GC峰区的百分数或PPM浓度 | ||||
%DIOX | %DME | %DMI | ppm AP | ppmPD | |
电解质+FeS2(未干燥) | 20.27 | 78.90 | .42 | ND* | ND* |
电解质+乙炔黑 | 25.24 | 74.38 | .38 | ND* | ND* |
电解质+聚乙烯/聚丙烯共聚物 | 25.32 | 74.27 | .41 | ND* | ND* |
电解质+聚环氧乙烷 | 25.13 | 74.47 | .38 | ND* | ND* |
*未检测到。
以上数据表明,产生AP的DMI降解反应只在阴极混合物和铝质基片电流载体二者都存在时才会发生,并提示所述降解反应可能包括阴极混合物和铝质阴极电流载体间的反应。
为了确定向电解质溶剂中直接加入AP或PD来替换DMI,是否会在降低未放电电池的开路电压方面表现出类似的有利结果,进行了另外的实验。采用进行了以下改动的上述电解质构造了几批非水溶液AA尺寸的锂阳极黄铁矿阴极电池:a)无DMI,b)0.2%DMI,c)0.2%PD(替换DMI),d)0.2%AP(替换DMI),含量均为基于电解质溶剂的体积百分数。如附表中所说明,这些电池中的黄铁矿石来自不同的生产批次但基本为相同的物质。将电池在环境温度(21℃)或60℃下贮存。在下表所示的时间将电池从贮存状态下取出并测量电池的开路电压。将电池进行剖检并对电解质进行GC分析。电池在环境温度下的结果示于表4,在60℃下的结果示于表5。值得注意的是,所有电池都不含任何可检测量的DMI,即使是仅在环境温度下两周后,这表明降解反应完成得相当快,即使是在环境贮存温度下也是如此。
表4:在21℃下贮存
电解质特征/贮存时间 | 黄铁矿批号 | 剖检前的OCV(伏) | 由GC峰面积确定AP的ppm浓度 | 由GC峰面积确定PD的ppm浓度 |
无DMI2周7周23周 | 171 | 1.7271.7571.785 | ND*ND*ND* | ND*ND*ND* |
无DMI2周10周16周 | 172 | 1.7321.7601.775 | ND*ND*ND* | ND*ND*ND* |
0.2%DMI2周7周23周 | 171 | 1.7251.7481.748 | 1441334ND* | ND*ND*ND* |
0.2%DMI2周10周16周 | 172 | 1.7261.7301.745 | 10805132 | ND*ND*ND* |
0.2%PD2周7周23周 | 171 | 1.7251.7581.780 | ND*ND*ND* | 39ND*ND* |
0.2%AP(由LancasterSynthesis提供)2周10周16周 | 172 | 1.7271.7301.740 | 1379ND*304 | ND*ND*ND* |
0.2%AP(由TCI提供)2周10周16周 | 172 | 1.7271.7401.740 | 2215192ND* | ND*ND*ND* |
*未检测到。
表5:在60℃下贮存
电解质特征/贮存时间 | 黄铁矿批号 | 剖检前的OCV(伏) | 由GC峰面积确定AP的ppm浓度 | 由GC峰面积确定PD的ppm浓度 |
无DMI4周12周 | 171 | 1.8461.847 | ND*ND* | ND*ND* |
无DMI4周12周 | 172 | 1.8301.830 | ND*ND* | ND*ND* |
.2%DMI4周12周 | 171 | 1.7981.837 | ND*ND* | ND*ND* |
.2%DMI4周12周 | 172 | 1.8101.824 | ND*ND* | ND*ND* |
.2%PD4周12周 | 171 | 1.8401.834 | ND*ND* | 32ND* |
.2%AP(由LancasterSynthesis提供)4周12周 | 172 | 1.8101.750 | ND*ND* | ND*ND* |
.2%AP(由TCI提供)4周12周 | 172 | 1.7601.790 | 267ND* | ND*ND* |
*未检测到。
对表4中电池开路电压的研究说明如下:在环境温度下16周,电解质中含DMI的电池的开路电压比不含DMI的电池低30毫伏,证实了美国专利4489144中的观测结果,即DMI有助于降低此类电池的不希望高开路电压。含AP的电池具有比不含DMI的电池低35毫伏的开路电压。另一方面,在环境温度下23周,DMI电池与未添加DMI的电池之间的差值为37毫伏,但PD电池与无DMI的电池的差值仅为5毫伏。通常,可以认为向电解质中加入了AP的电池在降低开路电压方面与加入了DMI的电池作用方式相似,向电解质中加入了PD的电池与没有向电解质中加入DMI的电池的表现相似。表5中所示的电池表明向电解质中加入AP降低了开路电压。
文献研究显示可通过DMI的部分还原获得AP。然而,出人意料的是:即使是在较强的还原剂即锂金属阳极的存在下,DMI也会在与阴极的反应中被还原。然而,当用丁基锂还原DMI时(经常用来模拟锂金属的还原能力),反应产物是3-甲基-5-羟甲基异噁唑,其不是本文定义的β-氨基烯酮类化合物。该反应产物未出现在表1-5中的事实以及AP不易于与锂金属反应的事实,进一步支持了如下观点:DMI在与阴极的反应中被还原,降低了阴极电压,得到的AP被锂阳极消耗。基于此信息,不能期望AP能与阴极反应以降低其电压。假定降低阴极电压涉及对阴极的还原。这样,添加剂的还原能力越强,就越易于降低阴极电压。另一方面,AP是DMI的还原形式,是因为AP带有两个另外的氢原子。因为已经被部分还原,AP比DMI的还原能力低。因此,在降低阴极电压方面,可以预见AP不如DMI有效或根本无效。然而,表1-5中的结果表明AP与DMI的作用方式相似,的确降低了阴极电压。
基于电解质溶剂的体积计,β-氨基烯酮的量若低于0.1vol%则不能提供充足的还原性物质以迅速有效地还原电池体系中的杂质和/或不需要的活性物质。基于电解质溶剂的体积计,高于5vol%的量可提供过量的还原性物质,这会对该电池的所需的其它方面造成有害作用。如果仅仅注重降低电压,本发明的一个实施方案将包括在阴极使用金属还原剂如锌,并结合电解质中的β-氨基烯酮添加剂,尽管如此,所述添加剂可以在无金属还原剂的情况下用于电池中,这不会背离本发明的范围。由于此类还原剂会在电池内产生其它不希望的特征,事实上优选排除使用这样的还原剂。
如果结合加入金属还原剂实施本发明,则所述金属还原剂可以以形成阴极的混合物的形式使用或与阴极接触放置。这样,可以使用任何不连续的材料如层,涂层,金属筛网,金属片,多孔金属片或粉末,只要其与阴极为电子或离子接触。金属还原剂的选择取决于电池的活性阴极材料的电势并要参考电池的阳极。例如,尽管锌可以满足非水溶液的锂/FeS2体系,但它并不适合用于非水溶液的锂/Ag2O体系,这是因为在后者中,需要阳极性(负电性)较低的金属还原剂,如锡或铅。这样,只要确定了某种非水溶液电解质和阳极/阴极体系的EMF系列,就能选择出哪一种金属还原剂能与所述β-氨基烯酮添加剂结合使用。
在本发明的非水溶液电池体系中,合用的活性阴极材料包括铁的硫化物如FeS2和FeS,碳的氟化物如CFx,金属氧化物如V2O5、WO3、MoO3,铅的氧化物如Pb3O4、PbO2和PbO,钴的氧化物如Co3O4,锰的氧化物如MnO2,In2S3,NiS,金属铬酸盐如Ag2CrO4,金属磷酸盐如Ag3PO4,LiCoO2,LiMn2O4,Bi2O3,CuO和Cu2O以及金属硫酸盐如CuSO4。用于本发明的非水溶液体系的高活性阳极为可消耗型金属,包括铝,碱金属,碱土金属和碱金属或碱土金属相互之间和与其它金属形成的合金。文中所用的术语“合金”包括混合物、固溶液如锂-镁,和金属间化合物,如一铝化锂。优选的阳极材料是锂、钠、钾、钙、镁及其合金。如用于锂离子电池的碳阳极也是合用于本发明的阳极。优选与含有铝质阴极基片的FeS2阴极结合使用的阳极材料是如描述于美国专利5514491中的锂-铝合金,在此将该专利全文引入作为参考。一种此类的合金含铝0.5wt%并可从Chemetall-Foote购得。
在非水溶液电池中,可单独或混合使用于本发明电池中的有用的有机溶剂包括以下各类化合物:烯腈:例如丁烯腈(液态范围为:-51.1-120℃);硼酸三烷基酯:例如硼酸三甲基酯(CH3O)3B(液态范围为:-29.3℃-67℃);硅酸四烷基酯:例如硅酸四甲酯(CH3O)4Si(沸点:121℃);硝基烷:例如硝基甲烷CH3NO2(液态范围为:-17℃-100.8℃);烷基腈:例如乙腈,CH3CN(液态范围为:-45℃-81.6℃);二烷基酰胺:例如二甲基甲酰胺HCON(CH3)2(液态范围为:-60.48℃-149℃);内酰胺:例如N-甲基吡咯烷酮,(液态范围为:-16℃-202℃);一元羧酸酯:例如乙酸乙酯(液态范围为:-83.6℃-77.06℃);原酸酯:例如原甲酸三甲酯HC(OCH3)3(沸点:103℃);内酯:例如(γ)丁内酯,(液态范围为:-42℃-206℃);碳酸二烷基酯:例如碳酸二甲酯OC(OCH3)2(液态范围为:2℃-90℃);亚烃基碳酸酯:例如碳酸丙烯酯(液态范围为:48℃-242℃);碳酸乙烯酯和碳酸次亚乙烯基酯;一元醚:例如二乙基醚(液态范围为:-116℃-34.5℃);聚醚:例如1,1-和1,2-二甲氧基乙烷(液态范围分别为:-113.2℃-64.5℃和-58-83℃);环醚:例如四氢呋喃(液态范围为:-65℃-67℃);1,3-二氧戊环(液态范围为:-95℃-78℃);和取代二氧戊环;硝基芳香烃:例如硝基苯(液态范围为:5.7℃-210.8℃);环砜:例如环丁砜,(熔点:22℃),3-甲基环丁砜(熔点:-1℃);饱和杂环化合物:例如四氢噻吩(液态范围为:-96℃-121℃);3-甲基2-噁唑烷酮(熔点:15.9℃);五元不饱和杂环化合物:例如1-甲基吡咯(沸点:114℃),2,4-二甲基噻唑(沸点:144℃),和呋喃(液态范围为:-85.65℃-31.36℃);二烷基亚砜:例如二甲基亚砜(液态范围为:18.4℃-189℃);硫酸二烷基酯:例如硫酸二甲酯(液态范围为:-31.75℃-188.5℃);亚硫酸二烷基酯:例如亚硫酸二甲酯(沸点:126℃);亚烷基亚硫酸酯:例如亚硫酸乙二醇酯(液态范围为:-11℃-173℃);卤代烷烃:例如一氯甲烷(液态范围为:-95℃-40℃);1,3-二氯丙烷(液态范围为:-99.5℃-120.4℃)。在上述化合物中,优选溶剂为环丁砜;四氢呋喃;甲基取代的四氢呋喃;1,3-二氧戊环;烷基取代的1,3-二氧戊环;3-甲基-2-噁唑烷酮;碳酸丙烯或乙烯酯;(γ)丁内酯;亚硫酸乙二醇酯;亚硫酸二甲酯;二甲亚砜;和1,1-,1,2-二甲氧基乙烷和甘醇二甲醚。在优选溶剂中,最佳的是3-甲基-2-噁唑烷酮,碳酸丙烯或乙烯酯,1,2-二甲氧基乙烷和1,3-二氧戊环,这是因为它们对电池组分而言更为化学惰性并具有宽液态范围,特别是因为它们能高效地利用阴极材料。
用于本发明中的离子化溶质可以是单盐或复盐或它们的混合物,例如LiCF3SO3或LiClO4或LiI,当溶解于一或多种溶剂中时,其将生成一种离子导电溶液。有用的溶质包括无机或有机Lewis酸和无机可离子化盐的络合物。使用中的要求只是:所述盐,无论是单盐或络合物,应与所用的一或多种溶剂相容并能产生一种足以离子导电的溶液。根据酸或碱的Lewis或电子观点,许多不含活泼氢的物质可用做酸或电子对的受体。基本概念阐述在化学文献(Journal of theFranklin Institute,卷226,July/December 1938,第293-313页,G.N.Lewis)中。为这些络合物在溶剂中发挥作用的方式所提出的反应机理详细描述在美国专利3,542,602中,其中提出:在Lewis酸和可离子化盐之间形成的络合物或复盐可产生一种实体,其比单独的各组分更稳定。合用于本发明的典型Lewis酸包括氟化铝、溴化铝、氯化铝、五氯化锑、五氯化锆、五氯化磷,氟化硼、氯化硼和溴化硼。可与Lewis酸组合使用的可离子化盐包括氟化锂、氯化锂、溴化锂、硫化锂、氟化钠、氯化钠、溴化钠、氟化钾、氯化钾和溴化钾。
本发明可以用于制造多种电池结构的非水溶液型原电池和蓄电池,包括但不限于圆筒形线束电池,圆筒绕线电池,微型纽扣电池,以共面定向和共平面定向排列了一或多个电极的电池和棱形电池。而且,尽管只进行了向电解质中加入AP的实验,但本领域的技术人员将认识到在不背离本发明的范围的情况下,将AP加入电池的阴极中预计将得到相同的结果。
Claims (13)
1.非水溶液型电池的制造方法,包含以下步骤:提供阳极、包含溶解在有机溶剂中的溶质的有机电解质溶液和固体阴极,向所述电池中加入β-氨基烯酮。
2.权利要求1的方法,其中向所述电解质中加入所述β-氨基烯酮。
3.权利要求2的方法,其中向电解质中加入0.1-5.0vol%的β-氨基烯酮,基于有机溶剂的体积计。
4.权利要求3的方法,其中向电解质中加入0.2-4.0vol%的β-氨基烯酮,基于有机溶剂的体积计。
5.权利要求2的方法,其中的β-氨基烯酮是4-氨基-3-戊烯-3-酮。
6.权利要求2的方法,其中的阴极包含选自以下的材料:铁的硫化物、碳的氟化物、V2O5、WO3、MoO3、Pb3O4、PbO2、PbO、Co3O4、锰的氧化物、In2S3、NiS、Ag2CrO4、Ag3PO4、LiCoO2、LiMn2O4、Bi2O3、CuO、Cu2O和CuSO4。
7.权利要求2的方法,其中的阳极包含选自以下的材料:锂、钠、钾、钙、镁、碳、锂合金、钠合金、钾合金、钙合金、镁合金和碳合金。
8.权利要求6的方法,其中的阳极包含选自以下的材料:锂、钠、钾、钙、镁、碳、锂合金、钠合金、钾合金、钙合金、镁合金和碳合金。
9.权利要求8的方法,其中的阴极包含FeS2,阳极包含锂和铝的合金。
10.权利要求9的方法,还包含向所述电解质中加入聚醚的步骤。
11.权利要求10的方法,其中所述聚醚为1,2-二甲氧基乙烷。
12.权利要求9的方法,还包含向所述电解质中加入环醚的步骤。
13.权利要求12的方法,其中所述环醚为1,3-二氧戊环。
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US09/968,112 US6730136B2 (en) | 2001-10-01 | 2001-10-01 | Direct addition of beta-aminoenones in organic electrolytes of nonaqueous cells employing solid cathodes |
US09/968,112 | 2001-10-01 |
Publications (2)
Publication Number | Publication Date |
---|---|
CN1561554A true CN1561554A (zh) | 2005-01-05 |
CN1295803C CN1295803C (zh) | 2007-01-17 |
Family
ID=25513753
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CNB028193326A Expired - Fee Related CN1295803C (zh) | 2001-10-01 | 2002-09-30 | 非水溶液型电池的制造方法 |
Country Status (10)
Country | Link |
---|---|
US (1) | US6730136B2 (zh) |
EP (1) | EP1430556B1 (zh) |
JP (1) | JP4317750B2 (zh) |
CN (1) | CN1295803C (zh) |
AT (1) | ATE303659T1 (zh) |
AU (1) | AU2002341896A1 (zh) |
CA (1) | CA2459111C (zh) |
DE (1) | DE60205922T2 (zh) |
HK (1) | HK1065650A1 (zh) |
WO (1) | WO2003030279A2 (zh) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN102947980A (zh) * | 2010-06-21 | 2013-02-27 | 丰田自动车工程及制造北美公司 | 用于可再充电蓄电池的活性材料 |
Families Citing this family (38)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US7022431B2 (en) * | 2001-08-20 | 2006-04-04 | Power Paper Ltd. | Thin layer electrochemical cell with self-formed separator |
US7491465B2 (en) | 2004-03-23 | 2009-02-17 | Power Paper, Ltd. | Method of making a thin layer electrochemical cell with self-formed separator |
US7820320B2 (en) | 2001-08-20 | 2010-10-26 | Power Paper Ltd. | Method of making a thin layer electrochemical cell with self-formed separator |
US7335441B2 (en) * | 2001-08-20 | 2008-02-26 | Power Paper Ltd. | Thin layer electrochemical cell with self-formed separator |
US6849360B2 (en) | 2002-06-05 | 2005-02-01 | Eveready Battery Company, Inc. | Nonaqueous electrochemical cell with improved energy density |
US7033698B2 (en) | 2002-11-08 | 2006-04-25 | The Gillette Company | Flexible cathodes |
US20040224229A1 (en) * | 2003-05-09 | 2004-11-11 | Mansuetto Michael F. | Alkaline cell with copper oxide cathode |
KR100528933B1 (ko) * | 2003-10-22 | 2005-11-15 | 삼성에스디아이 주식회사 | 유기전해액 및 이를 채용한 리튬 전지 |
EP1960049B1 (en) | 2005-12-15 | 2010-05-26 | Cardiac Pacemakers, Inc. | Method and apparatus for a small power source for an implantable device |
US7648798B2 (en) * | 2006-07-27 | 2010-01-19 | The Gillette Company | Battery with electrolyte containing aluminum salt |
US20080076029A1 (en) * | 2006-07-27 | 2008-03-27 | Bowden William L | Battery |
US20080026296A1 (en) * | 2006-07-27 | 2008-01-31 | Bowden William L | Battery |
US7867553B2 (en) * | 2006-08-23 | 2011-01-11 | The Gillette Company | Method of making cathode including iron disulfide |
US20080050654A1 (en) * | 2006-08-23 | 2008-02-28 | Maya Stevanovic | Battery |
US20080057403A1 (en) * | 2006-09-06 | 2008-03-06 | Issaev Nikolai N | Lithium cell |
AU2008317471B2 (en) * | 2007-10-19 | 2012-08-30 | Energizer Brands, Llc | Lithium-Iron Disulfide Cell Design |
CN102272993B (zh) * | 2008-01-03 | 2014-12-10 | 惠州市惠德瑞锂电科技有限公司 | 高能电池及其制备方法 |
US20090202910A1 (en) * | 2008-02-08 | 2009-08-13 | Anglin David L | Alkaline Batteries |
CN102640327B (zh) * | 2009-08-27 | 2015-11-25 | 永备电池有限公司 | 具有高硫铁矿含量和低导电性添加剂的锂-二硫化铁阴极配方 |
US8349493B2 (en) * | 2009-11-24 | 2013-01-08 | The Gillette Company | Electrochemical cells with improved separator and electrolyte |
US11081721B2 (en) | 2009-11-24 | 2021-08-03 | Duracell U.S. Operations, Inc. | Secondary electrochemical cells with separator and electrolyte combination |
US8119286B2 (en) * | 2009-11-24 | 2012-02-21 | The Gillette Company | Electrochemical cells with improved separator and electrolyte |
JP2011142049A (ja) * | 2010-01-08 | 2011-07-21 | Sumitomo Electric Ind Ltd | 電極、マグネシウムイオン2次電池、および電力システム |
US8361651B2 (en) * | 2011-04-29 | 2013-01-29 | Toyota Motor Engineering & Manufacturing North America, Inc. | Active material for rechargeable battery |
JP5762828B2 (ja) * | 2011-06-06 | 2015-08-12 | 学校法人東京理科大学 | ナトリウム二次電池 |
US10008748B2 (en) | 2012-12-05 | 2018-06-26 | Duracell U.S. Operations, Inc. | Alkaline electrochemical cells with separator and electrolyte combination |
US8920969B2 (en) | 2012-12-05 | 2014-12-30 | The Gillette Company | Alkaline electrochemical cells with separator and electrolyte combination |
US9551758B2 (en) | 2012-12-27 | 2017-01-24 | Duracell U.S. Operations, Inc. | Remote sensing of remaining battery capacity using on-battery circuitry |
US9478850B2 (en) | 2013-05-23 | 2016-10-25 | Duracell U.S. Operations, Inc. | Omni-directional antenna for a cylindrical body |
US9726763B2 (en) | 2013-06-21 | 2017-08-08 | Duracell U.S. Operations, Inc. | Systems and methods for remotely determining a battery characteristic |
US9882250B2 (en) | 2014-05-30 | 2018-01-30 | Duracell U.S. Operations, Inc. | Indicator circuit decoupled from a ground plane |
US10297875B2 (en) | 2015-09-01 | 2019-05-21 | Duracell U.S. Operations, Inc. | Battery including an on-cell indicator |
US11024891B2 (en) | 2016-11-01 | 2021-06-01 | Duracell U.S. Operations, Inc. | Reusable battery indicator with lock and key mechanism |
US10151802B2 (en) | 2016-11-01 | 2018-12-11 | Duracell U.S. Operations, Inc. | Reusable battery indicator with electrical lock and key |
US10483634B2 (en) | 2016-11-01 | 2019-11-19 | Duracell U.S. Operations, Inc. | Positive battery terminal antenna ground plane |
US10818979B2 (en) | 2016-11-01 | 2020-10-27 | Duracell U.S. Operations, Inc. | Single sided reusable battery indicator |
US10608293B2 (en) | 2016-11-01 | 2020-03-31 | Duracell U.S. Operations, Inc. | Dual sided reusable battery indicator |
US11837754B2 (en) | 2020-12-30 | 2023-12-05 | Duracell U.S. Operations, Inc. | Magnetic battery cell connection mechanism |
Family Cites Families (16)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US4489144A (en) | 1983-03-28 | 1984-12-18 | Union Carbide Corporation | Isoxazole derivative additive in organic electrolytes of nonaqueous cells employing solid cathodes |
JPH02244566A (ja) * | 1989-03-17 | 1990-09-28 | Furukawa Electric Co Ltd:The | 電池 |
US4952330A (en) | 1989-05-25 | 1990-08-28 | Eveready Battery Company, Inc. | Nonaqueous electrolyte |
US5219683A (en) | 1990-08-02 | 1993-06-15 | Eveready Battery Company, Inc. | Diol diesters and alkoxyalkylesters as solvents for nonaqueous battery electrolytes |
US5290414A (en) | 1992-05-15 | 1994-03-01 | Eveready Battery Company, Inc. | Separator/electrolyte combination for a nonaqueous cell |
US5229227A (en) | 1992-07-23 | 1993-07-20 | Eveready Battery Company Inc. | Low flammability nonaqueous electrolytes |
US5432030A (en) | 1993-12-02 | 1995-07-11 | Eveready Battery Company, Inc. | Li/FeS2 cell employing a solvent mixture of diox, DME and 3ME20X with a lithium-based solute |
US5514491A (en) | 1993-12-02 | 1996-05-07 | Eveready Battery Company, Inc. | Nonaqueous cell having a lithium iodide-ether electrolyte |
JPH08225502A (ja) * | 1994-12-22 | 1996-09-03 | Sumitomo Chem Co Ltd | β−アミノエノンの製造方法 |
JPH08236155A (ja) * | 1995-02-27 | 1996-09-13 | Sanyo Electric Co Ltd | リチウム二次電池 |
US5582934A (en) * | 1995-05-17 | 1996-12-10 | Henkel Corporation | Additives for electrolytic solutions |
US5691083A (en) | 1995-06-07 | 1997-11-25 | Eveready Battery Company, Inc. | Potassium ion additives for voltage control and performance improvement in nonaqueous cells |
JPH10189008A (ja) | 1996-12-27 | 1998-07-21 | Sanyo Electric Co Ltd | リチウム電池 |
US6255021B1 (en) | 1997-08-04 | 2001-07-03 | Sanyo Electric Co., Ltd. | Lithium battery including storage stabilized dioxolane-containing electrolyte |
GB9929698D0 (en) | 1999-12-15 | 2000-02-09 | Danionics As | Non-aqueous electrochemical cell |
JP2001210366A (ja) | 2000-01-26 | 2001-08-03 | Matsushita Electric Ind Co Ltd | 非水電気化学装置およびその電解液 |
-
2001
- 2001-10-01 US US09/968,112 patent/US6730136B2/en not_active Expired - Lifetime
-
2002
- 2002-09-30 AT AT02776051T patent/ATE303659T1/de not_active IP Right Cessation
- 2002-09-30 JP JP2003533363A patent/JP4317750B2/ja not_active Expired - Fee Related
- 2002-09-30 CA CA2459111A patent/CA2459111C/en not_active Expired - Fee Related
- 2002-09-30 EP EP02776051A patent/EP1430556B1/en not_active Expired - Lifetime
- 2002-09-30 DE DE60205922T patent/DE60205922T2/de not_active Expired - Lifetime
- 2002-09-30 WO PCT/US2002/031048 patent/WO2003030279A2/en active IP Right Grant
- 2002-09-30 AU AU2002341896A patent/AU2002341896A1/en not_active Abandoned
- 2002-09-30 CN CNB028193326A patent/CN1295803C/zh not_active Expired - Fee Related
-
2004
- 2004-10-25 HK HK04108330A patent/HK1065650A1/xx not_active IP Right Cessation
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN102947980A (zh) * | 2010-06-21 | 2013-02-27 | 丰田自动车工程及制造北美公司 | 用于可再充电蓄电池的活性材料 |
Also Published As
Publication number | Publication date |
---|---|
US20030070283A1 (en) | 2003-04-17 |
WO2003030279A2 (en) | 2003-04-10 |
CA2459111C (en) | 2014-11-18 |
DE60205922T2 (de) | 2006-06-29 |
US6730136B2 (en) | 2004-05-04 |
CA2459111A1 (en) | 2003-04-10 |
HK1065650A1 (en) | 2005-02-25 |
AU2002341896A1 (en) | 2003-04-14 |
JP2005505894A (ja) | 2005-02-24 |
EP1430556A2 (en) | 2004-06-23 |
DE60205922D1 (de) | 2005-10-06 |
CN1295803C (zh) | 2007-01-17 |
EP1430556B1 (en) | 2005-08-31 |
JP4317750B2 (ja) | 2009-08-19 |
ATE303659T1 (de) | 2005-09-15 |
WO2003030279A3 (en) | 2003-07-03 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN1295803C (zh) | 非水溶液型电池的制造方法 | |
KR100326468B1 (ko) | 리튬 설퍼 전지용 전해액 | |
RU2402840C2 (ru) | Электролит и химический источник электрической энергии | |
KR100326466B1 (ko) | 리튬 설퍼 전지용 전해액 | |
US4489144A (en) | Isoxazole derivative additive in organic electrolytes of nonaqueous cells employing solid cathodes | |
US4163829A (en) | Metallic reducing additives for solid cathodes for use in nonaqueous cells | |
KR101108945B1 (ko) | 리튬-황 전지용 전해질 및 그것을 사용한 리튬-황 전지 | |
EP2441109B1 (en) | Magnesium cell with improved electrolyte | |
KR20160038080A (ko) | 네거티브 리튬 전극을 구비한 재충전식 전지 | |
EP1113515B1 (en) | Non-aqueous electrolytic secondary cell | |
CN106716702A (zh) | 锂‑硫电池和包含其的电池模块 | |
CN100474682C (zh) | 有机电解质溶液和含有该溶液的锂-硫电池 | |
AU593980B2 (en) | Electrolyte for lithium-sulfur dioxide electrochemical cell | |
EP1526600B1 (en) | Organic electrolytic solution and lithium battery using the same | |
US8785055B2 (en) | Ionic liquid batteries | |
KR20200132491A (ko) | 표면 상에 보호막이 형성된 금속 음극을 구비하는 이차 전지 | |
KR20190063591A (ko) | 리튬-황 이차전지용 전해액 및 그를 포함하는 리튬-황 이차전지 | |
KR100864462B1 (ko) | 고형 캐소드를 사용하는 비수성 전지의 유기 전해질에베타-아미노엔온을 직접 첨가하는 방법 | |
KR100417084B1 (ko) | 새로운 전해액 첨가제와 이를 이용하는 리튬 이온 전지 | |
JP2000048828A (ja) | 非水電解液電池 | |
KR800000157B1 (ko) | 비수성 전지 | |
CN116231081A (zh) | 一种电解液添加剂及含有该添加剂的电解液和锂金属电池 | |
WO1982001442A1 (en) | Lithium batteries |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
C06 | Publication | ||
PB01 | Publication | ||
C10 | Entry into substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
C14 | Grant of patent or utility model | ||
GR01 | Patent grant | ||
C41 | Transfer of patent application or patent right or utility model | ||
TR01 | Transfer of patent right |
Effective date of registration: 20160606 Address after: American Missouri Patentee after: ENERGIZER BRANDS CO., LTD. Address before: ohio Patentee before: Eveready Battery Co., Inc. |
|
CF01 | Termination of patent right due to non-payment of annual fee |
Granted publication date: 20070117 Termination date: 20170930 |
|
CF01 | Termination of patent right due to non-payment of annual fee |