CN1492982A - 增氧低NOx燃烧 - Google Patents

增氧低NOx燃烧 Download PDF

Info

Publication number
CN1492982A
CN1492982A CNA018230199A CN01823019A CN1492982A CN 1492982 A CN1492982 A CN 1492982A CN A018230199 A CNA018230199 A CN A018230199A CN 01823019 A CN01823019 A CN 01823019A CN 1492982 A CN1492982 A CN 1492982A
Authority
CN
China
Prior art keywords
oxygen
fuel
combustion
nox
oxidant
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CNA018230199A
Other languages
English (en)
Other versions
CN1243927C (zh
Inventor
H���ư���ʩ
H·科巴亚施
L·E·波尔三世
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Praxair Technology Inc
Original Assignee
Praxair Technology Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Praxair Technology Inc filed Critical Praxair Technology Inc
Publication of CN1492982A publication Critical patent/CN1492982A/zh
Application granted granted Critical
Publication of CN1243927C publication Critical patent/CN1243927C/zh
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23LSUPPLYING AIR OR NON-COMBUSTIBLE LIQUIDS OR GASES TO COMBUSTION APPARATUS IN GENERAL ; VALVES OR DAMPERS SPECIALLY ADAPTED FOR CONTROLLING AIR SUPPLY OR DRAUGHT IN COMBUSTION APPARATUS; INDUCING DRAUGHT IN COMBUSTION APPARATUS; TOPS FOR CHIMNEYS OR VENTILATING SHAFTS; TERMINALS FOR FLUES
    • F23L7/00Supplying non-combustible liquids or gases, other than air, to the fire, e.g. oxygen, steam
    • F23L7/007Supplying oxygen or oxygen-enriched air
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23MCASINGS, LININGS, WALLS OR DOORS SPECIALLY ADAPTED FOR COMBUSTION CHAMBERS, e.g. FIREBRIDGES; DEVICES FOR DEFLECTING AIR, FLAMES OR COMBUSTION PRODUCTS IN COMBUSTION CHAMBERS; SAFETY ARRANGEMENTS SPECIALLY ADAPTED FOR COMBUSTION APPARATUS; DETAILS OF COMBUSTION CHAMBERS, NOT OTHERWISE PROVIDED FOR
    • F23M3/00Firebridges
    • F23M3/02Firebridges modified for circulation of fluids, e.g. air, steam, water
    • F23M3/04Firebridges modified for circulation of fluids, e.g. air, steam, water for delivery of gas, e.g. air, steam
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23CMETHODS OR APPARATUS FOR COMBUSTION USING FLUID FUEL OR SOLID FUEL SUSPENDED IN  A CARRIER GAS OR AIR 
    • F23C6/00Combustion apparatus characterised by the combination of two or more combustion chambers or combustion zones, e.g. for staged combustion
    • F23C6/04Combustion apparatus characterised by the combination of two or more combustion chambers or combustion zones, e.g. for staged combustion in series connection
    • F23C6/045Combustion apparatus characterised by the combination of two or more combustion chambers or combustion zones, e.g. for staged combustion in series connection with staged combustion in a single enclosure
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23CMETHODS OR APPARATUS FOR COMBUSTION USING FLUID FUEL OR SOLID FUEL SUSPENDED IN  A CARRIER GAS OR AIR 
    • F23C2900/00Special features of, or arrangements for combustion apparatus using fluid fuels or solid fuels suspended in air; Combustion processes therefor
    • F23C2900/06041Staged supply of oxidant
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23LSUPPLYING AIR OR NON-COMBUSTIBLE LIQUIDS OR GASES TO COMBUSTION APPARATUS IN GENERAL ; VALVES OR DAMPERS SPECIALLY ADAPTED FOR CONTROLLING AIR SUPPLY OR DRAUGHT IN COMBUSTION APPARATUS; INDUCING DRAUGHT IN COMBUSTION APPARATUS; TOPS FOR CHIMNEYS OR VENTILATING SHAFTS; TERMINALS FOR FLUES
    • F23L2900/00Special arrangements for supplying or treating air or oxidant for combustion; Injecting inert gas, water or steam into the combustion chamber
    • F23L2900/07007Special arrangements for supplying or treating air or oxidant for combustion; Injecting inert gas, water or steam into the combustion chamber using specific ranges of oxygen percentage
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E20/00Combustion technologies with mitigation potential
    • Y02E20/34Indirect CO2mitigation, i.e. by acting on non CO2directly related matters of the process, e.g. pre-heating or heat recovery

Abstract

燃料如煤在分区燃烧装置中燃烧,其方法包括按低于一定值的化学计量比向加热炉的第一燃烧区加入上述燃料和气态氧化剂,所述气态氧化剂包含高于21体积%的氧气,优选为21.8-29体积%的氧气,所述一定值是指:如果该区在仅有空气作为氧化剂的情况下操作,将产生相同量的NOx;并在该燃烧区内用气态氧化剂燃烧上述燃料得到燃烧产物和未燃烧的燃料。

Description

增氧低NOx燃烧
发明领域
本发明涉及烃燃料的燃烧,具体涉及煤的燃烧。
发明背景
在美国和世界各地,环境意识正在增强,从而导致了与日俱增的公众及规章制度的压力,要求降低锅炉、焚化炉和加热炉污染物的排放。特别受到关注的一种污染物是NOx(表示氮的各种氧化物,例如但不限于NO、NO2、N2O、N2O4和它们的混合物),它已经与酸雨、地表臭氧和细微粒子的形成牵连在一起。
许多技术可以用来减少NOx的排放。这些技术可以划分为两个主要类别,初始性的和二次性的。初始性技术通过控制燃烧过程在燃烧区最小化或防止NOx的形成。二次性技术使用化学药品将燃烧区形成的NOx还原为分子氮。本发明是初始性控制技术。
在通常称为分段燃烧的初始控制技术中,仔细控制燃烧空气与燃料的混合以使NOx的形成减到最小。由燃料中的氮形成的NOx基于下面两个竞争过程:由燃料挥发分中的含氮物质和木炭中的氮形成NOx与形成N2的竞争。富氧条件驱使竞争反应向形成NOx的方向进行。富燃料条件驱使反应形成N2。初始控制策略就利用了这一现象,它通过仔细控制空气与燃料的混合来形成富燃料区以阻止NOx的形成。为了减少NOx的排放,富燃料区必须足够热以利于NOx的还原动力学。然而,足够的热量必须从富燃料的第一阶段转移到炉子热负荷,以防在第二阶段NOx的热形成。
到目前为止,最普通的初始控制装置是低NOx燃烧炉(LNB)。在该装置中,空气通常以空气动力学方式停留用以形成富燃料区和随后的燃尽区。通常低NOx燃烧炉包括第一区,该区在进料口附近,由一次空气和燃料控制并且是富燃料的。在第二区,只要严格控制局部的化学计量比,二次和三次空气中的剩余空气将允许燃料中的氮继续通过化学过程形成N2。在该区中,烃和木炭被燃尽。尽管LNB是一种相当昂贵的减少NOx的方法,但是目前可行的方案还没有能够达到即将出台的(pending)规定中的排放限度。其它问题是灰烬中碳增多和火焰稳定性的降低。
低NOx燃烧炉代表了一种相当成熟的技术,并在专利和档案文献中进行了广泛的讨论。许多想法被提出用以提高LNB的效率同时使不利影响最小化,例如较差的火焰稳定性和灰烬中碳的增加。在这些想法中有两个是特别相关的:将第一阶段的空气预热,和将燃烧室转变为氧-燃料燃烧。
空气预热和氧-燃料燃烧通过升高初始区的温度来提高分段燃烧的效率而不增加化学计量比。氧-燃料燃烧还提供了由于低气体流速而在富燃料区停留时间长的附加优点,该优点已经显示出可以减少NOx的排放。如上面所讨论的,分段燃烧采用富燃料阶段来提高N2而不是NOx的形成。由于形成N2的反应是动力学控制的,温度和烃基团的浓度是减少NOx形成的关键。例如,如果温度高而基团浓度低,如在不分段或轻微分段的条件下,NOx的形成增加。当基团浓度高但温度低时,例如在强分段条件下,中间产物的转变如HCN转变为N2受阻。当增加空气以完全燃烧时,中间产物被氧化形成NOx,因此净NOx的形成增加。Sarofim等“Strategies for Controlling Nitrogen OxideEmissions During Combustion of Nitrogen bearing fuels”,69thAnnual Meeting of the AIChE,Chicago,IL,Nov.1976,和其它人建议通过预热助燃空气到相当高的温度来提高第一阶段的动力学。另外,Kobayashi等(“NOx Emission Characteristics of IndustrialBurners and Control Methods Under Oxygen Enriched CombustionConditions”,International Flame Research Foundation 9thMembers’Conference,Noordwi jkerhout,May 1989)建议使用氧气代替助燃空气也增加该阶段的动力学。在这两种情况下,净结果是第一阶段气体的温度升高而基团的浓度保持相同,从而导致NOx形成减少。此外,采用空气预热和氧-燃料燃烧允许第一阶段燃烧更深地进行而不会降低火焰的稳定性。这甚至允许NOx形成进一步减少。
氧-燃料燃烧还为LNB提供了另外的优点。Timothy等(“Characteristics of Single Particle Coal Combustion”,19thSymposium(international)on Combustion,The CombustionInstitute,1983)指出当煤在富氧条件下燃烧时,脱挥发时间显著减少,并且挥发率增加。这些测试是在燃料高度贫乏条件下进行的单颗粒燃烧测试,这些测试不能提供在更实际的燃烧条件下完成燃烧需要多少氧气的信息。更高的挥发率意味着与基线相比,气相中的可燃物增加,产生更富燃料的气相,这抑止了由挥发性含氮物质生成NOx。此外,燃料的挥发分点燃迅速并且能稳定燃烧器中的火焰,已经表明这降低了NOx的形成。增加的挥发率还导致更短的燃尽时间,因为更少的炭剩余下来。
虽然现有技术描述了几种极好的改进分段燃烧的方法,但是LNB的几个实际问题限制了它们的应用。首先,预热助燃空气到增进动力学过程所要求的水平需要对系统和空气管道进行多处改造。空气加热器和节热器部分必须改造以允许进入的空气被加热到更高的温度,这可能还需要对剩余的蒸汽循环部件进行改造。管道系统和风箱系统以及燃烧炉自身也必须改造以处理热空气。所有改造的费用高昂并可能对锅炉的操作产生不利的影响。
锅炉中采用氧-燃料燃烧的主要障碍是氧气的费用。为了使氧气的使用经济,通过增加燃烧效率获得的燃料节约必须大于提供氧气的花费。对于高温操作,如没有热量回收的加热炉,这是容易做到的。然而,对更高效的操作,如锅炉,通过采用氧-燃料燃烧得到的燃料节约通常远低于氧气的花费。例如,如果一个典型的燃煤锅炉从空气燃烧转变到氧气燃烧,出自该锅炉的大约15-20%的功率输出需要用于生产所需要的氧气。很显然,这对于大多数锅炉是不经济的。
因此,一直需要一种方法,该方法在含有一种或多种含氮化合物的燃料(特别是煤)的燃烧过程中实现NOx排放的减少,特别是需要一种方法,该方法可以在现有加热炉中进行,而且无需大范围的结构改造。
发明概述
本发明的一个方面是一种燃烧燃料方法,所述燃料含有一种或多种含氮化合物,该方法包括:
按低于一定值的化学计量比向第一燃烧阶段加入所述燃料和包含高于21体积%氧气,优选21.8-29体积%氧气的气态氧化剂,其中的一定值是指:如果该阶段用空气作为仅有的氧化剂进行操作,该化学计量比将产生相同量的NOx;并且在该燃烧阶段燃烧上述燃料产生燃烧产物和未燃烧的燃料。
所述未燃烧的燃料优选在第二燃烧阶段用另外的氧化剂气流燃烧,所有氧化剂气流(包括加入第一阶段的氧化剂)的平均氧含量在20.9-27.4体积%氧气的范围内,同时从燃烧产物排热足够的热量并从第一阶段移走未燃烧的燃料,例如通过与蒸汽发生管的热交换,以达到足够低的温度使在所述第二阶段的燃烧中NOx的额外生成最小化。
本发明的另一方面是它能够容易改造现有加热炉,在现有加热炉中,烃燃料用空气作为唯一的氧化剂进行燃烧,以减少加热炉形成的NOx量。本实施方案是一种操作加热炉的方法,与用空气作为唯一的氧化剂的加热炉中燃料的燃烧形成的NOx量相比,在本方法中燃烧烃燃料以减少加热炉中形成的NOx量,本方法包括:
按低于一定值的化学计量比向加热炉的第一燃烧阶段加入所述燃料和气态氧化剂,该气态氧化剂包含高于21体积%的氧气,所述一定值是指:如果该阶段用空气作为仅有的氧化剂进行操作,该化学计量比将产生相同量的NOx;并且在该燃烧阶段燃烧所述燃料与所述气态氧化剂产生燃烧产物和未燃烧的燃料。
在上述实施方案的任何一个中,氧气的加入可以以单一纯氧气流或高富氧空气流的形式,或以多股纯氧气流和/或高富氧空气流的形式进行。
附图简述
附图是NOx系图。
发明详述
本发明在提高分段燃烧效率的同时克服了上述困难。本发明在单段燃烧器中也可以采用。本发明可用于烃燃料的燃烧,如煤、燃油(包括重油)和沥青。这些燃料一般含有少量的自然存在的含氮的烃化合物,通常为杂环化合物。
在下面描述中,应当理解,注入一段燃烧装置的氧化剂的氧气含量代表将该段作为一个整体时的平均氧气含量,尽管在该区中氧气的含量可以在不同的给定点有变化。
本发明利用了如下发现,即在氧气和燃料的一定范围和比例下,使用非常少量的氧气导致NOx形成的显著减少,因此无需昂贵的锅炉改造或用纯氧-燃料燃烧减少NOx的形成所需的费用。
更具体地,已经确定,正如根据现有技术的相关阐述所预期的,在空气中分段燃烧的第一段中通常观察到的化学计量比下,提高空气中的氧气含量会增加NOx的形成。在这里使用的“化学计量比”是注入氧气与使构成进料的物质中所有的碳、硫和氢完全转化为二氧化碳、二氧化硫和水所需要的氧气总量之比。
然而,非常令人惊奇的是,已经发现存在具有如下性质的较低化学计量比:即伴随着氧化剂气体中氧气总含量的相对微小增加,在该较低化学计量比下的燃烧导致NOx形成的显著降低。
在代表某一化学计量比数值的特定点下,对于一组给定的燃烧条件,以及氧化剂气体中给定总氧含量稍高于空气里的氧含量时,无论燃烧在空气或在该氧化剂气体中进行,以质量每单位燃料输入量表示的NOx的形成量是相同的。该点在这里被称为“转折点”;选择这一术语是为了帮助理解本发明的描述,并且额外的含意不应附加在“转折”这一特定的词上。根据例如燃料的组成和氧化剂的总氧气含量,可以预期在转折点的化学计量比的具体数值会随情况变化而变化。本发明在第一段(或在分段燃烧室的富燃料部分)按化学计量比低于转折点的化学计量比进行燃烧。
例如,氧气的增加对NOx形成的影响示意地表示在附图中。通过使用化学动力学计算并在计算中保持从第一区移走的体积和热量恒定得到的该图,显示出两条曲线,它们描述了当氧化剂是空气时,以及当完全燃烧燃料所需要的10%的氧气由纯氧供给并且这些氧气注入第一(富燃料)段时,NOx的形成随第一段化学计量比变化的关系。用于这些计算的燃料是典型的烟煤,其挥发分含量为34%。附图中标出一个两条曲线相交的点“A”,在该点,当燃烧在空气中或在气态氧化剂中进行时,NOx的形成相等,在所述气态氧化剂中,完全燃烧燃料所需要的部分(在本实施例中10%)氧气由纯氧供给其余由空气供给。如前面所定义的,点“A”是“转折点”。在本实施例中的“A”点,化学计量比为约0.585。对于本实施例,假设大约52重量%的煤在气相中并参加了反应。因此,虽然总化学计量比远低于1,在该转折点气相可能只是略微富燃料的。
当气相变为贫燃料时,本实施例中初始阶段的化学计量比大于约0.585,增加氧气的效果是显著增加NOx的形成。然而,已经发现有更低的化学计量比(在本实施例中低于约0.585,0.585是两曲线交点的化学计量比),在这些比值时,适当的增加第一段氧化剂中的总氧气含量(例如,通过增加适当量的纯氧或高富集氧)的效果是显著地降低NOx的形成。本发明在第一段(或在分段燃烧器的富燃料部分)的化学计量比低于转折点的化学计量比。
实施本发明的优选方法基于以下两者的结合,促进分段燃烧的需要和材料或经济上的限制。如前所述,本发明的一个主要目标是减少NOx的形成,而另一目标当然是能够引发和保持燃烧。如果化学计量比太低,例如低于附图中表示的本实施例中的约0.4,在第一段的点燃和燃烧将很难。这一较低的限度强烈地依赖于燃料的性质,例如在第一阶段释放出的挥发分的量以及氧化剂的性质。在前面讨论的实施例中,最佳的化学计量比范围是大约0.4-0.585,基于全部煤计算。这相当于0.575-0.85的范围,基于气相中假设的燃料计算。作为另一个实施例,注入显著预热的纯氧或高富集氧将允许燃烧在这样的化学计量比下进行,它远低于较低温度下相同量的氧气流中的化学计量比。然而,无论何种情况,已经发现在化学计量比低于某一临界值的区域,该临界值在前面讨论的实施例中为0.4,NOx的形成甚至超过了不加入氧气时和不进行本发明中的化学计量比控制时的情况。
考虑到这点,为了更加确保在一组给定的燃烧条件下(包括给定的氧化剂气流,它具有略高于空气中氧含量的总氧含量)减少NOx的形成,优选在低于前述转折点化学计量比下进行操作,在转折点上,在空气或给定氧化剂气体中的燃烧产生等量的NOx,但是该化学计量比至少为NOx的形成(由给定氧化剂气流得到)再次升高并达到前述转折点上NOx形成量的化学计量比。
换句话说,参考附图,在点“A”(如在转折点),对于在空气中或在气态氧化剂中进行的燃烧,NOx的形成相等,在所述气态氧化剂中,燃烧所需要的10%的氧气由纯氧供给,其余由空气供给,在“B”点,NOx的形成与“A”点NOx的形成相等;并且优选在低于“A”点的化学计量比和至少为“B”点的化学计量比下进行燃烧。
操作的最佳化学计量比强烈依赖于燃料的性质、燃烧装置的种类、燃烧所需的由纯氧或高浓缩氧供给的氧气分数、以及氧化剂的平均温度。很多方法可以用来确定最佳的操作范围。这些方法包括如上所述的动力学计算,该计算给出动力学限制的重要信息。在这些计算中,必须小心注意在富燃料条件下气相中燃料的量,以便能在气相中充分地描述燃料对氧气的比例和NOx的形成。计算流体动力学(CFD)的计算可以用来考查部分助燃空气被氧气取代的燃烧装置中空气动力学分区法的影响。最后,在安装装置之前,可用实验验证模型的结果。
可以看出,这里所发现和描述的效果基于氧化剂中总的氧气含量的增加。该增加可以按如下描述提供:用氧气替代空气,或通过其它方式如加入富氧空气,用富氧空气代替空气,或加入纯的或几乎纯的氧气,或用纯的或几乎纯的氧气代替空气。在此,为了方便,氧化剂中的总氧含量增加在大多数情况下被称为用纯氧气替代空气,这意味着氧化剂是为了保持氧气含量相同而部分被纯氧所替代的空气的等价物。假设空气被认为包含约20.9体积%的氧气,用氧气替代各种给定百分数的空气产生具有如下表的较高的总氧含量的氧化剂:
  用氧气替代空气的             产生的氧化剂具有的
     体积百分比                 氧气的体积百分比
         0                             20.9
         5                             21.8
         10                            22.7
         15                            23.7
         20                            24.8
         25                            26.1
         30                            27.4
         35                            28.9
         40                            30.6
无论是否受到用纯氧或其它氧化剂替代空气的影响,气体氧化剂的实际总氧气含量基于下限和上限,在该下限,氧气将不会产生足够的影响从而保证它的使用,而在上限,费用将妨碍氧气的使用或锅炉或加热炉的维护将是成问题的。当纯氧、或高浓缩氧的氧化剂气流可以用来在燃烧时提供25%或更多,甚至30%或更多的按化学计量所需的氧气时,基于目前氧气的费用和NOx控制动力学所做的计算表明,使用气态氧化剂的最佳范围是含有21.8体积%-24.8体积%的氧气,也就是相应于用氧气代替5-20%的总燃烧空气(或在5%和20%之间的任何一个数值,如出现在前面表中的)。当所有的氧气用于第一段燃烧区并且没有氧气用于第二段燃烧区时,用氧气代替第一段的助燃空气的最佳范围变得比上面的范围高得多,这依赖于第一段燃烧区的化学计量比。
助燃空气、助燃氧气和助燃浓缩氧空气可以用一股或多股气流提供。输送氧气或高浓缩氧化剂气流的最佳方法基于最大程度地减少NOx、最小程度的改造和系统复杂性。与这些目标相一致,氧气可以通过一个延伸经过燃烧炉并进入该段的喷枪,或通过燃烧炉紧邻的墙壁输送到第一燃烧区。该方法在第一燃烧区提供了最高的氧浓度增加效果,并且允许安装一个简易的喷枪装置。此外,采用该方法局部氧浓度能够高达用于该过程的氧气的纯度,这将进一步增加燃料颗粒或液滴的脱挥发作用并帮助稳定火焰。该方法还将允许预热的氧气能够被注入而不用考虑过早的点火或燃料的软化。
本发明实施的其它方面是能够用常规的方式进行,本领域中的那些普通技术人员对该方式是熟悉的和容易查明的。将要燃烧的煤首先粉碎成尺寸细小的颗粒,以允许在气体的压力下通过用于该目的燃烧炉头部的进料口将其注入到加热炉或类似的燃烧装置中。适用于本发明的可用于煤燃烧的燃烧炉头部、注入粉碎煤的技术、加热炉和其它燃烧装置均为常规的。化学计量比和注入燃烧区的气体氧化剂中的氧气含量是通过本领域中有经验的人员所熟悉的控制方式来调节的。本发明的燃料燃烧回收热量用于发电或用于加热。
一个简单的实施本发明的方法是将氧气注入低NOx燃烧炉的风箱以提供氧化剂气体,该气体具有希望的氧气含量增加,使所得的氧化剂气体注入整个加热炉,包括注入第一燃烧区并且通过调节注入第一区的空气或燃料流使第一燃烧区更加富燃料。这将是分段燃烧的有用方法,其中整个低氮燃烧炉在富燃料条件下进行并且过热空气进一步加入锅炉中的下游完成燃料的燃尽。另一个方法是将大部分的氧气注入初始区或富燃料区以增加形成N2的反应。剩余的氧气或者注入低氮燃烧炉的后续区,或者注入过热空气以促进燃尽过程。最优选的配置是通过喷枪将所有的氧气注入第一燃烧区和适当地降低第一区燃烧空气的流速。
氧气的富集可以用许多方法获得。一种方法是在锅炉的风箱中简单地安装一个喷洒器使得在进入燃烧炉前让所希望量的氧气与所有的燃烧空气混合。虽然该方法是最简单的,但是与氧气直接注入第一燃烧区相比,降低NOx的效率将会被减小。另一个将略微富氧的空气输送到燃烧炉中的方法是用管道将预先混合的(空气-氧气)混合物直接输送到第一燃烧区。与在风箱中简单地混合相比,虽然这将导致更有效的NOx降低,但是附加的管道系统和所需要风箱改造使其吸引力小于最佳情况。
根据具体场所的需要,氧富集的程度也可以变化。虽然已经确定增加氧气替代超过15%的化学计量氧气将进一步增进NOx的减少,与其它NOx的控制方法相比,目前氧气的成本可以使替代高于40%的空气时才不经济。此外,当本发明用于现有的锅炉和加热炉的改型装置时,或安装在常规设计的新加热炉中时,存在一个可以替代空气的氧气量的上限,在此上限之前,不会使锅炉的平衡受到有害影响。该上限是视具体燃料和地点而定的,但通常是20-30%(相应于总氧气含量24.8%-27.4%,基于总助燃空气和氧气的混合物计算的)。
本发明另一个有用的方面是预热注入的氧气或高增浓氧化剂。加热到最高1800°F的温度甚至最高3000°F的温度的预热氧化剂,将加速燃料的点燃,增进在该区的燃烧,并且增加挥发率。工艺管道系统的材料问题将限制更高温度。
本发明还可以用于减少锅炉产生的NOx,方法是在给定锅炉中选择性地富集那些已经表明产生大部分NOx和未燃尽碳的燃烧炉。
本发明还可以用于挽回由于锅炉平衡问题,如当锅炉从一种燃料转换到较低热值的另一种燃料时,已经损失的锅炉容量。例如,当锅炉从烟煤转换到次烟煤时,与次烟煤相关的较大的废气体积通常引发下面问题,太多的热量经过辐射段并且在对流段被吸收。这经常导致锅炉效率的降低。然而,作为本发明中的部分,当少到5%的总助燃空气被氧气所代替时,废气的体积变得与燃烧烟煤相同,因此挽回了损失的锅炉容量。
当本发明在具有第二段的分段燃烧装置的第一段实施时,第一段的燃烧产物(包括未燃烧的燃料和废气)继续进入第二燃烧段。额外的空气或氧气注入该段,燃烧从第一段来的未燃烧的燃料。在该段进行燃烧应该抑止NOx的形成,和优选使NOx的形成最小化。优选的是,应该提供足够的空气或氧气使得未燃烧燃料获得最大可能程度的燃烧,该程度与在该阶段抑止和使NOx的形成最小化一致。
本发明的另一优点是在所描述的条件下在分段燃烧装置的第一燃烧段(或在分段燃烧室的富燃料区)的燃烧,增加了来自燃料的挥发物质的脱挥发作用,所以在这些条件下得到的焦炭预期会很少,产生比常规分区燃烧装置好得多的燃尽效果。
本发明的另一优点是第一(或单一)燃烧区中的火焰更好地附着在燃烧炉口。这一特点是有利的,因为与火焰同燃烧炉分离的情况即火焰底与燃烧炉口有段距离相比,该特点相当于NOx形成的减少。此外,用氧气代替部分燃烧空气和第一燃烧区的更加富燃料的操作,会在该区造成更长的停留时间,这进一步促进减少NOx的形成。

Claims (6)

1.一种燃烧烃燃料的方法,包括:
以低于一定值的化学计量比向第一燃烧区加入所述燃料和气态氧化剂,该氧化剂包含高于21体积%的氧气,所述一定值是指:如果该区用空气作为仅有的氧化剂进行下操作,将产生相同量的NOx;并且在该燃烧区内燃烧所述燃料与气态氧化剂得到燃烧产物和未燃烧的燃料。
2.权利要求1的方法,其中,注入第一燃烧区的氧化剂的平均氧气浓度为21.8体积%到29体积%的氧气。
3.权利要求1的方法,其还包括在注入第一燃烧区前加热氧化剂。
4.权利要求1的方法,其还包括将所述未燃烧的燃料在第二燃烧区用附加的气态氧化剂燃烧,使得注入第一区和第二区的气态氧化剂的平均氧气含量为20.9-27.4体积%氧气,同时从燃烧产物除去足够的热量并从第一区移走未燃烧的燃料,以达到足够低的温度使在第二区的燃烧中NOx的额外生成最小化。
5.权利要求1中的方法,其中,第一区的化学计量比低于如下限定的化学计量比:如果该区用空气作为仅有的氧化剂的情况下操作,将产生相同量的NOx;但是所述化学计量比至少为如下限定的较低化学计量比:在该化学计量比时,在其它一致的条件下由燃料和氧化剂燃烧形成的NOx的量是所述的相同量。
6.权利要求1中的方法,其中,所说的燃料是煤。
CNB018230199A 2001-01-11 2001-12-20 增氧低NOx燃烧 Expired - Fee Related CN1243927C (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US09/757,611 US20020127505A1 (en) 2001-01-11 2001-01-11 Oxygen enhanced low nox combustion
US09/757,611 2001-01-11

Publications (2)

Publication Number Publication Date
CN1492982A true CN1492982A (zh) 2004-04-28
CN1243927C CN1243927C (zh) 2006-03-01

Family

ID=25048514

Family Applications (1)

Application Number Title Priority Date Filing Date
CNB018230199A Expired - Fee Related CN1243927C (zh) 2001-01-11 2001-12-20 增氧低NOx燃烧

Country Status (10)

Country Link
US (3) US20020127505A1 (zh)
EP (1) EP1350063B1 (zh)
JP (1) JP4017521B2 (zh)
KR (2) KR20040028709A (zh)
CN (1) CN1243927C (zh)
BR (1) BR0116771A (zh)
CA (1) CA2434445C (zh)
ES (1) ES2392506T3 (zh)
MX (1) MXPA03006238A (zh)
WO (1) WO2002055933A1 (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102471811A (zh) * 2009-07-31 2012-05-23 西门子Vai金属科技有限责任公司 基于转化炉气的具有降低的NOx排放的还原方法
CN101784839B (zh) * 2007-06-05 2015-06-03 巴布科克和威尔科克斯能量产生集团公司 用于使旋风燃烧室里的氮氧化物(NOx)排放物降至最少的系统和方法

Families Citing this family (35)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2002096591A1 (en) * 2001-05-30 2002-12-05 University Of Wyoming Postcombustion removal of n2o in a pulsed corona reactor
CA2485570C (en) 2002-05-15 2009-12-22 Praxair Technology, Inc. Combustion with reduced carbon in the ash
CA2485934C (en) 2002-05-15 2009-12-15 Praxair Technology, Inc. Low nox combustion
FR2847659B1 (fr) * 2002-11-25 2005-12-16 Air Liquide Procede d'optimisation en energie d'un site industriel, par enrichissement en oxygene d'air de combustion
CA2509631C (en) * 2003-01-21 2011-03-01 L'air Liquide Societe Anonyme A Directoire Et Conseil De Surveillance Po Pour L'etude Et L'exploitation Des Procedes Georges Claude Process and apparatus for oxygen enrichment in fuel conveying gases
US7028622B2 (en) 2003-04-04 2006-04-18 Maxon Corporation Apparatus for burning pulverized solid fuels with oxygen
US20040202977A1 (en) * 2003-04-08 2004-10-14 Ken Walkup Low NOx burner
US6843185B1 (en) * 2003-06-27 2005-01-18 Maxon Corporation Burner with oxygen and fuel mixing apparatus
US7381387B2 (en) * 2003-08-14 2008-06-03 General Electric Company Mercury reduction system and method in combustion flue gas using coal blending
US6910432B2 (en) 2003-08-21 2005-06-28 Air Products And Chemicals, Inc. Selective oxygen enrichment in slagging cyclone combustors
US6968791B2 (en) 2003-08-21 2005-11-29 Air Products And Chemicals, Inc. Oxygen-enriched co-firing of secondary fuels in slagging cyclone combustors
US7374736B2 (en) 2003-11-13 2008-05-20 General Electric Company Method to reduce flue gas NOx
US6895875B1 (en) * 2003-11-18 2005-05-24 General Electric Company Mercury reduction system and method in combustion flue gas using staging
US7514052B2 (en) * 2004-01-06 2009-04-07 General Electric Company Method for removal of mercury emissions from coal combustion
US7185494B2 (en) 2004-04-12 2007-03-06 General Electric Company Reduced center burner in multi-burner combustor and method for operating the combustor
US7249564B2 (en) * 2004-06-14 2007-07-31 General Electric Company Method and apparatus for utilization of partially gasified coal for mercury removal
US7497682B2 (en) * 2005-01-18 2009-03-03 Praxair Technology, Inc. Method of operating furnace to reduce emissions
US20080006188A1 (en) * 2006-07-06 2008-01-10 Kuang Tsai Wu Increasing boiler output with oxygen
US7452203B2 (en) * 2006-10-16 2008-11-18 Praxair Technology, Inc. Stratified staging in kilns
US20100275825A1 (en) * 2006-10-19 2010-11-04 Bool Iii Lawrence E Modifying transport air to control nox
US20080145281A1 (en) * 2006-12-14 2008-06-19 Jenne Richard A Gas oxygen incinerator
US20080153042A1 (en) * 2006-12-20 2008-06-26 Laux Stefan E F Integrated oxy-fuel combustion and nox control
US9651253B2 (en) * 2007-05-15 2017-05-16 Doosan Power Systems Americas, Llc Combustion apparatus
US8430665B2 (en) * 2008-02-25 2013-04-30 General Electric Company Combustion systems and processes for burning fossil fuel with reduced nitrogen oxide emissions
US7775791B2 (en) 2008-02-25 2010-08-17 General Electric Company Method and apparatus for staged combustion of air and fuel
US7833315B2 (en) * 2008-02-26 2010-11-16 General Electric Company Method and system for reducing mercury emissions in flue gas
US20090297996A1 (en) * 2008-05-28 2009-12-03 Advanced Burner Technologies Corporation Fuel injector for low NOx furnace
US20100035193A1 (en) * 2008-08-08 2010-02-11 Ze-Gen, Inc. Method and system for fuel gas combustion, and burner for use therein
DE102009014223A1 (de) * 2009-03-25 2010-09-30 Hitachi Power Europe Gmbh Feuerungssystem eines für den Oxyfuel-Betrieb ausgelegten Dampferzeugers
KR101306845B1 (ko) * 2011-09-29 2013-09-10 유 득 김 복합형 질소산화물 처리 시스템
WO2014053190A1 (en) * 2012-10-05 2014-04-10 Air Liquide Brasil Ltda Lost wax process and calcination furnace for same
JP6541050B2 (ja) * 2014-04-28 2019-07-10 日本ファーネス株式会社 高温酸素燃焼装置及び高温酸素燃焼方法
KR20160009367A (ko) 2014-07-16 2016-01-26 현대중공업 주식회사 선택적 무촉매 환원 시스템
KR102024397B1 (ko) 2014-07-16 2019-09-23 한국조선해양 주식회사 선택적 무촉매 환원 시스템
EP2993397A1 (en) * 2014-09-02 2016-03-09 Linde Aktiengesellschaft Low-NOx-burner

Family Cites Families (87)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB1274637A (en) * 1969-03-27 1972-05-17 Zink Co John Process for disposal of oxides of nitrogen
US3656878A (en) * 1970-03-26 1972-04-18 Exxon Research Engineering Co High luminosity burner
US3826079A (en) * 1971-12-15 1974-07-30 Phillips Petroleum Co Combustion method with selective cooling and controlled fuel mixing
US3820320A (en) * 1971-12-15 1974-06-28 Phillips Petroleum Co Combustion method with controlled fuel mixing
NL7610560A (nl) * 1976-09-23 1978-03-29 Shell Int Research Werkwijze en reactor voor de partiele ver- branding van koolpoeder.
JPS55165405A (en) * 1979-06-07 1980-12-23 Mitsubishi Heavy Ind Ltd Combustion method with reduced amount of nitrogen oxide
US4343606A (en) * 1980-02-11 1982-08-10 Exxon Research & Engineering Co. Multi-stage process for combusting fuels containing fixed-nitrogen chemical species
US4541796A (en) 1980-04-10 1985-09-17 Union Carbide Corporation Oxygen aspirator burner for firing a furnace
US4427362A (en) * 1980-08-14 1984-01-24 Rockwell International Corporation Combustion method
US4388062A (en) * 1980-08-15 1983-06-14 Exxon Research And Engineering Co. Multi-stage process for combusting fuels containing fixed-nitrogen species
US4408982A (en) * 1982-01-05 1983-10-11 Union Carbide Corporation Process for firing a furnace
US4488866A (en) * 1982-08-03 1984-12-18 Phillips Petroleum Company Method and apparatus for burning high nitrogen-high sulfur fuels
FR2535018B1 (fr) 1982-10-22 1987-04-24 Air Liquide Bruleur a charbon pulverise
US4596198A (en) 1983-05-18 1986-06-24 Air Products And Chemicals, Inc. Slag reduction in coal-fired furnaces using oxygen enrichment
US4495874A (en) 1983-05-18 1985-01-29 Air Products And Chemicals, Inc. Combustion of high ash coals
GB8324644D0 (en) * 1983-09-14 1983-10-19 Boc Group Plc Apparatus for burning fuel
US4515095A (en) * 1984-03-02 1985-05-07 Air Products And Chemicals, Inc. Combustion of coal/water slurries
US4629413A (en) 1984-09-10 1986-12-16 Exxon Research & Engineering Co. Low NOx premix burner
CN1007920B (zh) 1985-07-15 1990-05-09 美国氧化公司 烃类流体燃料燃烧、控制方法及装置
JPS6227509A (ja) * 1985-07-26 1987-02-05 Nippon Kokan Kk <Nkk> 高炉操業方法
US4654001A (en) * 1986-01-27 1987-03-31 The Babcock & Wilcox Company Flame stabilizing/NOx reduction device for pulverized coal burner
US4761132A (en) 1987-03-04 1988-08-02 Combustion Tec, Inc. Oxygen enriched combustion
US4863371A (en) 1988-06-03 1989-09-05 Union Carbide Corporation Low NOx high efficiency combustion process
US4878830A (en) 1988-06-20 1989-11-07 Exxon Research And Engineering Company Substoichiometric fuel firing for minimum NOx emissions
US4899670A (en) 1988-12-09 1990-02-13 Air Products And Chemicals, Inc. Means for providing oxygen enrichment for slurry and liquid fuel burners
US4969814A (en) 1989-05-08 1990-11-13 Union Carbide Corporation Multiple oxidant jet combustion method and apparatus
US5158445A (en) * 1989-05-22 1992-10-27 Institute Of Gas Technology Ultra-low pollutant emission combustion method and apparatus
US4946382A (en) 1989-05-23 1990-08-07 Union Carbide Corporation Method for combusting fuel containing bound nitrogen
US4988285A (en) 1989-08-15 1991-01-29 Union Carbide Corporation Reduced Nox combustion method
US4957050A (en) 1989-09-05 1990-09-18 Union Carbide Corporation Combustion process having improved temperature distribution
US4973346A (en) 1989-10-30 1990-11-27 Union Carbide Corporation Glassmelting method with reduced nox generation
US5000102A (en) 1989-12-21 1991-03-19 Union Carbide Industrial Gases Technology Corporation Method for combusting wet waste
US5085156A (en) 1990-01-08 1992-02-04 Transalta Resources Investment Corporation Combustion process
WO1992006328A1 (en) 1990-10-05 1992-04-16 Massachusetts Institute Of Technology Combustion system for reduction of nitrogen oxides
US5195450A (en) * 1990-10-31 1993-03-23 Combustion Engineering, Inc. Advanced overfire air system for NOx control
US5213492A (en) 1991-02-11 1993-05-25 Praxair Technology, Inc. Combustion method for simultaneous control of nitrogen oxides and products of incomplete combustion
US5076779A (en) 1991-04-12 1991-12-31 Union Carbide Industrial Gases Technology Corporation Segregated zoning combustion
US5186617A (en) 1991-11-06 1993-02-16 Praxair Technology, Inc. Recirculation and plug flow combustion method
DE4142401C2 (de) 1991-12-20 1999-01-21 Linde Ag Verfahren zum Betrieb einer auf einem oder mehreren Brennern basierenden Beheizung eines Ofens
US5308239A (en) 1992-02-04 1994-05-03 Air Products And Chemicals, Inc. Method for reducing NOx production during air-fuel combustion processes
US5201650A (en) 1992-04-09 1993-04-13 Shell Oil Company Premixed/high-velocity fuel jet low no burner
US5203859A (en) 1992-04-22 1993-04-20 Institute Of Gas Technology Oxygen-enriched combustion method
US5266025A (en) * 1992-05-27 1993-11-30 Praxair Technology, Inc. Composite lance
US5242296A (en) 1992-12-08 1993-09-07 Praxair Technology, Inc. Hybrid oxidant combustion method
US5291841A (en) * 1993-03-08 1994-03-08 Dykema Owen W Coal combustion process for SOx and NOx control
US5413476A (en) 1993-04-13 1995-05-09 Gas Research Institute Reduction of nitrogen oxides in oxygen-enriched combustion processes
DE4323472C2 (de) 1993-07-14 1997-08-07 Inst F Textil Und Verfahrenste Doppelriemchen-Streckwerk
US5431559A (en) * 1993-07-15 1995-07-11 Maxon Corporation Oxygen-fuel burner with staged oxygen supply
ES2124352T3 (es) 1993-09-09 1999-02-01 Praxair Technology Inc Metodo para tratar materiales para fabricar vidrio que contienen salitre.
US5439373A (en) 1993-09-13 1995-08-08 Praxair Technology, Inc. Luminous combustion system
US5454712A (en) 1993-09-15 1995-10-03 The Boc Group, Inc. Air-oxy-fuel burner method and apparatus
CA2135941C (en) * 1993-11-17 2000-01-25 Hisashi Kobayashi Method for deeply staged combustion
US5387100A (en) 1994-02-17 1995-02-07 Praxair Technology, Inc. Super off-stoichiometric combustion method
US5725366A (en) * 1994-03-28 1998-03-10 Institute Of Gas Technology High-heat transfer, low-nox oxygen-fuel combustion system
US5601425A (en) 1994-06-13 1997-02-11 Praxair Technology, Inc. Staged combustion for reducing nitrogen oxides
US5724897A (en) * 1994-12-20 1998-03-10 Duquesne Light Company Split flame burner for reducing NOx formation
US5580237A (en) * 1995-03-09 1996-12-03 Praxair Technology, Inc. Oxidant lancing nozzle
US5924858A (en) 1995-06-13 1999-07-20 Praxair Technology, Inc. Staged combustion method
US5755818A (en) * 1995-06-13 1998-05-26 Praxair Technology, Inc. Staged combustion method
DE19527083A1 (de) * 1995-07-25 1997-01-30 Lentjes Kraftwerkstechnik Verfahren und Brenner zur Verminderung der Bildung von NO¶x¶ bei der Verbrennung von Kohlenstaub
US5611683A (en) 1995-08-04 1997-03-18 Air Products And Chemicals, Inc. Method and apparatus for reducing NOX production during air-oxygen-fuel combustion
US5611682A (en) * 1995-09-05 1997-03-18 Air Products And Chemicals, Inc. Low-NOx staged combustion device for controlled radiative heating in high temperature furnaces
DE19618058B4 (de) * 1996-05-06 2008-12-04 Alstom Brenner
JP3099109B2 (ja) * 1996-05-24 2000-10-16 株式会社日立製作所 微粉炭バーナ
EP0906544A1 (en) * 1996-06-19 1999-04-07 Combustion Engineering, Inc. A method for effecting control over an rsfc burner
US5697306A (en) * 1997-01-28 1997-12-16 The Babcock & Wilcox Company Low NOx short flame burner with control of primary air/fuel ratio for NOx reduction
US5904475A (en) 1997-05-08 1999-05-18 Praxair Technology, Inc. Dual oxidant combustion system
US6200128B1 (en) * 1997-06-09 2001-03-13 Praxair Technology, Inc. Method and apparatus for recovering sensible heat from a hot exhaust gas
US5931654A (en) 1997-06-30 1999-08-03 Praxair Technology, Inc. Recessed furnace lance purge gas system
US6007326A (en) * 1997-08-04 1999-12-28 Praxair Technology, Inc. Low NOx combustion process
US6206949B1 (en) 1997-10-29 2001-03-27 Praxair Technology, Inc. NOx reduction using coal based reburning
US5954498A (en) 1998-02-26 1999-09-21 American Air Liquide, Inc. Oxidizing oxygen-fuel burner firing for reducing NOx emissions from high temperature furnaces
US6030204A (en) * 1998-03-09 2000-02-29 Duquesne Light Company Method for NOx reduction by upper furnace injection of solutions of fixed nitrogen in water
US6217681B1 (en) * 1998-04-14 2001-04-17 Air Products And Chemicals, Inc. Method for oxygen-enhanced combustion using a vent stream
US5871343A (en) * 1998-05-21 1999-02-16 Air Products And Chemicals, Inc. Method and apparatus for reducing NOx production during air-oxygen-fuel combustion
US6164221A (en) * 1998-06-18 2000-12-26 Electric Power Research Institute, Inc. Method for reducing unburned carbon in low NOx boilers
GB9818529D0 (en) 1998-08-25 1998-10-21 Boc Group Plc Variable stoichiometric combustion
US6085674A (en) * 1999-02-03 2000-07-11 Clearstack Combustion Corp. Low nitrogen oxides emissions from carbonaceous fuel combustion using three stages of oxidation
US6325003B1 (en) * 1999-02-03 2001-12-04 Clearstack Combustion Corporation Low nitrogen oxides emissions from carbonaceous fuel combustion using three stages of oxidation
US6113389A (en) * 1999-06-01 2000-09-05 American Air Liquide, Inc. Method and system for increasing the efficiency and productivity of a high temperature furnace
US6314896B1 (en) * 1999-06-10 2001-11-13 L'air Liquide, Societe Anonyme Pour L'etude Et L'exploitation Des Procedes Georges Claude Method for operating a boiler using oxygen-enriched oxidants
US6519973B1 (en) 2000-03-23 2003-02-18 Air Products And Chemicals, Inc. Glass melting process and furnace therefor with oxy-fuel combustion over melting zone and air-fuel combustion over fining zone
US6244200B1 (en) * 2000-06-12 2001-06-12 Institute Of Gas Technology Low NOx pulverized solid fuel combustion process and apparatus
US6398546B1 (en) 2000-06-21 2002-06-04 Praxair Technology, Inc. Combustion in a porous wall furnace
US6357367B1 (en) * 2000-07-18 2002-03-19 Energy Systems Associates Method for NOx reduction by upper furnace injection of biofuel water slurry
US6289851B1 (en) 2000-10-18 2001-09-18 Institute Of Gas Technology Compact low-nox high-efficiency heating apparatus
US6659762B2 (en) * 2001-09-17 2003-12-09 L'air Liquide - Societe Anonyme A' Directoire Et Conseil De Surveillance Pour L'etude Et L'exploitation Des Procedes Georges Claude Oxygen-fuel burner with adjustable flame characteristics

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101784839B (zh) * 2007-06-05 2015-06-03 巴布科克和威尔科克斯能量产生集团公司 用于使旋风燃烧室里的氮氧化物(NOx)排放物降至最少的系统和方法
CN102471811A (zh) * 2009-07-31 2012-05-23 西门子Vai金属科技有限责任公司 基于转化炉气的具有降低的NOx排放的还原方法
US9181595B2 (en) 2009-07-31 2015-11-10 Siemens Vai Metals Technologies Gmbh Reformer gas-based reducing method with reduced NOx emission
US10030911B2 (en) 2009-07-31 2018-07-24 Primetals Technologies Austria GmbH Reformer gas-based reducing method with reduced NOx emission

Also Published As

Publication number Publication date
KR20040028709A (ko) 2004-04-03
EP1350063A4 (en) 2005-11-16
CA2434445C (en) 2008-11-04
US20030108833A1 (en) 2003-06-12
CN1243927C (zh) 2006-03-01
MXPA03006238A (es) 2003-09-22
CA2434445A1 (en) 2002-07-18
JP2004523717A (ja) 2004-08-05
EP1350063A1 (en) 2003-10-08
JP4017521B2 (ja) 2007-12-05
US6957955B2 (en) 2005-10-25
ES2392506T3 (es) 2012-12-11
WO2002055933A1 (en) 2002-07-18
BR0116771A (pt) 2003-12-23
KR20050017111A (ko) 2005-02-21
US20030009932A1 (en) 2003-01-16
KR101030361B1 (ko) 2011-04-20
EP1350063B1 (en) 2012-08-08
US20020127505A1 (en) 2002-09-12

Similar Documents

Publication Publication Date Title
CN1243927C (zh) 增氧低NOx燃烧
CN1276214C (zh) 利用三级燃料氧化和炉内烟道气就地循环降低氮氧化物排放的方法
US6200128B1 (en) Method and apparatus for recovering sensible heat from a hot exhaust gas
Sarofim et al. NOx control for stationary combustion sources
US8215949B2 (en) Combustion stabilization systems
WO2003098024A2 (en) Low nox combustion
CN103604117B (zh) 循环流化床锅炉多重分级高效低氮燃烧方法及燃烧系统
NZ197243A (en) Solid fuel boiler or furnace: flue gas recirculation
WO2008051798A1 (en) Modifying transport air to control nox
US5823760A (en) Method of operating a combined cycle power plant
US6837702B1 (en) Method of operating a combined cycle power plant
CN1584396A (zh) 多级再燃控制大容量燃煤锅炉NOx生成的方法
US6318277B1 (en) Method for reducing NOx emissions with minimal increases in unburned carbon and waterwall corrosion
CN109764354B (zh) 一种低氮燃烧控制方法
CN1804459A (zh) 水煤浆再燃脱硝方法及其装置
CN1221762C (zh) 机动炉排式垃圾焚烧炉及垃圾焚烧方法
CN1059021A (zh) 各种燃料燃烧时减少氮的氧化物的排放的方法
US4095928A (en) Method of reducing nitrogen oxide emissions in flue gas
CN102032563B (zh) 一种煤粉燃烧器及具有该煤粉燃烧器的锅炉
JPH0814505A (ja) ボイラの低NOx 燃焼方法および装置
CN101201162A (zh) 燃烧系统和方法
CN102705813A (zh) 生物质燃料的锅炉燃烧方法及其锅炉
US20120266792A1 (en) Combustion Stabilization Systems
JPS5927108A (ja) 複数燃料による微粉炭の低NOx燃焼ボイラ
SU1758336A1 (ru) Способ сжигани топлива

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C14 Grant of patent or utility model
GR01 Patent grant
CF01 Termination of patent right due to non-payment of annual fee

Granted publication date: 20060301

Termination date: 20191220

CF01 Termination of patent right due to non-payment of annual fee