US3727562A - Three-stage combustion - Google Patents

Three-stage combustion Download PDF

Info

Publication number
US3727562A
US3727562A US00207353A US3727562DA US3727562A US 3727562 A US3727562 A US 3727562A US 00207353 A US00207353 A US 00207353A US 3727562D A US3727562D A US 3727562DA US 3727562 A US3727562 A US 3727562A
Authority
US
United States
Prior art keywords
stage
zone
air
flue gas
fuel
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
US00207353A
Inventor
W Bauer
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
CB&I Technology Inc
Original Assignee
Lummus Co
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Lummus Co filed Critical Lummus Co
Application granted granted Critical
Publication of US3727562A publication Critical patent/US3727562A/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23CMETHODS OR APPARATUS FOR COMBUSTION USING FLUID FUEL OR SOLID FUEL SUSPENDED IN  A CARRIER GAS OR AIR 
    • F23C6/00Combustion apparatus characterised by the combination of two or more combustion chambers or combustion zones, e.g. for staged combustion
    • F23C6/04Combustion apparatus characterised by the combination of two or more combustion chambers or combustion zones, e.g. for staged combustion in series connection
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23BMETHODS OR APPARATUS FOR COMBUSTION USING ONLY SOLID FUEL
    • F23B2700/00Combustion apparatus for solid fuel
    • F23B2700/009Combustion apparatus for solid fuel adapted for use in various steam boilers

Definitions

  • ABSTRACT A three-stage combustion process is disclosed in which solid carbonaceous fuel is burned with a deficiency of air in a first zone leaving unburned fuel and producing a flue gas rich in CO.
  • the unburned fuel is separated from the first zone flue gas and burned in a second zone with an excess of air to produce a flue gas containing excess oxygen.
  • the flue gases from the first and second zones are then burned in a third zone to complete the combustion process with the total amount of air used in the first and second zones being approximately the stoichiometric amount required for complete combustion.
  • the use of excess air has a number of disadvantages.
  • the increased gas flow due to the quantity of excess air increases the heat loss by the discharge of the gases up the stack.
  • the increased gas flow also increases the required dimensions of passages within the furnace and boiler and of gas ducts and the stack.
  • a further disadvantage of the increased gas flow is that it increases the difficulty and expense of removing dust and pollutants from the flue gas.
  • the excess oxygen which is present in the flue gas enters into corrosion producing reactions which damage the boiler tubes and other equipment.
  • the normal procedure for burning pulverized coal is to introduce the coal and air together into one burning zone wherein the combustion process goes substantially to completion. This complete combustion within one zone (excess air actually drops temperature) creates significantly high flame temperatures. It has been shown that these high flame temperatures lead to the creation of nitrogen oxides which are air pollutants.
  • the production of the nitrogen oxide is a temperature dependent reaction, i.e., nitrogen oxides are produced at higher temperatures. It is, therefore, desirable to keep flame temperatures lower in order to reduce the production of these pollutants.
  • An object of the present invention is to burn solid carbonaceous fuels and in particular pulverized coal in such a manner that substantially all of the fuel is burned with little or no excess air.
  • a further object is to burn these fuels in a manner which will limit maximum flame temperatures.
  • the objects of the invention are accomplished by carrying out the combustion process in three stages with the first stage being carried out with a deficiency of air and the second step being carried out with an excess of air.
  • the flue gas from the first stage containing a substantial quantity of CO and the flue gas from the second stage containing excess oxygen are then combined and burned in the third stage.
  • the total quantity of air used for the process is substantially equal to the total amount of air required for complete combustion ofthe fuel.
  • FIG. 1 is a graph illustrating the relationship between operating parameters.
  • FIG. 2 illustrates the overall arrangement of the present invention.
  • FIG. 3 is an elevation view in cross section of a cyclone reactor.
  • FIG. 4 is an end view of the reactor of FIG. 3.
  • the present invention is based on three-stage combustion of solid carbonaceous fuels and in particular pulverized coal which will be hereinafter used as the specific illustration of the fuel being burned.
  • the first stage combustion is carried out with a deliberate deficiency of air and therefore a deficiency of oxygen so as to only partially burn the carbon in the fuel and to produce a flue gas rich in CO.
  • the unburned pulverized coal from the first stage is separated from the first stage flue gas and then conducted to the second stage.
  • the coal is burned with a deliberate excess of air so as to substantially completely. burn the carbon and produce a second stage flue gas containing CO and free oxygen as well as some ash.
  • the hot flue gases from both the first and second stages are then combined in a third stage in which the CO in the first stage gas reacts with the free oxygen in the second stage gas.
  • FIG. 1 shows the relationship of y and z with x as a parameter.
  • FIG. 1 also includes a dashed curve relating the CO content of the first stage flue gas with y.
  • the selection of the variables x, y and 2 will be dependent upon various technical and economical considerations, For example, increasing the value ofx has the effect of increasing the flame temperature in the first stage and decreasing the flame temperature in the second stage. It also decreases the solids flow from the first to the second stage, thus requiring a larger first stage and a smaller second stage. Increasing the value of x has the further effect of increasing the second stage excess air. Another factor to be considered in the selection of the design variables is that the temperatures in both the first and second stages must be kept below the ash fusion temperatures.
  • the concentration of combustibles (CO) in the flue gas from the first stage should be maintained above a level of about volume percent to assure rapid combustion in the third stage. It can be seen in FIG. 1 that this minimum 10 percent CO content requires a value ofy in excess of 0.4. However, depending on the com bustibility of the fuel, its particle size, and its price, it is also desirable to maintain a sufficient excess of air in the second stage to assure good fuel utilization. For example, for the combustion of pulverized bituminous coal, 20 percent excess air in the second stage should assure virtually complete combustion. Selecting a slightly higher value for the excess air in the second stage, namely 23.3 percent, suitable values for the variables might be x 0.4 and y 0.7.
  • the combustion of 40 percent of the carbon in the first stage generates a first stage flue gas containing CO and CO in the ratio of 7:3 with there being no remaining free oxygen.
  • the volume percent of combustibles in the first stage flue gas is about 20 percent as indicated in FIG. 1.
  • a suitable range for the value ofx is 0.3 to 0.8 while the range for the value ofy is 0.4 to 0.8.
  • the flue gases from the first and second stages are then combined and the excess air-.in the second stage flue gas is ideally just sufficient to completely convert the CO in the first stage flue gas to CO producing a final or third stage flue gas containing no free oxygen and no CO.
  • FIG. 2 illustrates a system in which the present invention may be carried out.
  • the first stage combustion is preferably carried out in a cyclone reactor 10 which may be of any desired type.
  • a typical cyclone reactor is illustrated in FIGS. 3 and 4.
  • the combustion air for the process is supplied by means of the forced draft fan 12.
  • the air is then heated in the air preheater l4 and carried by means of the duct 16 to the various points of use.
  • a portion of this preheated air is supplied to the air swept pulverizer 18 in which the coal is prepared to the proper size.
  • the pulverized coal along with the primary combustion air is then forced by means of the exhauster fan 20 and duct 22 tangentially into the primary coal burner 24 of the reactor 10 as shown more clearly in FIGS. 3,and 4.
  • Another portion of preheated air is introduced tangentially into the main cyclone chamber 26 of the reactor 10 by means of the duct 28.
  • the illustrated reactor 10 is lined with refractory having water tubes embedded therein for cooling.
  • the pulverized coal and the combustion air move cyclonically through the reactor and the flue gas exits through throat 30 into the duct 32 while the unburned carbon exits through the stand pipe 34.
  • the essential requirement for the first stage reactor is the unburned coal must be able to be separated from the flue gas.
  • the unburned pulverized coal withdrawn from the reactor 10 into the stand pipe 34 is then conveyed by means of a high velocity flow of preheated air from duct 36 and blower 37 through the duct 38 into the 1 second stage reactor 40.
  • This second stage reactor is also illustrated as being a cyclone reactor similar to the reactor 10 but this second stage reaction may be carried out in apparatus other than cyclone reactors as will be pointed out hereinafter.
  • the second stage combustion air is introduced tangentially into the second stage reactor 40 through duct 42 and any remaining ash and whatever carbon might remain unburned are withdrawn through the cleanout pipe 44.
  • the flue gas from the second stage reactor 40 containing the excess oxygen is withdrawn through the duct 46.
  • the flue gases from the first and second stages are then conveyed by their respective ducts 32 and 46 into a suitable mixing device.
  • This device may comprise a burner 48 such as conventional burners for the combustion of gaseous fuels.
  • the burner 48 is attached to the furnace 50 such that the third stage combustion takes place within the furnace to generate steam.
  • the flue gas from the third stage combustion after passage through the boiler is then passed through the air preheater l4 and to the stack or perhaps to intermediate treating equipment such as precipitators or pollution control apparatus.
  • the second and third stage reactors have been illustrated as being separate units 40 and 50, the only essential requirements is that the second and third stage reactions be carried out in apparatus which provides two separate combustion zones.
  • the unburned coal discharged from the reactor 10 into the stand pipe 34 may be blown directly into the lower portion. of a furnace such as the furnace 50 together with the second stage combustion air.
  • the second stage combustion will then take place in this lower furnace portion.
  • the flue gas from the first stage reactor 10 is then introduced at a higher elevation in the furnace 50 such that the third stage combustion also takes place in the furnace but in a separate zone.
  • a method of burning a solid carbonaceous fuel comprising the steps of:

Abstract

A three-stage combustion process is disclosed in which solid carbonaceous fuel is burned with a deficiency of air in a first zone leaving unburned fuel and producing a flue gas rich in CO. The unburned fuel is separated from the first zone flue gas and burned in a second zone with an excess of air to produce a flue gas containing excess oxygen. The flue gases from the first and second zones are then burned in a third zone to complete the combustion process with the total amount of air used in the first and second zones being approximately the stoichiometric amount required for complete combustion.

Description

United States Patent 1 Bauer 1 1 THREE-STAGE COMBUSTION [75] Inventor: William Valentine Bauer, New
York, NY.
[73] Assignee: The Lummus Company, Bloomfield,
NJQ
[221 Filed: Dec. 13, 1971 211 App]. No.: 207,353
[52] US. Cl. ..ll/l P, 110/28 F, 431/ [51] Int. Cl ..F23b 1/00 [58] FieldoiSearch ..l10/1 P, 22 R, 28 R,
[56] References Cited UNITED STATES PATENTS 3,228,451 1/1966 Fraser et a1... ..431/1O 3,358,624 12/1967 Way ..1 10/28 X III g IO 1 Apr. 17, 1973 3,421,824 H1969 Herbst ..1 10/28 X Primary Examinerl(enneth W. Sprague Attorney-Eldon H. Luther et al.
[57 ABSTRACT A three-stage combustion process is disclosed in which solid carbonaceous fuel is burned with a deficiency of air in a first zone leaving unburned fuel and producing a flue gas rich in CO. The unburned fuel is separated from the first zone flue gas and burned in a second zone with an excess of air to produce a flue gas containing excess oxygen. The flue gases from the first and second zones are then burned in a third zone to complete the combustion process with the total amount of air used in the first and second zones being approximately the stoichiometric amount required for complete combustion.
5 Claims, 4 Drawing Figures PATENTEDAPR 1 (I975 SHEET 1 OF 3 won; ncoumw E wmmuxw 320208.; n N
x Fraction C Reocfed In First Stage wow 31m 355 $u E 00 \o y Fraction C Reucfed In First Stage Generating CO FIG."
PATENTED APR1 71975- snmeur PATENTEB APR] 7 I975 SHEET 3 BF BACKGROUND OF THE INVENTION cent. The use of excess air, however, has a number of disadvantages. The increased gas flow due to the quantity of excess air increases the heat loss by the discharge of the gases up the stack. The increased gas flow also increases the required dimensions of passages within the furnace and boiler and of gas ducts and the stack. A further disadvantage of the increased gas flow is that it increases the difficulty and expense of removing dust and pollutants from the flue gas. The excess oxygen which is present in the flue gas enters into corrosion producing reactions which damage the boiler tubes and other equipment.
The normal procedure for burning pulverized coal is to introduce the coal and air together into one burning zone wherein the combustion process goes substantially to completion. This complete combustion within one zone (excess air actually drops temperature) creates significantly high flame temperatures. It has been shown that these high flame temperatures lead to the creation of nitrogen oxides which are air pollutants. The production of the nitrogen oxide is a temperature dependent reaction, i.e., nitrogen oxides are produced at higher temperatures. It is, therefore, desirable to keep flame temperatures lower in order to reduce the production of these pollutants.
Another problem which can occur when there is excess oxygen in the flue gas is that certain air pollution control techniques are more difficulLFor example, in the process of removing sulfur oxides from flue gas with copper oxide, the excess oxygen results in the conversion of copper sulfite to copper sulfate imposing a heavy penalty on the subsequent regeneration of the absorbent and undesirable additional water formation in the regeneration gas.
SUMMARY OF THE INVENTION An object of the present invention is to burn solid carbonaceous fuels and in particular pulverized coal in such a manner that substantially all of the fuel is burned with little or no excess air. A further object is to burn these fuels in a manner which will limit maximum flame temperatures. The objects of the invention are accomplished by carrying out the combustion process in three stages with the first stage being carried out with a deficiency of air and the second step being carried out with an excess of air. The flue gas from the first stage containing a substantial quantity of CO and the flue gas from the second stage containing excess oxygen are then combined and burned in the third stage. The total quantity of air used for the process is substantially equal to the total amount of air required for complete combustion ofthe fuel.
BRIEF DESCRIPTION OF THE DRAWINGS FIG. 1 is a graph illustrating the relationship between operating parameters.
FIG. 2 illustrates the overall arrangement of the present invention.
FIG. 3 is an elevation view in cross section of a cyclone reactor.
FIG. 4 is an end view of the reactor of FIG. 3.
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENT The present invention is based on three-stage combustion of solid carbonaceous fuels and in particular pulverized coal which will be hereinafter used as the specific illustration of the fuel being burned. The first stage combustion is carried out with a deliberate deficiency of air and therefore a deficiency of oxygen so as to only partially burn the carbon in the fuel and to produce a flue gas rich in CO. The unburned pulverized coal from the first stage is separated from the first stage flue gas and then conducted to the second stage. In the second stage, the coal is burned with a deliberate excess of air so as to substantially completely. burn the carbon and produce a second stage flue gas containing CO and free oxygen as well as some ash. The hot flue gases from both the first and second stages are then combined in a third stage in which the CO in the first stage gas reacts with the free oxygen in the second stage gas.
The reactions in the three stages may be represented by the following equations:
x fraction of carbon reacted in the first stage y fraction of carbon reacted in the first stage which generates CO From the above equations an expression for the fractional excess 0 z, in the second stage is as follows:
FIG. 1 shows the relationship of y and z with x as a parameter. FIG. 1 also includes a dashed curve relating the CO content of the first stage flue gas with y. The selection of the variables x, y and 2 will be dependent upon various technical and economical considerations, For example, increasing the value ofx has the effect of increasing the flame temperature in the first stage and decreasing the flame temperature in the second stage. It also decreases the solids flow from the first to the second stage, thus requiring a larger first stage and a smaller second stage. Increasing the value of x has the further effect of increasing the second stage excess air. Another factor to be considered in the selection of the design variables is that the temperatures in both the first and second stages must be kept below the ash fusion temperatures.
The concentration of combustibles (CO) in the flue gas from the first stage should be maintained above a level of about volume percent to assure rapid combustion in the third stage. It can be seen in FIG. 1 that this minimum 10 percent CO content requires a value ofy in excess of 0.4. However, depending on the com bustibility of the fuel, its particle size, and its price, it is also desirable to maintain a sufficient excess of air in the second stage to assure good fuel utilization. For example, for the combustion of pulverized bituminous coal, 20 percent excess air in the second stage should assure virtually complete combustion. Selecting a slightly higher value for the excess air in the second stage, namely 23.3 percent, suitable values for the variables might be x 0.4 and y 0.7. The combustion of 40 percent of the carbon in the first stage generates a first stage flue gas containing CO and CO in the ratio of 7:3 with there being no remaining free oxygen. For these conditions, the volume percent of combustibles in the first stage flue gas is about 20 percent as indicated in FIG. 1. A suitable range for the value ofx is 0.3 to 0.8 while the range for the value ofy is 0.4 to 0.8.
The combustion in the second stage between the remaining fuel, which amounts to 60 percent of the carbon, and the second stage air substantially completely burns the carbon and produces a flue gas containing CO and essentially no CO along with the excess air. The flue gases from the first and second stages are then combined and the excess air-.in the second stage flue gas is ideally just sufficient to completely convert the CO in the first stage flue gas to CO producing a final or third stage flue gas containing no free oxygen and no CO. i
FIG. 2 illustrates a system in which the present invention may be carried out. The first stage combustion is preferably carried out in a cyclone reactor 10 which may be of any desired type. A typical cyclone reactor is illustrated in FIGS. 3 and 4. The combustion air for the process is supplied by means of the forced draft fan 12. The air is then heated in the air preheater l4 and carried by means of the duct 16 to the various points of use. A portion of this preheated air is supplied to the air swept pulverizer 18 in which the coal is prepared to the proper size. The pulverized coal along with the primary combustion air is then forced by means of the exhauster fan 20 and duct 22 tangentially into the primary coal burner 24 of the reactor 10 as shown more clearly in FIGS. 3,and 4. Another portion of preheated air is introduced tangentially into the main cyclone chamber 26 of the reactor 10 by means of the duct 28. The illustrated reactor 10 is lined with refractory having water tubes embedded therein for cooling. The pulverized coal and the combustion air move cyclonically through the reactor and the flue gas exits through throat 30 into the duct 32 while the unburned carbon exits through the stand pipe 34. The essential requirement for the first stage reactor is the unburned coal must be able to be separated from the flue gas.
, The unburned pulverized coal withdrawn from the reactor 10 into the stand pipe 34 is then conveyed by means of a high velocity flow of preheated air from duct 36 and blower 37 through the duct 38 into the 1 second stage reactor 40. This second stage reactor is also illustrated as being a cyclone reactor similar to the reactor 10 but this second stage reaction may be carried out in apparatus other than cyclone reactors as will be pointed out hereinafter. The second stage combustion air is introduced tangentially into the second stage reactor 40 through duct 42 and any remaining ash and whatever carbon might remain unburned are withdrawn through the cleanout pipe 44. The flue gas from the second stage reactor 40 containing the excess oxygen is withdrawn through the duct 46.
The flue gases from the first and second stages are then conveyed by their respective ducts 32 and 46 into a suitable mixing device. This device, for example, may comprise a burner 48 such as conventional burners for the combustion of gaseous fuels. The burner 48 is attached to the furnace 50 such that the third stage combustion takes place within the furnace to generate steam. The flue gas from the third stage combustion after passage through the boiler is then passed through the air preheater l4 and to the stack or perhaps to intermediate treating equipment such as precipitators or pollution control apparatus.
The following table is an example of the material flows for a firing system illustrating the invention:
Firing Rate: 108,970 lb/hr of Coal (9% Ash) Heat Release 1,470 MM BTU/hr Although the second and third stage reactors have been illustrated as being separate units 40 and 50, the only essential requirements is that the second and third stage reactions be carried out in apparatus which provides two separate combustion zones. For example, the unburned coal discharged from the reactor 10 into the stand pipe 34 may be blown directly into the lower portion. of a furnace such as the furnace 50 together with the second stage combustion air. The second stage combustion will then take place in this lower furnace portion. The flue gas from the first stage reactor 10 is then introduced at a higher elevation in the furnace 50 such that the third stage combustion also takes place in the furnace but in a separate zone.
While a preferred embodiment of the present invention has been illustrated and described, it will be understood that this is merely illustrative and that the invention may be carried out using apparatus and techniques other than that disclosed.
What is claimed is: i
1. A method of burning a solid carbonaceous fuel comprising the steps of:
a. burning said fuel in a first combustion zone at an air-fuel ratio less than that theoretically required for burning under conditions corresponding to stoichiometric conditions whereby a portion of said fuel remains unburned and whereby a first zone flue gas is obtained containing a substantial quantity of CO;
b. separating said unburned fuel from said first zone c. burning said unburned fuel from said first zone in a second zone at an air-fuel ratio greater than that theoretically required for burning under conditions corresponding to stoichiometric conditions whereby a second zone flue gas containing excess oxygen is obtained;
d. introducing said first zone flue gas and said second zone flue gas into a third zone wherein said CO in said first zone flue gas and said excess oxygen in said second zone flue gas react to produce C0 2. A method as recited in claim 1 wherein the total amount of air introduced into said first zone and said second zone is approximately equal to that theoretically required for burning under conditions corresponding to stoichiometric conditions.
3. A method as recited in claim 2 wherein the total amount of air introduced into said first and second zones is no greater than 1 percent in excess of that theoretically required for burning under conditions corresponding to stoichiometric conditions.
4. A method as recited in claim 1 wherein said portion of said fuel remaining unburned after said first combustion zone is between 20 percent and percent of the fuel and wherein the percentage of fuel reacted in said first combustion zone which produces CO is between 40 percent and percent.
5. A method as recited in claim 4 wherein said portion of said fuel remaining unburned after the first combustion zone is about 60 percent of the fuel and wherein the ratio C O/CO in'said first zone flue gas is about 7:3.

Claims (4)

  1. 2. A method as recited in claim 1 wherein the total amount of air introduced into said first zone and said second zone is approximately equal to that theoretically required for burning under conditions corresponding to stoichiometric conditions.
  2. 3. A method as recited in claim 2 wherein the total amount of air introduced into said first and second zones is no greater than 1 percent in excess of that theoretically required for burning under conditions corresponding to stoichiometric conditions.
  3. 4. A method as recited in claim 1 wherein said portion of said fuel remaining unburned after said first combustion zone is between 20 percent and 70 percent of the fuel and wherein the percentage of fuel reacted in said first combustion zone which produces CO is between 40 percent and 80 percent.
  4. 5. A method as recited in claim 4 wherein said portion of said fuel remaining unburned after the first combustion zone is about 60 percent of the fuel and wherein the ratio CO/CO2 in said first zone flue gas is about 7:3.
US00207353A 1971-12-13 1971-12-13 Three-stage combustion Expired - Lifetime US3727562A (en)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
US20735371A 1971-12-13 1971-12-13

Publications (1)

Publication Number Publication Date
US3727562A true US3727562A (en) 1973-04-17

Family

ID=22770188

Family Applications (1)

Application Number Title Priority Date Filing Date
US00207353A Expired - Lifetime US3727562A (en) 1971-12-13 1971-12-13 Three-stage combustion

Country Status (1)

Country Link
US (1) US3727562A (en)

Cited By (28)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4051791A (en) * 1975-08-15 1977-10-04 Wormser Engineering, Inc. Coal burning arrangement
US4052138A (en) * 1976-03-08 1977-10-04 Gieck Joseph F Method of firing coal boiler to produce secondary fuel gas
US4060378A (en) * 1974-12-11 1977-11-29 Energiagazdalkodasi Intezet Method of firing and furnace therefor
US4060376A (en) * 1974-12-11 1977-11-29 Energiagazdalkodasi Intezet Method of firing and furnace therefor
US4129003A (en) * 1976-03-29 1978-12-12 Q Corporation Engine operated by a non-polluting recyclable fuel
DE2736493A1 (en) * 1977-08-12 1979-02-22 Wormser Eng Powdered coal burning arrangement - uses pyrolyser bed with spout followed by fluidised char burner and cyclone separators connected to gas burner
US4146359A (en) * 1976-06-25 1979-03-27 Occidental Petroleum Corporation Method for reacting nongaseous material with a gaseous reactant
US4153426A (en) * 1977-07-18 1979-05-08 Arthur G. Mckee & Company Synthetic gas production
US4231302A (en) * 1979-05-14 1980-11-04 Albert Neuhaus-Schwermann Apparatus and process for burning of fuels of relatively young geological age and of any resulting gases
US4248048A (en) * 1978-09-01 1981-02-03 Q Corporation Engine operated by a non-polluting recyclable fuel
US4285283A (en) * 1979-12-07 1981-08-25 Exxon Research & Engineering Co. Coal combustion process
US4329932A (en) * 1979-06-07 1982-05-18 Mitsubishi Jukogyo Kabushiki Kaisha Method of burning fuel with lowered nitrogen-oxides emission
US4381718A (en) * 1980-11-17 1983-05-03 Carver George P Low emissions process and burner
US4403941A (en) * 1979-08-06 1983-09-13 Babcock-Hitachi, Ltd. Combustion process for reducing nitrogen oxides
US4469032A (en) * 1982-09-16 1984-09-04 Mobil Oil Corporation Zone combustion of high sulfur coal to reduce SOx emission
US4496306A (en) * 1978-06-09 1985-01-29 Hitachi Shipbuilding & Engineering Co., Ltd. Multi-stage combustion method for inhibiting formation of nitrogen oxides
US4586443A (en) * 1977-09-27 1986-05-06 Trw Inc. Method and apparatus for in-flight combustion of carbonaceous fuels
US4615285A (en) * 1984-09-21 1986-10-07 Skf Steel Engineering, Ab Method of destroying hazardous wastes
US4670023A (en) * 1984-02-28 1987-06-02 Ruhrkohle Aktiengesellschaft Gas generator installation
US4674418A (en) * 1984-02-28 1987-06-23 Ruhrkohle Aktiengesellschaft Cyclone cleaner for a fixed bed reactor
US6085674A (en) * 1999-02-03 2000-07-11 Clearstack Combustion Corp. Low nitrogen oxides emissions from carbonaceous fuel combustion using three stages of oxidation
US6325003B1 (en) 1999-02-03 2001-12-04 Clearstack Combustion Corporation Low nitrogen oxides emissions from carbonaceous fuel combustion using three stages of oxidation
US6325002B1 (en) 1999-02-03 2001-12-04 Clearstack Combustion Corporation Low nitrogen oxides emissions using three stages of fuel oxidation and in-situ furnace flue gas recirculation
US6363869B1 (en) 1999-02-03 2002-04-02 Clearstack Combustion Corporation Potassium hydroxide flue gas injection technique to reduce acid gas emissions and improve electrostatic precipitator performance
US6652265B2 (en) 2000-12-06 2003-11-25 North American Manufacturing Company Burner apparatus and method
US20060057517A1 (en) * 2004-09-10 2006-03-16 Joshi Mahendra L Oxidant injection method
US20080286707A1 (en) * 2007-05-15 2008-11-20 Panesar Raghbir S Combustion apparatus
CN105972588A (en) * 2016-07-14 2016-09-28 西安交通大学 High temperature flue gas extracting pre-burning type low NOx burner

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3228451A (en) * 1957-06-25 1966-01-11 Urquhart S 1926 Ltd Method of burning fuels
US3358624A (en) * 1965-10-07 1967-12-19 Westinghouse Electric Corp Coal burning arrangement for mhd generators
US3421824A (en) * 1967-06-01 1969-01-14 Exxon Research Engineering Co Method of burning industrial fuels

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3228451A (en) * 1957-06-25 1966-01-11 Urquhart S 1926 Ltd Method of burning fuels
US3358624A (en) * 1965-10-07 1967-12-19 Westinghouse Electric Corp Coal burning arrangement for mhd generators
US3421824A (en) * 1967-06-01 1969-01-14 Exxon Research Engineering Co Method of burning industrial fuels

Cited By (32)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4060378A (en) * 1974-12-11 1977-11-29 Energiagazdalkodasi Intezet Method of firing and furnace therefor
US4060376A (en) * 1974-12-11 1977-11-29 Energiagazdalkodasi Intezet Method of firing and furnace therefor
US4051791A (en) * 1975-08-15 1977-10-04 Wormser Engineering, Inc. Coal burning arrangement
US4253409A (en) * 1975-08-15 1981-03-03 Wormser Engineering, Inc. Coal burning arrangement
US4052138A (en) * 1976-03-08 1977-10-04 Gieck Joseph F Method of firing coal boiler to produce secondary fuel gas
US4129003A (en) * 1976-03-29 1978-12-12 Q Corporation Engine operated by a non-polluting recyclable fuel
US4146359A (en) * 1976-06-25 1979-03-27 Occidental Petroleum Corporation Method for reacting nongaseous material with a gaseous reactant
US4153426A (en) * 1977-07-18 1979-05-08 Arthur G. Mckee & Company Synthetic gas production
DE2736493A1 (en) * 1977-08-12 1979-02-22 Wormser Eng Powdered coal burning arrangement - uses pyrolyser bed with spout followed by fluidised char burner and cyclone separators connected to gas burner
US4586443A (en) * 1977-09-27 1986-05-06 Trw Inc. Method and apparatus for in-flight combustion of carbonaceous fuels
US4496306A (en) * 1978-06-09 1985-01-29 Hitachi Shipbuilding & Engineering Co., Ltd. Multi-stage combustion method for inhibiting formation of nitrogen oxides
US4248048A (en) * 1978-09-01 1981-02-03 Q Corporation Engine operated by a non-polluting recyclable fuel
US4231302A (en) * 1979-05-14 1980-11-04 Albert Neuhaus-Schwermann Apparatus and process for burning of fuels of relatively young geological age and of any resulting gases
US4329932A (en) * 1979-06-07 1982-05-18 Mitsubishi Jukogyo Kabushiki Kaisha Method of burning fuel with lowered nitrogen-oxides emission
US4403941A (en) * 1979-08-06 1983-09-13 Babcock-Hitachi, Ltd. Combustion process for reducing nitrogen oxides
US4285283A (en) * 1979-12-07 1981-08-25 Exxon Research & Engineering Co. Coal combustion process
US4381718A (en) * 1980-11-17 1983-05-03 Carver George P Low emissions process and burner
US4469032A (en) * 1982-09-16 1984-09-04 Mobil Oil Corporation Zone combustion of high sulfur coal to reduce SOx emission
US4670023A (en) * 1984-02-28 1987-06-02 Ruhrkohle Aktiengesellschaft Gas generator installation
US4674418A (en) * 1984-02-28 1987-06-23 Ruhrkohle Aktiengesellschaft Cyclone cleaner for a fixed bed reactor
US4615285A (en) * 1984-09-21 1986-10-07 Skf Steel Engineering, Ab Method of destroying hazardous wastes
US6085674A (en) * 1999-02-03 2000-07-11 Clearstack Combustion Corp. Low nitrogen oxides emissions from carbonaceous fuel combustion using three stages of oxidation
US6325003B1 (en) 1999-02-03 2001-12-04 Clearstack Combustion Corporation Low nitrogen oxides emissions from carbonaceous fuel combustion using three stages of oxidation
US6325002B1 (en) 1999-02-03 2001-12-04 Clearstack Combustion Corporation Low nitrogen oxides emissions using three stages of fuel oxidation and in-situ furnace flue gas recirculation
US6363869B1 (en) 1999-02-03 2002-04-02 Clearstack Combustion Corporation Potassium hydroxide flue gas injection technique to reduce acid gas emissions and improve electrostatic precipitator performance
WO2001094843A1 (en) 2000-06-08 2001-12-13 Clearstack Combustion Corporation Low nitrogen oxides emissions using three stages of fuel oxidation and in-situ furnace flue gas recirculation
US6652265B2 (en) 2000-12-06 2003-11-25 North American Manufacturing Company Burner apparatus and method
US20060057517A1 (en) * 2004-09-10 2006-03-16 Joshi Mahendra L Oxidant injection method
US7833009B2 (en) * 2004-09-10 2010-11-16 Air Products And Chemicals, Inc. Oxidant injection method
US20080286707A1 (en) * 2007-05-15 2008-11-20 Panesar Raghbir S Combustion apparatus
US9651253B2 (en) * 2007-05-15 2017-05-16 Doosan Power Systems Americas, Llc Combustion apparatus
CN105972588A (en) * 2016-07-14 2016-09-28 西安交通大学 High temperature flue gas extracting pre-burning type low NOx burner

Similar Documents

Publication Publication Date Title
US3727562A (en) Three-stage combustion
US4602573A (en) Integrated process for gasifying and combusting a carbonaceous fuel
US4021186A (en) Method and apparatus for reducing NOx from furnaces
US4739713A (en) Method and apparatus for reducing the NOx content of flue gas in coal-dust-fired combustion systems
US5937772A (en) Reburn process
US3508506A (en) Process and apparatus for reduction of unburned combustible in fly ash
CN1441889A (en) Low nitrogen oxide emissions using three stages of fuel oxidation and in-situ furnance fuel gas recirculation
US4246853A (en) Fuel firing method
JPS61217607A (en) Method and device for reducing content of nox in large-scalecombustion apparatus using and burning fossil fuel
US6244200B1 (en) Low NOx pulverized solid fuel combustion process and apparatus
KR890001113B1 (en) Method of reducing nox and sox emission
US3699903A (en) Method for improving fuel combustion in a furnace and for reducing pollutant emissions therefrom
CA1092897A (en) Fuel firing method
JPS6362643B2 (en)
JPH0629566B2 (en) Coal burning boiler
US4986199A (en) Method for recovering waste gases from coal partial combustor
JPS5885011A (en) Modifying method and apparatus for fly ash
CN105864755B (en) Recirculating fluidized bed oxygen-enriched burning device and its combustion method
US4690074A (en) Coal combustion system
RU2089270C1 (en) Method and installation for complete dry desulfurization of effluent combustion gases containing sulfur dioxide
JPS6017611A (en) Combustion of solid fuel and device therefor
CN205842694U (en) A kind of low NOx incinerator processing nitrogenous waste gas, waste liquid
US20100071598A1 (en) Cement clinker production with reduced emissions
US20070295250A1 (en) Oxygen-enhanced combustion of unburned carbon in ash
EP0204059A1 (en) Method to control a combustion progress