CN1276214C - 利用三级燃料氧化和炉内烟道气就地循环降低氮氧化物排放的方法 - Google Patents

利用三级燃料氧化和炉内烟道气就地循环降低氮氧化物排放的方法 Download PDF

Info

Publication number
CN1276214C
CN1276214C CNB018128505A CN01812850A CN1276214C CN 1276214 C CN1276214 C CN 1276214C CN B018128505 A CNB018128505 A CN B018128505A CN 01812850 A CN01812850 A CN 01812850A CN 1276214 C CN1276214 C CN 1276214C
Authority
CN
China
Prior art keywords
air
fuel
level
flue gas
preheating
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
CNB018128505A
Other languages
English (en)
Other versions
CN1441889A (zh
Inventor
罗伯特·A·阿什沃思
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Clearstack Combustion Corp
Original Assignee
Clearstack Combustion Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Clearstack Combustion Corp filed Critical Clearstack Combustion Corp
Publication of CN1441889A publication Critical patent/CN1441889A/zh
Application granted granted Critical
Publication of CN1276214C publication Critical patent/CN1276214C/zh
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23JREMOVAL OR TREATMENT OF COMBUSTION PRODUCTS OR COMBUSTION RESIDUES; FLUES 
    • F23J11/00Devices for conducting smoke or fumes, e.g. flues 
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23CMETHODS OR APPARATUS FOR COMBUSTION USING FLUID FUEL OR SOLID FUEL SUSPENDED IN  A CARRIER GAS OR AIR 
    • F23C6/00Combustion apparatus characterised by the combination of two or more combustion chambers or combustion zones, e.g. for staged combustion
    • F23C6/04Combustion apparatus characterised by the combination of two or more combustion chambers or combustion zones, e.g. for staged combustion in series connection
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23CMETHODS OR APPARATUS FOR COMBUSTION USING FLUID FUEL OR SOLID FUEL SUSPENDED IN  A CARRIER GAS OR AIR 
    • F23C1/00Combustion apparatus specially adapted for combustion of two or more kinds of fuel simultaneously or alternately, at least one kind of fuel being either a fluid fuel or a solid fuel suspended in a carrier gas or air
    • F23C1/02Combustion apparatus specially adapted for combustion of two or more kinds of fuel simultaneously or alternately, at least one kind of fuel being either a fluid fuel or a solid fuel suspended in a carrier gas or air lump and liquid fuel
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23CMETHODS OR APPARATUS FOR COMBUSTION USING FLUID FUEL OR SOLID FUEL SUSPENDED IN  A CARRIER GAS OR AIR 
    • F23C5/00Disposition of burners with respect to the combustion chamber or to one another; Mounting of burners in combustion apparatus
    • F23C5/08Disposition of burners
    • F23C5/32Disposition of burners to obtain rotating flames, i.e. flames moving helically or spirally
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23CMETHODS OR APPARATUS FOR COMBUSTION USING FLUID FUEL OR SOLID FUEL SUSPENDED IN  A CARRIER GAS OR AIR 
    • F23C6/00Combustion apparatus characterised by the combination of two or more combustion chambers or combustion zones, e.g. for staged combustion
    • F23C6/04Combustion apparatus characterised by the combination of two or more combustion chambers or combustion zones, e.g. for staged combustion in series connection
    • F23C6/045Combustion apparatus characterised by the combination of two or more combustion chambers or combustion zones, e.g. for staged combustion in series connection with staged combustion in a single enclosure
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23CMETHODS OR APPARATUS FOR COMBUSTION USING FLUID FUEL OR SOLID FUEL SUSPENDED IN  A CARRIER GAS OR AIR 
    • F23C7/00Combustion apparatus characterised by arrangements for air supply
    • F23C7/002Combustion apparatus characterised by arrangements for air supply the air being submitted to a rotary or spinning motion
    • F23C7/004Combustion apparatus characterised by arrangements for air supply the air being submitted to a rotary or spinning motion using vanes
    • F23C7/006Combustion apparatus characterised by arrangements for air supply the air being submitted to a rotary or spinning motion using vanes adjustable
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23CMETHODS OR APPARATUS FOR COMBUSTION USING FLUID FUEL OR SOLID FUEL SUSPENDED IN  A CARRIER GAS OR AIR 
    • F23C9/00Combustion apparatus characterised by arrangements for returning combustion products or flue gases to the combustion chamber
    • F23C9/006Combustion apparatus characterised by arrangements for returning combustion products or flue gases to the combustion chamber the recirculation taking place in the combustion chamber
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23GCREMATION FURNACES; CONSUMING WASTE PRODUCTS BY COMBUSTION
    • F23G5/00Incineration of waste; Incinerator constructions; Details, accessories or control therefor
    • F23G5/008Incineration of waste; Incinerator constructions; Details, accessories or control therefor adapted for burning two or more kinds, e.g. liquid and solid, of waste being fed through separate inlets
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23JREMOVAL OR TREATMENT OF COMBUSTION PRODUCTS OR COMBUSTION RESIDUES; FLUES 
    • F23J7/00Arrangement of devices for supplying chemicals to fire
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23LSUPPLYING AIR OR NON-COMBUSTIBLE LIQUIDS OR GASES TO COMBUSTION APPARATUS IN GENERAL ; VALVES OR DAMPERS SPECIALLY ADAPTED FOR CONTROLLING AIR SUPPLY OR DRAUGHT IN COMBUSTION APPARATUS; INDUCING DRAUGHT IN COMBUSTION APPARATUS; TOPS FOR CHIMNEYS OR VENTILATING SHAFTS; TERMINALS FOR FLUES
    • F23L15/00Heating of air supplied for combustion
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23LSUPPLYING AIR OR NON-COMBUSTIBLE LIQUIDS OR GASES TO COMBUSTION APPARATUS IN GENERAL ; VALVES OR DAMPERS SPECIALLY ADAPTED FOR CONTROLLING AIR SUPPLY OR DRAUGHT IN COMBUSTION APPARATUS; INDUCING DRAUGHT IN COMBUSTION APPARATUS; TOPS FOR CHIMNEYS OR VENTILATING SHAFTS; TERMINALS FOR FLUES
    • F23L7/00Supplying non-combustible liquids or gases, other than air, to the fire, e.g. oxygen, steam
    • F23L7/002Supplying water
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23LSUPPLYING AIR OR NON-COMBUSTIBLE LIQUIDS OR GASES TO COMBUSTION APPARATUS IN GENERAL ; VALVES OR DAMPERS SPECIALLY ADAPTED FOR CONTROLLING AIR SUPPLY OR DRAUGHT IN COMBUSTION APPARATUS; INDUCING DRAUGHT IN COMBUSTION APPARATUS; TOPS FOR CHIMNEYS OR VENTILATING SHAFTS; TERMINALS FOR FLUES
    • F23L9/00Passages or apertures for delivering secondary air for completing combustion of fuel 
    • F23L9/04Passages or apertures for delivering secondary air for completing combustion of fuel  by discharging the air beyond the fire, i.e. nearer the smoke outlet
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23CMETHODS OR APPARATUS FOR COMBUSTION USING FLUID FUEL OR SOLID FUEL SUSPENDED IN  A CARRIER GAS OR AIR 
    • F23C2201/00Staged combustion
    • F23C2201/10Furnace staging
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23CMETHODS OR APPARATUS FOR COMBUSTION USING FLUID FUEL OR SOLID FUEL SUSPENDED IN  A CARRIER GAS OR AIR 
    • F23C2201/00Staged combustion
    • F23C2201/20Burner staging
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23CMETHODS OR APPARATUS FOR COMBUSTION USING FLUID FUEL OR SOLID FUEL SUSPENDED IN  A CARRIER GAS OR AIR 
    • F23C2900/00Special features of, or arrangements for combustion apparatus using fluid fuels or solid fuels suspended in air; Combustion processes therefor
    • F23C2900/99004Combustion process using petroleum coke or any other fuel with a very low content in volatile matters
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23KFEEDING FUEL TO COMBUSTION APPARATUS
    • F23K2201/00Pretreatment of solid fuel
    • F23K2201/50Blending
    • F23K2201/501Blending with other fuels or combustible waste
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23KFEEDING FUEL TO COMBUSTION APPARATUS
    • F23K2201/00Pretreatment of solid fuel
    • F23K2201/50Blending
    • F23K2201/505Blending with additives
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E20/00Combustion technologies with mitigation potential
    • Y02E20/34Indirect CO2mitigation, i.e. by acting on non CO2directly related matters of the process, e.g. pre-heating or heat recovery

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Incineration Of Waste (AREA)
  • Treating Waste Gases (AREA)

Abstract

利用三级氧化和第二级炉内烟道气就地循环降低碳质燃料燃烧中NOx排放的方法和设备。所述第一级中,用部分氧化燃烧器使燃料在加热的燃烧空气存在下部分燃烧。所述部分氧化过程中产生的气态燃料通入第二级部分氧化燃烧器,同时排出熔渣并处理掉。在第二级燃烧中还引入预热的燃烧空气产生微还原烟道气并以这样的方式注入炉中以产生要求的炉内烟道气就地循环。在锅炉上部使第三燃烧空气与第三级燃烧中的烟道气混合使所述燃烧过程基本上完全。第一或第二级燃烧中可加入预热的水蒸汽。控制各级燃烧的化学计量比使总的NOx排放降至可接受的水平。此外,现有的空气过量气旋式燃烧炉可改成以三级燃烧方式运行。通过增加包括两个增加的向炉内注射空气的注射点的预热空气系统实现,在位于气旋筒与炉的界面处的气旋筒凹喉处引入空气,然后向炉上部加入过度燃烧空气。所述三级燃烧设计成在锅炉内实现要求的循环速度。

Description

利用三级燃料氧化和炉内烟道气就地循环降低氮氧化物排放的方法
部分继续
本申请是1999年2月3日申请的USSN 09/243 501(US 6 085 674)的部分继续。
发明背景
1.发明领域
本发明涉及利用燃烧技术使来自碳质燃料燃烧的氮氧化物降至极低水平的方法。更具体地,涉及采用两级顺序部分氧化接着最后一级完全氧化的燃烧技术。在第二级部分氧化中并入炉内烟道气就地循环产生局部氧气浓度较低的较冷氧化区。
2.现有技术描述
有几篇专利描述了降低含氮燃料燃烧的氮氧化物排放的分级燃烧技术。US3 727 562描述了降低氮氧化物(NOx)排放的三级法,其中第一级燃烧在空气不足的情况下操作,将来自此级的未燃烧燃料分离而在第二区用过量的空气燃烧,然后使所述第一和第二级的气体在空气过量的第三级燃烧。US4 343 606描述了一种分级燃烧法,其中在0.50至0.625的化学计量空气/燃料比下操作的第一级部分氧化区产生气态燃料,接着是在1.0或稍大的空气/燃料化学计量比下操作的第二级氧化。然后加入附加空气以确保所述燃料完全氧化。其它专利如US 5002 484描述利用外部烟道气循环降低NOx排放。另一些专利如US5 316469和5 562 438描述利用燃烧器内烟道气循环降低NOx排放。虽然这些方法达到其目的,但它们未达到目前US环境保护机构(EPA)规定下所要求的NOx降低标准。
1990年的空气洁净法令修正案将燃煤电站锅炉的NOx排放限度调整至根据锅炉类型在2000年要满足0.40至0.86lb NOx/106Btu的范围,以上提及的许多专利技术已用于满足这些限制。但响应OzoneTransport Assessment Group(OTAG)1998年要求东和中西部各州执行的国家执行计划(SIP),U.S.EPA已颁布新规定,到2003年将要求所有类型燃煤锅炉的氮氧化物排放在臭氧季节(五至九月)达到0.15lbNOx/106Btu或更低。
目前工业上可用的燃烧技术不能满足此限制。保证如此低NOx排放量的可用于烧碳质燃料的电站锅炉的唯一技术是选择催化还原(SCR)技术。所述SCR法通过添加氨和下游催化剂破坏煤燃烧过程中产生的NOx。此途径的投资和运行费用都很高。此外,煤中的砷使所述催化剂中毒,使其寿命缩短。而且来自所述燃烧过程的亚硫酸/硫酸铵和硫酸钙可堵塞所述催化剂,从而降低其有效性。
因而,燃烧含氮的碳质燃料时产生0.15lb NOx/106Btu或更低的氮氧化物排放的改进燃烧方法将是非常有利的。此体系将提供比SCR更低的每降低一吨NOx的成本,为电力工业提供一种经济的满足所述新颁布的氮氧化物排放标准的技术。
本发明炉内烟道气就地循环的分级燃烧法比实现此降低的SCR技术成分低,因为不需要碳质燃料燃烧产物可使之中毒的催化剂,在炉内烟道气就地循环的情况下分级燃烧是一种更可靠的技术。
发明概述
已发现在一系统中采用分级燃烧器和炉内烟道气就地循环的方法,将使NOx排放降至2003年规定的≤0.15lb NOx/106Btu的限度。为实现分级燃烧,可利用任何现有分级燃烧器的第一级,其中空气/燃烧化学计量比(SR)可在0.50至0.70的范围内操作。这些类型的分级燃烧器描述在例如US4 423 702;4 427 362;4 685 404;4 765 258和5 458 659中,均引入本文供参考。此分级燃烧法可还加入碱性化合物以降低煤灰熔渣粘度和/或在熔融炉渣中捕集硫。虽然可使用任何类型的分级燃烧器,但优选的类型是从燃烧器中除去熔融炉渣以减小灰分携带量和降低炉渣在锅炉中结垢的那些。此外,在空气过量条件下操作的气旋燃烧炉可翻新改进以实施所述三级燃烧技术。
典型地,第一级燃烧器中在约0.50至0.70的空气/煤化学计量比(SR)下燃烧煤以减少含氮燃料燃烧产生的NOx。排出气态燃料并分离出熔渣。第二级燃烧中,在第一级产生的气态燃料中加入预热的第二级燃烧空气,空气的加入速度使此时总SR为约0.85至0.99。这种空气输入法确保迅速混合和在还原气氛下局部火焰温度较高以产生确保高燃烧效率(定义为灰分中未燃烧碳含量低)的高温条件。由于第二级部分氧化区内火焰区都是还原的(氧气不足),所以产生很少的热NOx。所述第二级燃烧气态燃料和空气的引入法设计成实现炉内烟道气循环(FGR)使用于第二级部分氧化的部分氧气可由所述FGR提供。此技术可降低火焰区内局部氧气浓度从而有助于减少NOx的形成。
第二级部分燃烧产物通过锅炉上升,通过向锅炉水冷壁辐射传热而被冷却。所述烟道气已被冷却至约2300至2700°F范围内时,加入过度燃烧空气(OFA)使此时总SR达到约1.05至1.25的范围内以使所述燃烧过程完全。由于温度较低不利于产生NOx的热反应,因而在此OFA区NOx的产量显著地降低。
附图简述
结合附图阅读以下详细描述将使本发明的各种其它目的、特征和优点更显而易见,这些附图仅作为举例示出,其中:
图1是用于壁式燃烧(wall-fired)电业锅炉的分级燃烧法的示意图;
图2是氰化氢、氨和NO热化学平衡随第一级空气/燃料化学计量比的变化图;
图3是第二级NO还原反应热化学平衡的图示;
图4是第三级NO热化学平衡随温度的变化图;和
图5是三级燃烧技术用于气旋式燃烧装置的示意图,其中气旋筒用于第一级燃烧。
发明详述
对于碳质燃料的燃烧而言,为利用分级燃烧实现NOx的深度降低,需要在燃烧过程中使所述化学计量空气/燃料比低于1.0直至所述气体足够冷而不能发生产生NOx的热反应。已发现采用有第二级烟道气循环(FGR)的三级燃烧技术将使NOx排放降至优选低于0.15lbNOx/106Btu的水平。
为实施此三级燃烧技术,可使用前面提及的任何现有分级燃烧器的第一级,其中空气/燃烧化学计量比(SR)可在0.50至0.70的范围内操作。此燃烧技术可加入碱性化合物以降低煤灰熔渣的粘度和/或在熔融的炉渣中捕集硫。所述第一级燃烧中还可加入水蒸汽以改善碳的烧尽度,如US5 458 659中所述。虽然任何类型的分级燃烧器均可使用,但最优选的是从燃烧器或炉底除去熔渣以减小灰分携带量和降低炉渣在锅炉中结垢的那些。空气过量的气旋式燃烧装置也可通过在气旋筒气态燃料进入锅炉的凹喉处或在所述炉的低于和/或高于所述凹喉的一些点加入预热空气、还包括在火焰中加入炉上部过度燃烧空气而转变成所述三级操作。
在所述燃烧器的第一级内使煤在低于化学计量的空气条件下燃烧以减少释放的燃料氮氧化产生的NOX。第一级所达到的温度取决于燃料分析、水蒸汽和水的添加速率、预热空气的温度、空气/燃料比、和所述燃烧器或气旋筒内设计的除热。第一级的温度典型地在2600至3000°F的范围内。此级的SR典型地在约0.50至0.70的范围内。第一级燃烧优选有至少约0.1至0.3秒的停留时间以确保在随后的高温、更强的氧化条件下产生较少的氨和氰化氢(它们是NOx前体)。产生气态燃料,并从所述燃烧器中或从锅炉底部排出熔渣。
第二级燃烧中,将预热的第二级燃烧空气引入来自第一级的气态燃料中。第二级燃烧空气以这样的速率加入以使此时的总SR在约0.85至0.99的范围内。这种空气输入法确保迅速混合和局部火焰温度较高以在还原条件下产生高温确保高燃烧效率(灰分中低碳)和提高NOx破坏反应的动力学速率。由于第二级部分氧化区内火焰区是总体还原的(氧气不足),所以产生很少的热NOx。所述第二级燃烧气态燃料和空气引入法设计成实现炉内烟道气就地循环(FGR)使部分氧气可由所述FGR提供从而可降低预热的常压空气进入第二级的速度,从而降低局部气体区的氧气分压和温度以减少热NOx的形成。每一具体的锅炉需要完成确定最佳喷射速度和第二级火焰空气传播的气流取向以产生所要FGR效应的物理和/或计算机用流体动力学(CDF)模型。
此第二级部分氧化中确定的SR与传统的再燃烧(Reburn)技术中所用SR类似,其中在锅炉热部(高于传统燃料器且与之分离)的燃烧烟道气中加入燃料如天然气,使所述再燃烧燃料注射点处的炉内SR从进入该区的由燃烧器提供的1.10至1.20范围降至约0.90的SR。标称的0.90SR形成还原气体条件使所述空气过量燃烧器火焰中形成的一氧化氮(NO)转化成大气中的或双原子的氮(N2)。用本发明的分级燃烧技术,离开所述第一级(典型地SR=0.60)的NOx和NOx前体化合物(氨和氰化氢)将比产生总体空气过量条件(SR>1.0)的传统燃烧器低得多。由于燃烧区内氧气分压对NOx产量影响很大,氧气浓度越高,NOx产量越高。通过在第一级中在0.60的SR下燃烧煤并在约0.90的SR下燃烧离开所述第一级而进入所述炉内的气态燃料,形成很少的NOx,因为产生的微还原气有使已形成的任何NOx转化成N2的倾向。炉内就地FGR还有助于降低局部温度和所述炉热部的氧气浓度区。前两级部分氧化中产生的烃(CHx)、一氧化碳(CO)和氢气(H2)利于按以下简化的总反应实例使NO转化成N2
,和
来自第二级的微还原气态产物通过锅炉上升,通过向锅炉水冷壁辐射和对流传热而被冷却。所述微还原烟道气已被冷却至约2300至2700°F范围内时,加入过度燃烧空气(OFA)以使所述燃烧过程完全。由于温度较低,比较高的炉温更不利于热NOx反应,因而在此OFA空气过量区NOx的产量很小。
以下详细的工艺描述中,各图中相同的标记意指相同的元件。
优选使用Florida Power Corporation分级燃烧器(US4 423 702和5 458 659)的本发明方法的一个典型实例示于图1中。本领域技术人员将理解可对此图进行某些改变,而此改变仍在在本发明范围内。图1所示实施方案中,第一级燃烧器10位于锅炉14的入口12之前。每一燃烧器中的开口16接收常规燃料如粉煤(例如)和碱性产品如石灰或石灰石(未示出)及运载用一次空气8或预热空气17。通过调节预热的(400至700°F)二次空气流18使所述燃烧器内发生控制的煤的部分氧化。通过控制预热空气流17使第一级燃烧器10中空气/燃料化学计量比(SR)保持在约0.50至0.70(SR1),最优选保持在约0.60。一种可选的实施方案中,可向燃烧器10中注射水蒸汽或水20,加水蒸汽或水产生0.1至0.3的水蒸汽或水/燃烧之重量比以增强所述部分氧化或气化反应。所述第一级燃烧器10的情况下,在部分氧化室22中使气态燃料形式的部分燃烧产物与来自煤的灰分加所述碱性无机化合物的熔渣分离,包含碱性化合物和煤灰的熔渣低共熔物24通过第一级燃烧器10的底部开口26排出。在水淬闸门系统28中使所述熔渣骤冷,使所述灰排入收集罐,从中泵入沉淀池或按传统的已知方法处理。
所述分级燃烧器10有一个部分氧化区,其中在约2200至3000°F的温度下混合使煤与空气密切接触。通过使用有熔渣排除装置的分级燃烧器10,在气体进入锅炉14之前和在入口12处进一步部分氧化之前从气体中除去所述煤部分氧化过程中产生的大部分(75-90%)熔渣。为减少在高温和过量空气条件下产生NOX前体-氰化氢(HCN)和氨(NH3),在所述第一级燃烧器内的停留时间应在至少约0.1至0.3秒的范围内。所述热的气态燃料产物离开燃烧器10,经管29至入口12通入锅炉14。二次空气通过形成第二级部分氧化30的入口导入炉中使气态燃料与空气迅速混合产生热火焰区,由于此区的还原条件(SR2=0.85至0.99)使NOx产量减少。在一定的速度范围内设定燃烧产物的喷流效应以确保炉内烟道气38循环至第二级射流中。所述速度随锅炉的几何形状和锅炉燃烧器的数量改变。在此烟道气循环作用下,减少引入第二级的常压预热空气。因来自第一、第二和第三级空气的烟道气的入口速度和流动取向作用从锅炉上部落下的循环烟道气(它是氧化气氛)中的氧气补充保持要求的SR或约0.85至0.99所需余量氧气。
来自第二级部分氧化的气态燃料产物31通过锅炉14的辐射段上升,通过向锅炉的水冷壁36辐射和对流传热而被冷却至2300至2700°F的温度,其中所述气体已在还原气氛条件下保持约0.25至0.50秒或更长时间。此时,在入口32处向炉内加入过度燃烧空气(OFA)形成第三级燃烧技术以使所述燃烧过程完全,加入空气使此区内化学计量比达到约1.05至1.30(SR3)的空气过量条件。OFA注射可通过确保空气与炉内气体迅速混合任何可用的工业设计实现以使第二级气流中的燃料组分完全燃烧。
第二种途径(如图3b所示)是通过环绕内部气态燃料管29的两个同心管环形套筒54、56加入三和四次空气,这些圆筒之一或之二优选包含角度可调的内部挡板58、60以确保空气旋流。三次空气通过环绕离开第一级部分氧化装置10而终止于炉入口12的内部热气态燃料管29的同心管43的环形套筒54加入。四次空气通过环绕三次空气管43的同心管64的环形套筒56加入。通过改变相对空气流速和两区之间的空气旋流强度,可使火焰形成长火焰以从中辐射能量而形成较冷的火焰。需要时,在未利用过度燃烧空气系统的情况下可有效地利用此类第二级入口确保低NOx排放,但已知一般不如使用OFA系统时低。控制总空气速度使第二级的总化学计量比在约0.85至0.99(SR2)的范围内。需要时,此级也可加入水蒸汽或水。
第三种实施方案中,如图3(c)所示,通过环绕离开第一级部分氧化装置10而终止于炉入口12的内部热气态燃料管29的同心管68的一个同心管环形套筒66加入三次空气。所述三次空气设计成形成空气旋流67。控制总空气速度使第二级的总SR在约0.85至0.99(SR2)的范围内。在来自第二级的气态燃料31已冷却至2300至2700°F范围内之后完成第三级燃烧技术(过度燃烧空气)32。
用一维火焰(ODF)动力学模型评价所述三级粉煤燃烧技术。所述ODF模型将所述燃烧系统视为一系列一维反应器。每个反应器可以是完全混合或未混合的。每个ODF反应器可还被赋予各种热力学特征,包括绝热、等温、或特定的温度和热通量和/或压力分布。此外,可在所述反应器的任何间隔加入工艺物流,沿反应器长度有任意的混合图形。输入数据包括初始物质浓度和条件、每个反应器的条件、化学物质和反应机理包括速率参数的描述、和模型控制参数。单独的输入文件提供所述化学物质的热力学性质数据库。输出数据包括沿反应器链特定位置的浓度分布。用基于通过与实验结果对比证实的来自实验文献的数据的详细反应机理计算每个反应器内的化学反应。所述详细反应机理的解答采用适用于许多耦合方程系统的隐含解算法。专门的子模型用于粉煤燃烧和气相辐射现象。所述ODF模型已针对来自几个源的实验数据验证。因而用于评价本发明三级燃烧技术。
分析所述三级燃烧技术中,煤、吸附剂(和可选的水蒸汽)混合物在第一活塞流反应器开始时以约0.60(SR1)的化学计量比和设定的初始温度(2600至3000°F)下引入。在第一级中在0.60的SR下用活塞流提高局部火焰温度(在还原条件下)以减少氮氧化物前体(具体地为氰化氢和氨)的形成,见图2。约0.20秒的停留时间之后,添加空气开始第二级,使第二级的化学计量比达到约0.88至0.96(SR2)。第二级的停留时间设置在0.5秒,相信这对于电业锅炉而言是合理的时间。第二级火焰温度和气态燃料/空气混合时间对最终NOx排放影响最大。第二级火焰温度越低,产生的NOx越少。注入水蒸汽与不注入水蒸汽相比NOx产量更低,主要是因为火焰温度降低。在其它参数相同的情况下,注入水蒸汽使第二级火焰温度比不注入水蒸汽时下降60°F。因此,在第二级燃烧之前用水蒸汽或更大的除热使第一级容器中的气态燃料冷却有益于减少NOx排放。基于相同的燃烧温度,与不注入水蒸汽的三级燃烧相比,以约0.30lb水蒸汽/lb煤的比率添加水蒸汽使NOx排放减少约10%。
此外,气态燃料/空气混合在第二级的停留时间越长,局部火焰温度越低,因而最终的NOx排放越低。图3中示出第二级的NOx还原热化学平衡。第二级的还原条件保持0.5秒的时间后,加入过度燃烧空气(OFA)使第三级的化学计量比达到约1.14(SR3)提供3.2%(干)氧气浓度。进入炉上部的冷却(过热/再热)通道之前此区的停留时间也设置在0.5秒。由于在第二级气态燃料已冷却后加入空气,所述OFA燃烧区内火焰温度低(2300至2700°F)。如图4所示,在较低温度下不利于热NOx产生。例如,在2400°F下热NOx产生反应( )的平衡系数低于在2700°F平衡系数的十分之一。
基于实验数据假定第二级和第三级的混合时间为0.07秒。考虑到火焰辐射和解离损失在为与形成的质量和能量平衡相应而增加的热量除去下操作这些级。来自OFA注射点的气态燃料在进入炉过热/再热区之前应有至少约0.25秒和更优选0.50秒或更长的停留时间。
表1示出在有和没有水蒸汽的情况下操作时各种第二级化学计量比(SR2)的预计总NOx排放。可见,通过在约0.88至0.97范围内的化学计量比下操作所述第二级,所述三级燃烧技术可达到约0.15lb/106Btu或更低的NOx排放。在低化学计量比下,预计NOx排放低达0.067至0.088lb/106Btu。此数据未考虑有助于进一步降低NOx的所述FGR现象。
表1.三级煤燃烧
  第一级加入水蒸汽*SR1=0.60,停留时间0.2秒SR2=0.89-0.95,停留时间0.5秒SR3=1.14,停留时间0.5秒   第一级不加水蒸汽SR1=0.60,停留时间0.2秒SR2=0.88-0.96,停留时间0.5秒SR3=1.14,停留时间0.5秒
总NOx排放   总NOx排放
  SR2 ppmvd(@3%O2)   lb/106Btu   SR2   ppmvd(@3%O2)   lb/106Btu
  0.89 46   0.067   0.88   61   0.088
  0.93 61   0.088   0.91   86   0.120
  0.95 75   0.109   0.93   113   0.157
  *0.30lb蒸汽/lb燃煤   0.96   175   0.244
虽然加煤、壁式和切向燃烧炉需要加入第一级部分氧化装置以实施本发明的三级氧化技术,但气旋式燃烧炉不需要。如图5所示,气旋式燃烧装置70上现有的燃烧筒可改成在本发明第一级部分氧化条件下操作。传统的两级燃烧系统与所述气旋式燃烧装置70之间的区别在于它们烧粉煤而所述气旋装置烧底煤72(典型地-1/4”尺寸)。
最近,某些电业已在其气旋燃烧装置中加入过度燃烧空气74以使所述气旋燃烧筒76可在微还原条件(SR=0.90至0.95)下运行。这导致NOx减少多达60%。筒76中在传统的过量空气条件下操作的旋风器典型地是高NOx排放装置,通常在1.0至2.0lb NOx/106Btu的范围内。为实施所述三级技术,在来自筒76的热气91进入主炉的凹喉位置82向已经有过度燃烧空气74容量的气旋装置70中加入附加的预热空气78。第一级装置(气旋筒76)则在针对传统的两级燃烧装置所述的化学计量空气/燃料比条件(SR约0.50至0.70)下操作,预热空气80和78通过管线87(一次空气)、88(二次空气)和89(三次空气)加入筒中。预热空气78在所述筒的凹喉位置82加入以使炉下部84内SR增至约0.85至0.99。此第二级空气将在来自筒76的第一级气态燃料91进入炉的凹喉90周围、或在与所述凹喉同一炉壁上或相对炉壁或侧壁上或其组合的高于和/或低于凹喉开口处83加入。所述第二级空气无论在何处都将实现炉内烟道气就地循环,如箭头93和/或92所示。在炉上部86中加入过度燃烧空气74以使所述燃烧过程完全,此时的SR典型地升至约1.10至1.20以确保足够的碳烧尽度。
实施所述三级技术需要对任何现有气旋燃烧装置所做的改变包括:1)在凹喉位置82的为第二级燃烧提供空气的穿透锅炉管壁的通风管和注射器;2)可添加石灰石以降低熔灰粘度(优选约10泊的粘度)以致炉渣很容易从炉底排出;3)可将所研究的筒式水冷壁上现有的耐火材料层换成在还原气氛条件下性能更好的耐火材料;和4)增加向炉上部86供应空气的管道和过度燃烧空气74的注射器(如果不在适当位置)。对于烟道气直接在所述凹喉位置以上注入炉内的配有烟道气循环(FGR)系统的气旋式燃烧装置,可利用现有的FGR口添加第二级空气而不必增加管壁穿透。
此外,如果低反应性燃料如低挥发性生煤、无烟煤或石油焦需要,可将添加水蒸汽和/或水的技术用于这些改型气旋装置以提高碳的烧尽度。这通过碳-水反应( )实现,该反应在高温(例如2600°F)下有与碳-氧反应类似的反应速率。注入水蒸汽和/或水是在煤气化工业已实践几十年的可靠技术。
已详细地描述了本发明的具体实施方案,在本公开的总教导下开发各种修改和改变对于本领域技术人员是显而易见的。例如,可使用任何类型的碳质燃料如选自无烟煤、生煤、次生煤和褐煤;焦油及其乳液、沥青及其乳液、石油焦、石油及其乳液、煤的水和/或油浆、造纸厂污泥固体物、污水污泥固体物类的一或多种和此类内所有燃料的的组合及其混合物。因此,所公开的特殊排列是要举例说明而不限制本发明的范围,本发明的范围由所附权利要求书及其任何和所有等同物的全部宽度给出。

Claims (25)

1.一种降低碳质燃料燃烧过程中氮氧化物(NOx)排放的方法,所述方法包括以下步骤:
a)将含有燃料结合氮的碳质燃料加入第一级部分氧化装置,其中加入运载用空气和预热的一次空气,与所述碳质燃料混合产生气态燃料;
b)将来自第一级的所述气态燃料引入第二级部分氧化并向所述气态燃料中加入预热的二次空气产生还原烟道气;
c)将来自第一级的所述气态燃料引入第二级部分氧化并向所述气态燃料中加入预热的二次空气通过选择加入所述空气的喷射速度和/或实现定向的空气流取向产生要求的炉内烟道气就地循环;和
d)将所述烟道气和预热的二次空气加入锅炉中,流过锅炉的辐射段产生还原烟道气;
e)将所述还原烟道气引入第三级氧化,其中向所述锅炉中加入预热的三次空气或过度燃烧空气使所述燃烧过程完全。
2.权利要求1的方法,包括无烟煤、生煤、次生煤和褐煤、焦油及其乳液、沥青及其乳液、石油焦、石油及其乳液、煤的水和/或油浆、造纸厂污泥固体物、污水污泥固体物、及其组合和混合物类的碳质燃料。
3.权利要求1的方法,其中所述运载用空气和预热的一次空气加入在0.50至0.70的化学计量空气/燃料比下操作的第一级部分氧化装置中。
4.权利要求1的方法,还包括与所述碳质燃料一起加入选自石灰、水合石灰、石灰石、白云石、天然小苏打、天然碱和钾碱的碱或其组合的步骤。
5.权利要求1的方法,还包括与所述碳质燃料一起加入水蒸汽或水达到0.1至0.3的水蒸汽或水/燃料重量比的步骤。
6.权利要求1的方法,其中所述第一级部分氧化装置的气态燃料在所述第一级部分氧化装置中的停留时间为0.1至0.3秒。
7.权利要求1的方法,还包括用水淬系统使熔渣与所述第一级部分氧化装置中的气态燃料分离产生固化的灰粒并使所述气态燃料通过冷却的耐火材料衬里管离开所述第一级部分氧化装置进入锅炉的步骤。
8.权利要求1的方法,其中所述预热空气在400至700°F范围内的温度下加入。
9.权利要求1的方法,其中加入预热的二次空气足以使第二级氧化中总的空气/燃料化学计量比为0.85至0.99,以这样的速度和/或流动取向引入以致产生氧化烟道气从上部锅炉过度燃烧空气或三次空气区降落至所述第二级区的就地炉内循环,从而使二次空气的速度降低以保持要求的第二级空气/燃料化学计量比。
10.权利要求1的方法,其中使所述气态燃料与预热的二次空气和预热的三次空气混合,其中所述空气流通过设计有适当的炉入口速度和/或定向空气流取向的喷嘴引入以形成要求的炉内烟道气就地循环。
11.权利要求10的方法,其中预热的二次空气和预热的三次空气以这样的速度加入以使第二级氧化中总的空气/燃料化学计量比为0.85至0.99而第三级氧化中总的空气/燃料化学计量比为1.05至1.30。
12.权利要求1的方法,其中所述方法在过量空气气旋式燃烧炉中进行,通过增加预热空气系统在位于气旋筒与锅炉界面的所述气旋筒的凹喉位置向所述气旋式燃料炉中引入空气、然后在气旋式燃烧炉上部引入过度燃烧空气使所述燃烧过程完全,使所述气旋式燃烧炉以三级燃烧器方式运行。
13.权利要求1的方法,其中使来自第二级部分氧化的烟道气冷却至2300至2700°F的温度。
14.权利要求1的方法,其中所述第三级氧化中向冷却的炉内还原烟道气中加入预热空气建立1.05至1.30的空气/燃料化学计量比。
15.权利要求1的方法,其中所述第三级氧化中在所述还原烟道气已冷却至2300至2700°F的温度时用过度燃烧空气炉内注射技术加入预热空气。
16.权利要求4的方法,其中添加所述碱或其组合的步骤包括将所述碱或其组合加入注入第一级部分氧化装置的运载用一次空气和/或预热的二次空气中。
17.权利要求14的方法,其中预热的四次空气通过同心圆筒加入,所述同心圆筒环绕所述三次空气流过的管。
18.权利要求17的方法,其中所述预热的四次空气在所述同心圆筒内旋流。
19.权利要求14的方法,其中所述的第一级气态燃料和三次空气的速度被设置成产生0.85到0.99的空气与燃料的化学计量比。
20.权利要求17的方法,其中所述的第一级气态燃料、三次空气和四次空气的速度被设置成产生0.85到0.99的空气与燃料的化学计量比。
21.权利要求1的方法,其中使来自第二级部分氧化的烟道气冷却至2400至2700°F的温度。
22.权利要求1的方法,其中使来自第二级部分氧化的烟道气在还原气氛条件下保持0.25至0.50秒。
23.权利要求1的方法,其中使来自第二级部分氧化的烟道气在还原气氛条件下保持至少0.5秒。
24.权利要求1的方法,其中第三级氧化中向所述冷却的炉内烟道气中加入预热空气使所述燃烧过程完全。
25.权利要求1的方法,其中第三级氧化中在所述还原烟道气已冷却至2300至2700°F的温度时用任何过度燃烧空气炉内注射技术加入预热空气。
CNB018128505A 2000-06-08 2001-06-01 利用三级燃料氧化和炉内烟道气就地循环降低氮氧化物排放的方法 Expired - Fee Related CN1276214C (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US09/590,408 2000-06-08
US09/590,408 US6325002B1 (en) 1999-02-03 2000-06-08 Low nitrogen oxides emissions using three stages of fuel oxidation and in-situ furnace flue gas recirculation

Publications (2)

Publication Number Publication Date
CN1441889A CN1441889A (zh) 2003-09-10
CN1276214C true CN1276214C (zh) 2006-09-20

Family

ID=24362134

Family Applications (1)

Application Number Title Priority Date Filing Date
CNB018128505A Expired - Fee Related CN1276214C (zh) 2000-06-08 2001-06-01 利用三级燃料氧化和炉内烟道气就地循环降低氮氧化物排放的方法

Country Status (10)

Country Link
US (1) US6325002B1 (zh)
EP (1) EP1287290B1 (zh)
KR (1) KR20030031909A (zh)
CN (1) CN1276214C (zh)
AT (1) ATE447690T1 (zh)
AU (2) AU6530301A (zh)
CA (1) CA2410086C (zh)
DE (1) DE60140360D1 (zh)
WO (1) WO2001094843A1 (zh)
ZA (1) ZA200209640B (zh)

Families Citing this family (42)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000065305A (ja) * 1998-08-20 2000-03-03 Hitachi Ltd 貫流型ボイラ
US6604474B2 (en) 2001-05-11 2003-08-12 General Electric Company Minimization of NOx emissions and carbon loss in solid fuel combustion
US6790030B2 (en) * 2001-11-20 2004-09-14 The Regents Of The University Of California Multi-stage combustion using nitrogen-enriched air
US6694900B2 (en) * 2001-12-14 2004-02-24 General Electric Company Integration of direct combustion with gasification for reduction of NOx emissions
US6935251B2 (en) 2002-02-15 2005-08-30 American Air Liquide, Inc. Steam-generating combustion system and method for emission control using oxygen enhancement
US6869354B2 (en) 2002-12-02 2005-03-22 General Electric Company Zero cooling air flow overfire air injector and related method
US6790031B2 (en) * 2003-01-16 2004-09-14 Rjm Corporation Fuel staging methods for low NOx tangential fired boiler operation
US7374735B2 (en) * 2003-06-05 2008-05-20 General Electric Company Method for nitrogen oxide reduction in flue gas
US6968791B2 (en) * 2003-08-21 2005-11-29 Air Products And Chemicals, Inc. Oxygen-enriched co-firing of secondary fuels in slagging cyclone combustors
US6910432B2 (en) * 2003-08-21 2005-06-28 Air Products And Chemicals, Inc. Selective oxygen enrichment in slagging cyclone combustors
FR2869673B1 (fr) * 2004-04-30 2010-11-19 Alstom Technology Ltd Procede pour la combustion de residus de raffinage
CN100346105C (zh) * 2004-06-07 2007-10-31 上海电力学院 多级再燃控制大容量燃煤锅炉NOx生成的方法
US7168947B2 (en) * 2004-07-06 2007-01-30 General Electric Company Methods and systems for operating combustion systems
US7833009B2 (en) * 2004-09-10 2010-11-16 Air Products And Chemicals, Inc. Oxidant injection method
CN100434797C (zh) * 2004-10-10 2008-11-19 辽宁东电燃烧设备有限公司 一种煤粉锅炉的低氮氧化物的燃烧方法
EP1957868A1 (en) * 2005-12-02 2008-08-20 L'AIR LIQUIDE, Société Anonyme pour l'Etude et l'Exploitation des Procédés Georges Claude METHODS AND SYSTEMS FOR REDUCED NOx COMBUSTION OF COAL WITH INJECTION OF HEATED NITROGEN-CONTAINING GAS
US7484955B2 (en) * 2006-08-25 2009-02-03 Electric Power Research Institute, Inc. Method for controlling air distribution in a cyclone furnace
US20080105176A1 (en) * 2006-11-08 2008-05-08 Electric Power Research Institute, Inc. Staged-coal injection for boiler reliability and emissions reduction
KR100820227B1 (ko) * 2007-01-09 2008-04-07 한국에너지기술연구원 화염가변형 가스연료용 저질소산화물 산소연소기
US20090007827A1 (en) * 2007-06-05 2009-01-08 Hamid Sarv System and Method for Minimizing Nitrogen Oxide (NOx) Emissions in Cyclone Combustors
US7775791B2 (en) * 2008-02-25 2010-08-17 General Electric Company Method and apparatus for staged combustion of air and fuel
US8430665B2 (en) * 2008-02-25 2013-04-30 General Electric Company Combustion systems and processes for burning fossil fuel with reduced nitrogen oxide emissions
JP5148426B2 (ja) * 2008-09-17 2013-02-20 三菱重工業株式会社 再熱ボイラ
US20100077942A1 (en) * 2008-09-26 2010-04-01 Air Products And Chemicals, Inc. Oxy/fuel combustion system with little or no excess oxygen
US20100203461A1 (en) * 2009-02-06 2010-08-12 General Electric Company Combustion systems and processes for burning fossil fuel with reduced emissions
US8302545B2 (en) * 2009-02-20 2012-11-06 General Electric Company Systems for staged combustion of air and fuel
JP5653996B2 (ja) * 2009-03-26 2015-01-14 エルダッバグ, ファディELDABBAGH, Fadi 化石燃料及びバイオ燃料燃焼装置における排出物低減及びエネルギー効率改善のための装置
US20110143291A1 (en) * 2009-12-11 2011-06-16 Clements Bruce Flue gas recirculation method and system for combustion systems
US20120244479A1 (en) * 2011-03-22 2012-09-27 General Electric Company Combustion System Using Recycled Flue Gas to Boost Overfire Air
CN102553385B (zh) * 2012-01-19 2014-01-22 武汉科技大学 锅炉燃烧无烟零排污水节能组合机
CN103486573A (zh) * 2012-06-12 2014-01-01 武汉锅炉集团工程技术有限公司 生物化工醇废液锅炉燃烧方法
CN102980194B (zh) * 2012-11-29 2015-09-02 华南理工大学 一种垃圾低氮和低二噁英炉排焚烧方法及其装置
CN103104911B (zh) * 2013-02-20 2016-01-20 上海锅炉厂有限公司 一种三级燃尽风布置方式
US10690344B2 (en) 2016-04-26 2020-06-23 Cleaver-Brooks, Inc. Boiler system and method of operating same
JP6242453B1 (ja) * 2016-08-25 2017-12-06 中外炉工業株式会社 加熱炉の冷却装置
CN107120655B (zh) * 2017-03-31 2018-12-28 黄云生 超高温氧化催化环保炉
CN110006030B (zh) * 2019-03-19 2020-05-19 西安交通大学 一种煤粉预热解高效燃尽及低氮还原装置和方法
CA3131851A1 (en) * 2019-03-29 2020-10-08 Kawasaki Jukogyo Kabushiki Kaisha Petroleum residuum burning boiler and combustion method thereof
CN112413569B (zh) * 2020-10-14 2022-09-06 上海交通大学 带有循环烟气的高速射流燃尽风装置
CN112628725B (zh) * 2021-01-12 2021-11-12 哈尔滨工业大学 一种径向分级低NOx煤粉燃烧装置
CN113522925B (zh) * 2021-06-08 2022-12-02 湖南省欣洁环保科技有限公司 生活垃圾处理装置
CN113716530B (zh) * 2021-09-18 2023-01-13 万华化学集团股份有限公司 一种含氨的H2S酸性气制备低含量NOx硫酸的焚烧炉及方法

Family Cites Families (21)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2925069A (en) 1954-12-29 1960-02-16 Riley Stoker Corp Fuel burning apparatus
US3727562A (en) 1971-12-13 1973-04-17 Lummus Co Three-stage combustion
US3955512A (en) 1973-11-30 1976-05-11 Josef Martin Feuerungsbau Gmbh Refuse incinerator
US4173189A (en) * 1977-01-21 1979-11-06 Combustion Engineering, Inc. Boiler cold start using pulverized coal in ignitor burners
US4343606A (en) 1980-02-11 1982-08-10 Exxon Research & Engineering Co. Multi-stage process for combusting fuels containing fixed-nitrogen chemical species
US4427362A (en) 1980-08-14 1984-01-24 Rockwell International Corporation Combustion method
JPS5896905A (ja) * 1981-12-07 1983-06-09 Babcock Hitachi Kk Nox還元率を高めた燃焼装置
US4423702A (en) 1982-01-22 1984-01-03 Ashworth Robert A Method for desulfurization, denitrifaction, and oxidation of carbonaceous fuels
US4765258A (en) 1984-05-21 1988-08-23 Coal Tech Corp. Method of optimizing combustion and the capture of pollutants during coal combustion in a cyclone combustor
US4685404A (en) 1984-11-13 1987-08-11 Trw Inc. Slagging combustion system
US5002484A (en) 1988-03-25 1991-03-26 Shell Western E&P Inc. Method and system for flue gas recirculation
US5052312A (en) * 1989-09-12 1991-10-01 The Babcock & Wilcox Company Cyclone furnace for hazardous waste incineration and ash vitrification
US5044932A (en) 1989-10-19 1991-09-03 It-Mcgill Pollution Control Systems, Inc. Nitrogen oxide control using internally recirculated flue gas
US5462430A (en) * 1991-05-23 1995-10-31 Institute Of Gas Technology Process and apparatus for cyclonic combustion
US5181475A (en) * 1992-02-03 1993-01-26 Consolidated Natural Gas Service Company, Inc. Apparatus and process for control of nitric oxide emissions from combustion devices using vortex rings and the like
US5291841A (en) * 1993-03-08 1994-03-08 Dykema Owen W Coal combustion process for SOx and NOx control
US5458659A (en) 1993-10-20 1995-10-17 Florida Power Corporation Desulfurization of carbonaceous fuels
JPH07260106A (ja) * 1994-03-18 1995-10-13 Hitachi Ltd 微粉炭燃焼バーナ及び微粉炭燃焼装置
US5562438A (en) 1995-06-22 1996-10-08 Burnham Properties Corporation Flue gas recirculation burner providing low Nox emissions
GB9612479D0 (en) * 1996-06-14 1996-08-14 Mitsui Babcock Energy Limited Fluent fuel fired burner
US5878700A (en) * 1997-11-21 1999-03-09 The Babcock & Wilcox Company Integrated reburn system for NOx control from cyclone-fired boilers

Also Published As

Publication number Publication date
EP1287290B1 (en) 2009-11-04
US6325002B1 (en) 2001-12-04
DE60140360D1 (de) 2009-12-17
AU2001265303B2 (en) 2006-12-21
ATE447690T1 (de) 2009-11-15
KR20030031909A (ko) 2003-04-23
ZA200209640B (en) 2004-03-01
CN1441889A (zh) 2003-09-10
EP1287290A1 (en) 2003-03-05
WO2001094843A1 (en) 2001-12-13
AU6530301A (en) 2001-12-17
CA2410086A1 (en) 2001-12-13
CA2410086C (en) 2010-08-03

Similar Documents

Publication Publication Date Title
CN1276214C (zh) 利用三级燃料氧化和炉内烟道气就地循环降低氮氧化物排放的方法
US6085674A (en) Low nitrogen oxides emissions from carbonaceous fuel combustion using three stages of oxidation
AU2001265303A1 (en) Low nitrogen oxides emissions using three stages of fuel oxidation and in-situ furnace flue gas recirculation
Fan et al. Impact of air staging along furnace height on NOx emissions from pulverized coal combustion
CA2733109C (en) Combustion system with precombustor for recycled flue gas
US6357367B1 (en) Method for NOx reduction by upper furnace injection of biofuel water slurry
US5915310A (en) Apparatus and method for NOx reduction by selective injection of natural gas jets in flue gas
CN110925749B (zh) 实现固体燃料燃烧原始氮氧化物超低排放的解耦燃烧方法
GB2082314A (en) Combustion method and apparatus
KR20040028709A (ko) 산소 증대된 저 NOx 연소
KR0164586B1 (ko) 유동상 반응기의 질소 함유 연료 연소시의 n2o 배출 감소 방법
CN101050853B (zh) 煤粉锅炉混烧气体燃料降低氮氧化物的方法
US6258336B1 (en) Method and apparatus for NOx reduction in flue gases
US20090007827A1 (en) System and Method for Minimizing Nitrogen Oxide (NOx) Emissions in Cyclone Combustors
US4308810A (en) Apparatus and method for reduction of NOx emissions from a fluid bed combustion system through staged combustion
CA2597159A1 (en) A method for reducing nitrogen oxide emissions of a bubbling fluidized bed boiler and an air distribution system of a bubbling fluidized bed boiler
US6152054A (en) Method and system for the disposal of coal preparation plant waste coal through slurry co-firing in cyclone-fired boilers to effect a reduction in nitrogen oxide emissions
CN101142447B (zh) 燃烧方法和系统
WO1992001194A1 (en) Method for reducing emissions of oxides of nitrogen in combustion of various kinds of fuels
KR950007382B1 (ko) 제 2 연속 영역에서의 흡수제 분사에 의한 유황제거 장치 및 방법
US20070095259A1 (en) Method for oxygen enriched low NOx, low CO2 and low CO combustion of pulverized solid fuel suspended in a preheated secondary fluid hydrocarbon fuel
CN101201162A (zh) 燃烧系统和方法
Zallen et al. The generalization of low emission coal burner technology
JPS6329104A (ja) 流動床燃焼法
Martin et al. CLEAN AIR ACT OF 1970

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C14 Grant of patent or utility model
GR01 Patent grant
CF01 Termination of patent right due to non-payment of annual fee
CF01 Termination of patent right due to non-payment of annual fee

Granted publication date: 20060920

Termination date: 20200601