CN1541184A - 用于将硫化氢分解成氢和硫并将该分解产物分离的膜式催化反应器 - Google Patents

用于将硫化氢分解成氢和硫并将该分解产物分离的膜式催化反应器 Download PDF

Info

Publication number
CN1541184A
CN1541184A CNA018235190A CN01823519A CN1541184A CN 1541184 A CN1541184 A CN 1541184A CN A018235190 A CNA018235190 A CN A018235190A CN 01823519 A CN01823519 A CN 01823519A CN 1541184 A CN1541184 A CN 1541184A
Authority
CN
China
Prior art keywords
reactor
hydrogen
hydrogen sulfide
tubular ceramic
ceramic porous
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CNA018235190A
Other languages
English (en)
Inventor
�│�ࡤ�����ˡ�ά����
里卡多·布拉克·维佐索
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
David Systems & Tech Sl
Original Assignee
David Systems & Tech Sl
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by David Systems & Tech Sl filed Critical David Systems & Tech Sl
Publication of CN1541184A publication Critical patent/CN1541184A/zh
Pending legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D71/00Semi-permeable membranes for separation processes or apparatus characterised by the material; Manufacturing processes specially adapted therefor
    • B01D71/02Inorganic material
    • B01D71/04Glass
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/34Chemical or biological purification of waste gases
    • B01D53/74General processes for purification of waste gases; Apparatus or devices specially adapted therefor
    • B01D53/86Catalytic processes
    • B01D53/8603Removing sulfur compounds
    • B01D53/8612Hydrogen sulfide
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/34Chemical or biological purification of waste gases
    • B01D53/74General processes for purification of waste gases; Apparatus or devices specially adapted therefor
    • B01D53/86Catalytic processes
    • B01D53/88Handling or mounting catalysts
    • B01D53/885Devices in general for catalytic purification of waste gases
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D71/00Semi-permeable membranes for separation processes or apparatus characterised by the material; Manufacturing processes specially adapted therefor
    • B01D71/02Inorganic material
    • B01D71/024Oxides
    • B01D71/025Aluminium oxide
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J15/00Chemical processes in general for reacting gaseous media with non-particulate solids, e.g. sheet material; Apparatus specially adapted therefor
    • B01J15/005Chemical processes in general for reacting gaseous media with non-particulate solids, e.g. sheet material; Apparatus specially adapted therefor in the presence of catalytically active bodies, e.g. porous plates
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J19/00Chemical, physical or physico-chemical processes in general; Their relevant apparatus
    • B01J19/24Stationary reactors without moving elements inside
    • B01J19/2415Tubular reactors
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J19/00Chemical, physical or physico-chemical processes in general; Their relevant apparatus
    • B01J19/24Stationary reactors without moving elements inside
    • B01J19/2415Tubular reactors
    • B01J19/2425Tubular reactors in parallel
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J19/00Chemical, physical or physico-chemical processes in general; Their relevant apparatus
    • B01J19/24Stationary reactors without moving elements inside
    • B01J19/2415Tubular reactors
    • B01J19/244Concentric tubes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J19/00Chemical, physical or physico-chemical processes in general; Their relevant apparatus
    • B01J19/24Stationary reactors without moving elements inside
    • B01J19/2475Membrane reactors
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/50Catalysts, in general, characterised by their form or physical properties characterised by their shape or configuration
    • B01J35/58Fabrics or filaments
    • B01J35/59Membranes
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B17/00Sulfur; Compounds thereof
    • C01B17/02Preparation of sulfur; Purification
    • C01B17/04Preparation of sulfur; Purification from gaseous sulfur compounds including gaseous sulfides
    • C01B17/0495Preparation of sulfur; Purification from gaseous sulfur compounds including gaseous sulfides by dissociation of hydrogen sulfide into the elements
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B3/00Hydrogen; Gaseous mixtures containing hydrogen; Separation of hydrogen from mixtures containing it; Purification of hydrogen
    • C01B3/02Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen
    • C01B3/04Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen by decomposition of inorganic compounds, e.g. ammonia
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B3/00Hydrogen; Gaseous mixtures containing hydrogen; Separation of hydrogen from mixtures containing it; Purification of hydrogen
    • C01B3/50Separation of hydrogen or hydrogen containing gases from gaseous mixtures, e.g. purification
    • C01B3/501Separation of hydrogen or hydrogen containing gases from gaseous mixtures, e.g. purification by diffusion
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2219/00Chemical, physical or physico-chemical processes in general; Their relevant apparatus
    • B01J2219/18Details relating to the spatial orientation of the reactor
    • B01J2219/182Details relating to the spatial orientation of the reactor horizontal
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B2203/00Integrated processes for the production of hydrogen or synthesis gas
    • C01B2203/04Integrated processes for the production of hydrogen or synthesis gas containing a purification step for the hydrogen or the synthesis gas
    • C01B2203/0405Purification by membrane separation
    • C01B2203/041In-situ membrane purification during hydrogen production
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B2203/00Integrated processes for the production of hydrogen or synthesis gas
    • C01B2203/04Integrated processes for the production of hydrogen or synthesis gas containing a purification step for the hydrogen or the synthesis gas
    • C01B2203/0465Composition of the impurity
    • C01B2203/0485Composition of the impurity the impurity being a sulfur compound
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/36Hydrogen production from non-carbon containing sources, e.g. by water electrolysis

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Engineering & Computer Science (AREA)
  • Inorganic Chemistry (AREA)
  • Environmental & Geological Engineering (AREA)
  • Health & Medical Sciences (AREA)
  • Biomedical Technology (AREA)
  • Combustion & Propulsion (AREA)
  • Analytical Chemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • General Health & Medical Sciences (AREA)
  • Materials Engineering (AREA)
  • Separation Using Semi-Permeable Membranes (AREA)
  • Hydrogen, Water And Hydrids (AREA)

Abstract

本发明涉及一种膜式催化反应器,包括(i)一个本体(1),(ii)一个管状陶瓷多孔膜元件(2),其被共轴地设置在所述本体内用以除去氢,以及(iii)一种用于将硫化氢热分解成硫和氢的催化剂,其中所述催化剂被以一层的形式直接沉积在管状陶瓷多孔膜元件上。本发明适用于处理含有硫化氢的气体。

Description

用于将硫化氢分解成氢和硫并将 该分解产物分离的膜式催化反应器
技术领域
本发明涉及一种含有硫化氢的气体的处理,利用一种具有一层多孔陶瓷膜的膜式催化反应器,将硫化氢分解成硫和氢并将这些产物分离,所述多孔陶瓷膜可以渗透氢,在所述多孔陶瓷膜上沉积有一种用于将硫化氢分解成硫和氢的催化剂。
背景技术
多种工业生产过程都产生一种不希望得到的硫化氢产物,一种腐蚀管道和设备的产物。这些生产过程是使用氢气的石油炼制过程——比如通过氢化裂解对原油或各种石油馏分进行脱硫、天然气生产过程等等。
残留硫化氢的通常处理方法采用Krauss方法,它包括二氧化硫和硫化氢的相互还原/氧化以生成水和元素硫。
另外,人们已经开发了其它方法用于处理硫化氢以生产氢,氢是一种用作无污染能源的产品。这些方法是在1900℃温度下在一反应器中热分解硫化氢(US5843395)或者在450℃至800℃之间的温度下利用一种合适的催化剂来催化分解硫化氢(US4039613)。
要将硫化氢完全分解成硫和氢是一个很难的过程。将硫化氢转化成硫和氢依赖于许多因素,诸如温度、催化剂和分解产物的进料速率。最后一个因素是非常重要的,因为分解反应是可逆的而且产物很容易相互发生反应而生成硫化氢。
此外,人们已经开发了其它用于处理硫化氢的方法,它采用一种膜式催化反应器将硫化氢催化分解成硫和氢并分离氢,从而能够同时降低硫化氢的分解温度并且使分解产物的分解和分离阶段结合。
各种各样的膜,包括实心的和多孔的,都可以被用来除去当硫化氢在膜式催化反应器中分解时产生的氢。实心金属膜的优点是,它们仅仅允许氢通过;然而,它们的缺点是它们的渗透性低。另一方面,多孔膜具有高的渗透性但是选择性更少并且允许氢及其它反应产物通过。
由Edlund和Pledger(D.J.Edlund和W.A.Pledger,MembraneScience(膜科学)杂志,77,255-264,1993)研发的膜式催化反应器,用于将硫化氢分解成氢和硫,包括一种多层膜,其顶层(铂)用于硫化氢的催化分解,而其中间层(钒)被用作一种可以渗透氢的基底。然而,该反应器的缺点是采用一种昂贵的金属(铂)作为催化剂而且膜的渗透性低,从而有必要将吸入流再压缩到70-100大气压以提高生产率。
Kameyama等(T.Kameyama等,Int.J.Hydrogen Energy,第8卷,第1期,5-13,1983)描述了一种用于分解硫化氢的膜式催化反应器,包括一个圆柱形本体和一个被共轴地设置在该本体中的管状陶瓷膜。这样,在膜与本体之间的空间填充一种适当的催化剂,诸如一种过渡元素硫化物,比如硫化铜;硫化氢就是在该空间内被分解的。在该反应器中硫化氢是在700℃-800℃发生分解的。在硫化氢分解之后,氢被所述多孔陶瓷膜分离,该膜包含有一层选择层。然而,分解反应和氢的分离不能够同时发生,从而,氢在反应区域中的存在能够抑制硫化氢的分解。
发明内容
本发明针对上述问题,对用于硫化氢的催化分解和分解产物的分离的膜式催化反应器提出改进,它解决了上述问题的全部或者部分。
本发明的技术方案基于这样的发现,有可能能够同时(i)将硫化氢催化分解成氢和硫,并(ii)利用一种多孔陶瓷膜分离该分解产物,在该陶瓷膜上以层的形式沉积有一层合适的催化剂。这样,硫化氢的催化分解就能够与所生成的氢的分离同时发生,从而反应按照所需要的方向转移。
本说明书中所描述的反应器提供了一种将硫化氢催化分解成氨和硫而且同时将分解产物分离的改进方法。另外,该反应器经济,能够被有效地应用于工业上并且增加氢的产量。
本发明的一个目的是提供一种膜式催化反应器,用于分解硫化氢并分离该分解产物,包括一个多孔陶瓷膜,该陶瓷膜上被以层的形式沉积有一层合适的催化剂。
本发明的另一主题是一种用于分解硫化氢并同时分离该分解产物的方法,其采用了上述膜式催化反应器。
附图说明
图1是表示本发明的主题反应器的示意图,其包括单一的多孔陶瓷膜元件;
图2是表示本发明的主题反应器的示意图,其包括几个平行的多孔陶瓷膜元件。
具体实施方式
本发明涉及一种膜式催化反应器,用于分解硫化氢并分离该分解产物,下面称为本发明的反应器,它包括一个本体,一个管状多孔陶瓷膜,该陶瓷膜被共轴地设置在所述本体内用以除去氢,以及一种用于将硫化氢热分解成硫和氢的催化剂,所述催化剂被以层的形式直接沉积在所述管状多孔陶瓷膜上。
本发明反应器的一个特征是,催化剂不是被设置在反应器内部,而是以被沉积在所述管状陶瓷膜上的一个薄层或微层的形式设置。因而,所述管状陶瓷多孔膜/被沉积的催化剂的元件的横截面图显示出,所述元件具有3层,一第一(底部)多孔陶瓷层,一第二(中间)选择性陶瓷层和一第三(上部)催化剂层。
本发明反应器的本体可以采用任何合适的形状,比如圆柱形,并可以由经受得住工作温度的任何合适的材料制成。所述反应器本体包括用于送进输入气体(包含硫化氢)的元件和用于输出氢、硫和未被分解的硫化氢的元件。
所述管状陶瓷多孔膜元件是一种由陶瓷多孔膜制成的管状元件。所用的陶瓷多孔膜可以是任何传统的多孔膜,其能够渗透氢但是基本上不能渗透硫。为此,所述陶瓷多孔膜包括一个允许氢通过的选择性渗透性层。在一个具体实施例中,该管状陶瓷多孔膜元件包括所述第一陶瓷多孔层和所述第二选择性陶瓷层。这些层的孔隙率可以在一个宽的范围内变化。在一个具体实施例中,所述第一层可以具有在1至2μm之间的孔隙率,而第二层的孔隙率小于1μm,比如0.2μm。
所述管状陶瓷多孔膜元件可以由任何合适的材料制成,比如由被用来制造用于膜式催化反应器的催化多孔膜的任何传统材料制成,该反应器用于分解硫化氢。在一个具体实施例中,用于制造所述管状陶瓷多孔膜元件的材料包括α-氧化铝,它可以是上述第二层或者选择性陶瓷层的材料,以及粘土,它起到一种粘合剂和/或增塑剂的作用。在一个具体实施例中,所述管状陶瓷膜元件是一种由Victor玻璃制成的管状件。
被沉积在所述管状陶瓷多孔膜上的催化剂可以是任何传统的催化剂,其能够催化地分解硫化氢,最好是在400℃至700℃之间的温度下。在一个具体实施例中,催化剂是一种选自过渡元素的金属,比如铬、钼、镍、钛、锆等,可选地比如它们的一种衍生物比如一种盐。在一个具体实施例中,所述催化剂是硫化钼,并且催化剂层的厚度达到2微米的钼的厚度。
所述催化剂可以通过任何传统的方法被沉积在管状陶瓷多孔膜元件的表面上,比如沉积、喷涂、浸渍或者浸没在包含有所述催化剂的溶液或者悬浮液中。尤其是,所述催化剂可以被用溶胶-凝胶方法(溶胶(液体胶体)-凝胶(共沉淀剂))以一种薄层的形式沉积,随后进行固结、或者化学气相沉积(CVD)的凝结、或者金属有机物交织物的高温分解、或者撒播在磁控管和一个弧形物中。
催化剂层(催化层)的孔隙率可以在一个宽范围内变化。在一个具体实施例中,催化剂层的孔隙率在0.04μm至0.07μm之间。
本发明的反应器可以包括一个单一的管状陶瓷多孔膜元件,或者作为选择,在其它具体实施例中,可以包括被安装在反应器本体中的两个或多个平行的管状陶瓷多孔膜元件。
在图1中可以清楚地看到,本发明的反应器由一个本体1、一个管状陶瓷多孔膜元件2和一个催化剂层4,该多孔膜元件2具有一个能够选择性地通过氢的层3,该催化剂层4被直接沉积在该选择性层3上。该管状陶瓷多孔膜元件2被共轴地设置在反应器本体1内,从而,该管状陶瓷多孔膜元件2的端部被密封地与在本体1和所述管状陶瓷多孔膜元件2的外壁之间的空间隔离。该陶瓷多孔膜元件的端部或者通过该端部或者通过一个填料箱式(套筒式)的管套节连接到反应器本体1上。该反应器本体1还包括一个用作初始气体混合物入口管的导管5以及两个导管6和7,后两个导管用作含有氢和任意一部分未被分解的硫化氢的气流的出口管,并用作含有部分未被分解的硫化氢的气流的出口管。本发明的反应器还可以包括一种合适材料的填料,比如graphite-graviflex(石墨-   )。
下面描述本发明反应器的操作过程。被加热到温度400℃至700℃之间并具有一个在50.5-101kPa(0.5-1大气压)的轻微过压的所述初始气体通过导管5输送到本发明的反应器内部。当它与被沉积在所述管状陶瓷多孔膜元件2外表面上的所述催化剂层4接触时,硫化氢分解成氢和硫。
在所述管状陶瓷多孔膜2的所述选择性层3中,氢被直接从硫和硫化氢中分离。将氢从硫和硫化氢中分离的总效率由催化转化的影响和所述管状陶瓷多孔膜元件元件2的选择性层3的分离系数的影响决定。穿透所述管状陶瓷多孔膜元件元件2的壁并且由氢和初始气体的混合物组成的气体,被通过导管6从反应器喷射。还没有穿透所述管状陶瓷多孔膜元件元件2壁的气体,包含未被分解的硫化氢和气态硫的混合物,被通过导管7喷射到外部。后者气体混合物可以被导向本发明的另一个反应器,以便可以根据需要而多次重复此操作以实现初始硫化氢的完全分解。硫化氢分解和气体混合物分离的总效率在一个单一步骤过程中可以达到被输入反应器的气体中硫化氢的初始含量的30%至55%之间(在其它因素中,依赖于温度、流量和硫化氢的浓度)。
作为实例,假如本发明的反应器作用于一种具有约4%的硫化氢并且流速为每单位初始气体体积/1-100小时的气体,并且所用的催化剂是预先在H2S介质中制备的一种过渡元素的硫化物,在本发明反应器的单一操作中,将硫化氢转化成氢和硫的总转化率将从35%增加到56%,并依赖于温度。在400℃-700℃之间的温度、在每单位初始气体体积的相同流速条件下,仅仅用同样的催化剂所获得的催化效率最多不大于40%。
本发明反应器的一个特征是,将催化剂直接沉积在管状陶瓷多孔膜元件的外部选择性层上作为一层,从而相当程度地减少了所需的催化剂量,减少了催化剂的损失,消除了催化剂微粒(在其它反应器中需要的)的合成,并提高了生产过程的总效率。通过陶瓷多孔膜直接从反应区域除去氢使分解反应的平衡向所需的方向上转移。这样,分解和分解产物分离的总效率就可以从反应区域直接获得,结果,在生产过程的几种形式的实施例中效率提高了。
因此,由于能够从催化反应区域同时除去氢,在比迄今所知的反应器中的温度更低的温度下,硫化氢在催化剂中的分解达到最大程度。
本发明还提供一种用于将硫化氢分解成硫和氢并分离该分解产物的方法,下面称为本发明的方法,其利用本发明的至少一个反应器。该方法包括:向反应器供应含有硫化氢的气体,其中硫化氢已被加热到400℃至700℃之间并具有一个在50.5至101kPa(0.5-1大气压)之间的轻微过压。然后,所述含有硫化氢的气体在本发明的反应器内部移动并与催化剂接触,其中催化剂被沉积在所述管状陶瓷多孔膜元件的外表面上作为一层,从而硫化氢分解成氢和硫。所制得的氢与被包含在管状陶瓷多孔膜元件内的所述选择性层交叉,氢从这里被除去。硫和未被分解的硫化氢通过设在反应器上的导管排出反应器。
本发明的方法适用于处理含有硫化氢的气体,尤其是硫化氢的含量在1%至96%之间的气体。
本发明可以被应用于石油的精炼,比如应用于处理“酸性气体”、处理气体、处理含有硫化氢的混合气体以从中除去硫化氢、处理硫化氢含量高的气态废气、以及应用于与将硫化氢分解成氢和硫并随后分离该分解产物相关的其它工业上。
如上所述,残留硫化氢的传统处理方法采用Klauss法,其包括二氧化硫与硫化氢的相互还原/氧化而生成水和元素硫。然而,此方法用在精炼厂是过时的,因为大多数精炼厂(采用含硫石油作为原材料)必须注意到额外数量的氢(每小时好几万立方米)的存在以在获得硫化氢之后完成水力清洗阶段。就是在此阶段应用本发明的反应器是有利的,因为它允许将在精炼厂的水力清洗阶段产生的氢回收而无需制造它所需的能力消耗。

Claims (16)

1.膜式催化反应器,用于将硫化氢分解成硫和氢并将所述分解产物分离,它包括一本体(1),一管状陶瓷多孔膜元件(2),该多孔膜元件被共轴地设置在所述本体内用以除去氢,以及一用于将硫化氢热分解成硫和氢的催化剂,其特征在于,所述催化剂被以一层的形式直接沉积在所述管状陶瓷多孔膜元件上。
2.按照权利要求1所述的反应器,其特征在于,所述管状陶瓷多孔膜元件包括一第一多孔陶瓷层和一第二选择性陶瓷层。
3.按照权利要求2所述的反应器,其特征在于,所述第一层的孔隙率在1至2μm之间。
4.按照权利要求2所述的反应器,其特征在于,所述第二层的孔隙率小于1μm。
5.按照权利要求4所述的反应器,其特征在于,所述第二层的孔隙率为0.2μm。
6.按照权利要求1所述的反应器,其特征在于,用于制造所述管状陶瓷多孔膜元件的材料包括α-氧化铝和粘土。
7.按照权利要求1所述的反应器,其特征在于,所述管状陶瓷多孔膜元件由Vicor玻璃制成。
8.按照权利要求1所述的反应器,其特征在于,所述催化剂是一种金属,可选的形式是其衍生物。
9.按照权利要求8所述的反应器,其特征在于,所述金属是一种过渡元素。
10.按照权利要求9所述的反应器,其特征在于,所述过渡元素选自铬、钼、镍、钛和锆。
11.按照权利要求8所述的反应器,其特征在于,所述催化剂是硫化钼。
12.按照权利要求1所述的反应器,其特征在于,被沉积在所述管状陶瓷多孔膜元件上的催化剂层的孔隙率达到2μm。
13.按照权利要求1和11所述的反应器,其特征在于,被沉积在所述管状陶瓷多孔膜元件上的催化剂层的孔隙率在0.04至0.07μm之间。
14.按照前述任一项权利要求所述的反应器,其特征在于,所述反应器的本体包括两个或多个平行的管状陶瓷多孔膜元件。
15.用于将硫化氢分解成硫和氢并将该分解产物分离的方法,包括根据权利要求1至13中任一项所述的至少一个反应器。
16.按照权利要求15所述的方法,其特征在于,包括:向所述反应器供应一种含有硫化氢的气体,该气体被加热到温度在400℃至700℃之间、而且压力在50.5至101kPa(0.5-1大气压)之间。
CNA018235190A 2001-06-15 2001-06-15 用于将硫化氢分解成氢和硫并将该分解产物分离的膜式催化反应器 Pending CN1541184A (zh)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/ES2001/000244 WO2002102710A1 (es) 2001-06-15 2001-06-15 Reactor catalítico de membrana para la descomposición del sulfuro de hidrógeno en hidrógeno y azufre y la separación de los productos de dicha composición

Publications (1)

Publication Number Publication Date
CN1541184A true CN1541184A (zh) 2004-10-27

Family

ID=8244352

Family Applications (1)

Application Number Title Priority Date Filing Date
CNA018235190A Pending CN1541184A (zh) 2001-06-15 2001-06-15 用于将硫化氢分解成氢和硫并将该分解产物分离的膜式催化反应器

Country Status (7)

Country Link
US (1) US20040141910A1 (zh)
EP (1) EP1411029A1 (zh)
CN (1) CN1541184A (zh)
BR (1) BR0117052A (zh)
CA (1) CA2450938A1 (zh)
MX (1) MXPA03011640A (zh)
WO (1) WO2002102710A1 (zh)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102824822A (zh) * 2012-09-12 2012-12-19 南京工业大学 一种膜分离空气净化装置
CN105330290A (zh) * 2015-10-19 2016-02-17 华南理工大学 一种用于h2s分解的混合导体陶瓷膜的制备及测试方法
CN110124651A (zh) * 2018-02-09 2019-08-16 中国石油化工股份有限公司 含有碳纳米笼的分解硫化氢的催化剂及其制备方法和应用
CN110124652A (zh) * 2018-02-09 2019-08-16 中国石油化工股份有限公司 含有改性碳纳米管的分解硫化氢的催化剂及其制备方法和应用
CN110124653A (zh) * 2018-02-09 2019-08-16 中国石油化工股份有限公司 分解硫化氢的催化剂及其制备方法和应用
CN110734782A (zh) * 2018-07-19 2020-01-31 中山市亿鼎杰纳米科技有限公司 一种劣质重油的加氢处理方法

Families Citing this family (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
AU2003247469A1 (en) * 2002-06-04 2003-12-19 University Of Wyoming Membrane for hydrogen recovery from streams containing hydrogen sulfide
US7648566B2 (en) * 2006-11-09 2010-01-19 General Electric Company Methods and apparatus for carbon dioxide removal from a fluid stream
US7966829B2 (en) * 2006-12-11 2011-06-28 General Electric Company Method and system for reducing CO2 emissions in a combustion stream
DE102008013041A1 (de) * 2008-03-06 2009-09-10 Volkswagen Ag Reinigung eines Abgases
US20090263312A1 (en) * 2008-04-21 2009-10-22 Swapsol Corp. Hydrogen Sulfide Conversion to Hydrogen
US8597383B2 (en) 2011-04-11 2013-12-03 Saudi Arabian Oil Company Metal supported silica based catalytic membrane reactor assembly
US9745191B2 (en) 2011-04-11 2017-08-29 Saudi Arabian Oil Company Auto thermal reforming (ATR) catalytic structures
GB201616517D0 (en) * 2016-09-29 2016-11-16 Akay Galip Integrated intensified catalytic chemical conversion processes
CN110127602B (zh) * 2018-02-09 2020-09-25 中国石油化工股份有限公司 应用催化剂分解硫化氢的方法
IT201900006957A1 (it) * 2019-05-17 2020-11-17 Milano Politecnico Forno per campi gas, per raffinerie e per il processo di reforming
IL296627A (en) * 2020-03-20 2022-11-01 Standard H2 Inc Process and apparatus for obtaining hydrogen and sulfur from hydrogen sulfide

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4039613A (en) * 1973-10-29 1977-08-02 Agency Of Industrial Science & Technology Process for production of hydrogen and sulfur from hydrogen sulfide as raw material
DE3925985C2 (de) * 1989-08-05 1998-08-20 Metallgesellschaft Ag Verfahren zum Verbrennen eines H¶2¶S-haltigen Gases
US5229102A (en) * 1989-11-13 1993-07-20 Medalert, Inc. Catalytic ceramic membrane steam-hydrocarbon reformer
US5965100A (en) * 1995-04-25 1999-10-12 Khanmamedov; Tofik K. Process for recovery of sulfur from an acid gas stream
US5891415A (en) * 1995-05-17 1999-04-06 Azerbaidzhanskaya Gosudarstvennaya Neftianaya Academiya Process for selective oxidation of hydrogen sulfide to elemental sulfur
US5843395A (en) * 1997-03-17 1998-12-01 Wang; Chi S. Process for hydrogen production from hydrogen sulfide dissociation
FR2773085B1 (fr) * 1997-12-29 2000-02-18 Elf Exploration Prod Procede catalytique pour oxyder directement en soufre, a basse temperature, l'h2s contenu en faible concentration dans un gaz et catalyseur pour sa mise en oeuvre
US6235417B1 (en) * 1999-04-30 2001-05-22 Her Majesty The Queen In Right Of Canada, As Represented By The Minister Of Natural Resources Two-phase hydrogen permeation membrane
AU2003247469A1 (en) * 2002-06-04 2003-12-19 University Of Wyoming Membrane for hydrogen recovery from streams containing hydrogen sulfide

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102824822A (zh) * 2012-09-12 2012-12-19 南京工业大学 一种膜分离空气净化装置
CN102824822B (zh) * 2012-09-12 2014-12-31 南京工业大学 一种膜分离空气净化装置
CN105330290A (zh) * 2015-10-19 2016-02-17 华南理工大学 一种用于h2s分解的混合导体陶瓷膜的制备及测试方法
CN110124651A (zh) * 2018-02-09 2019-08-16 中国石油化工股份有限公司 含有碳纳米笼的分解硫化氢的催化剂及其制备方法和应用
CN110124652A (zh) * 2018-02-09 2019-08-16 中国石油化工股份有限公司 含有改性碳纳米管的分解硫化氢的催化剂及其制备方法和应用
CN110124653A (zh) * 2018-02-09 2019-08-16 中国石油化工股份有限公司 分解硫化氢的催化剂及其制备方法和应用
CN110124652B (zh) * 2018-02-09 2022-02-11 中国石油化工股份有限公司 含有改性碳纳米管的分解硫化氢的催化剂及其制备方法和应用
CN110124653B (zh) * 2018-02-09 2022-03-04 中国石油化工股份有限公司 分解硫化氢的催化剂及其制备方法和应用
CN110124651B (zh) * 2018-02-09 2022-03-04 中国石油化工股份有限公司 含有碳纳米笼的分解硫化氢的催化剂及其制备方法和应用
CN110734782A (zh) * 2018-07-19 2020-01-31 中山市亿鼎杰纳米科技有限公司 一种劣质重油的加氢处理方法
CN110734782B (zh) * 2018-07-19 2021-07-23 中山市亿鼎杰纳米科技有限公司 一种劣质重油的加氢处理方法

Also Published As

Publication number Publication date
CA2450938A1 (en) 2002-12-27
BR0117052A (pt) 2004-07-27
US20040141910A1 (en) 2004-07-22
WO2002102710A1 (es) 2002-12-27
EP1411029A1 (en) 2004-04-21
MXPA03011640A (es) 2005-10-05

Similar Documents

Publication Publication Date Title
CN1541184A (zh) 用于将硫化氢分解成氢和硫并将该分解产物分离的膜式催化反应器
KR102011642B1 (ko) 물 시스템으로부터 탄소 나노튜브들을 제거하는 방법
AU2005287034B2 (en) Membrane enhanced reactor
CA2580585A1 (en) Membrane steam reformer
EP1114012A1 (en) Field assisted transformation of chemical and material compositions
MXPA03007910A (es) Aparato y metodo para separar gases.
CN105457500A (zh) 一种碳纳米管/多孔陶瓷中空纤维复合超滤膜、制备方法及用途
CN108103478A (zh) 一种多孔碳化物涂层的制备方法
AU718307B2 (en) Process and apparatus for converting a greenhouse gas
CN101322903B (zh) 一种气体脱硫和脱硝的方法
WO2003101588A1 (en) Membrane for hydrogen recovery from streams containing hydrogen sulfide
KR20180128933A (ko) 고온 가스 여과에서 사용하기 위한 촉매 활성 필터, 필터의 제조 과정 및 가스 스트림으로부터 고체 입자와 원치않는 화학 화합물의 동시 제거를 위한 방법
WO2017048693A1 (en) Method and apparatus for chemical process intensification
CA2524349A1 (en) A membrane apparatus and method of preparing a membrane and a method of producing hydrogen
CN101389397B (zh) 用于从液体料流中除去金属硫化物颗粒的方法和设备
JP2023518475A (ja) 硫化水素を水素ガス及び硫黄に変換する方法及び装置
JP2003071287A (ja) 触媒膜およびその製造方法並びに触媒膜を用いた一酸化炭素の選択的除去方法
US20240199424A1 (en) Converting stranded natural gas to carbon particles
CN115974053B (zh) 一种蜂窝结构碳纳米管及其制备方法
CN113277496B (zh) 一种高度纯化多壁碳纳米管的制备方法
WO2024005184A1 (ja) 有機物質の製造システム、有機物質の製造装置及び有機物質の製造方法
RU2111164C1 (ru) Способ получения серы
JP2002102622A (ja) 有機塩素化合物分解触媒フィルターおよびその製造方法
RU2624004C2 (ru) Нанокатализатор и способ для удаления соединений серы из углеводородов
Ma Methane coupling by membrane reactor. Quarterly technical progress report, June 25, 1994--September 24, 1994

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C02 Deemed withdrawal of patent application after publication (patent law 2001)
WD01 Invention patent application deemed withdrawn after publication