CN1489834A - 通信系统内的前向功率控制的方法和装置 - Google Patents

通信系统内的前向功率控制的方法和装置 Download PDF

Info

Publication number
CN1489834A
CN1489834A CNA018225934A CN01822593A CN1489834A CN 1489834 A CN1489834 A CN 1489834A CN A018225934 A CNA018225934 A CN A018225934A CN 01822593 A CN01822593 A CN 01822593A CN 1489834 A CN1489834 A CN 1489834A
Authority
CN
China
Prior art keywords
data
access point
terminal
access
rate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CNA018225934A
Other languages
English (en)
Other versions
CN100355215C (zh
Inventor
Ce
C·E·惠特利三世
R·A·阿塔尔
���˶���S������Τ���
E·A·S·埃斯特韦斯
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Qualcomm Inc
Original Assignee
Qualcomm Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Qualcomm Inc filed Critical Qualcomm Inc
Publication of CN1489834A publication Critical patent/CN1489834A/zh
Application granted granted Critical
Publication of CN100355215C publication Critical patent/CN100355215C/zh
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W52/00Power management, e.g. TPC [Transmission Power Control], power saving or power classes
    • H04W52/04TPC
    • H04W52/18TPC being performed according to specific parameters
    • H04W52/24TPC being performed according to specific parameters using SIR [Signal to Interference Ratio] or other wireless path parameters
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W52/00Power management, e.g. TPC [Transmission Power Control], power saving or power classes
    • H04W52/04TPC
    • H04W52/18TPC being performed according to specific parameters
    • H04W52/26TPC being performed according to specific parameters using transmission rate or quality of service QoS [Quality of Service]
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W52/00Power management, e.g. TPC [Transmission Power Control], power saving or power classes
    • H04W52/04TPC
    • H04W52/18TPC being performed according to specific parameters
    • H04W52/26TPC being performed according to specific parameters using transmission rate or quality of service QoS [Quality of Service]
    • H04W52/267TPC being performed according to specific parameters using transmission rate or quality of service QoS [Quality of Service] taking into account the information rate
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W52/00Power management, e.g. TPC [Transmission Power Control], power saving or power classes
    • H04W52/04TPC
    • H04W52/18TPC being performed according to specific parameters
    • H04W52/28TPC being performed according to specific parameters using user profile, e.g. mobile speed, priority or network state, e.g. standby, idle or non transmission
    • H04W52/286TPC being performed according to specific parameters using user profile, e.g. mobile speed, priority or network state, e.g. standby, idle or non transmission during data packet transmission, e.g. high speed packet access [HSPA]
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W68/00User notification, e.g. alerting and paging, for incoming communication, change of service or the like
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/50Allocation or scheduling criteria for wireless resources
    • H04W72/54Allocation or scheduling criteria for wireless resources based on quality criteria
    • H04W72/542Allocation or scheduling criteria for wireless resources based on quality criteria using measured or perceived quality

Abstract

在具有可变速率传输的数据通信系统中,数据速率是由在接入终端(6)处测量的前向链路的最大C/I测量确定的。在一实施例中,数据传输基于初始前向功率控制而被调度,这减少了由于过量发射功率引起的前向链路速率量化损失。接入终端(6)将为选定速率的过量C/I估计报告给接入点(4)。当为接入终端(6)服务时,接入点(4)然后将其发射功率减少某合适的量。在另一实施例中,数据传输基于接入点(4)初始前向功率控制而被调度。接入点(4)的发射功率在时间上或是随机变化或与通信系统内的相邻接入点(4)同步变化,这使得接收相当量的干扰的用户达到的吞吐量有所增加。

Description

通信系统内的前向功率控制的方法和装置
                           背景
I.领域
本发明涉及到通信系统。本发明特别涉及一种在通信系统内的新颖且经改进的前向功率控制的方法和装置。
II.背景
现代的日常通信系统要支持多种应用。一种这样的系统是码分多址(CDMA)系统,该系统符合“TIA/EIA/IS-95 Mobile Station-base CompatibilityStandard for Dual-Mode Wideband Spread Spectrum Cellular System”,在此称为IS-95标准。该CDMA系统允许在陆地链接上用户间的语音和数据通信。多址通信系统内的CDMA技术的使用揭示在美国专利号4901307,题为“SPREADSPECTRUM MULTIPLE ACCESS COMMUNICATION SYSTEM USING SATELLITE ORTERRESTRIAL REPEATERS”,以及美国专利号5103459,题为“SYSTEM AND MOTHODFOR GENERATING WAVEFORMS IN A CDMA CELLULAR TELEPHONE SYSTEM”中,这两个都被转让给本发明的受让人,并通过引用被结合于此。
在CDMA系统中,用户间的通信通过或者一个或多个接入网络或通过数据应用的数据网络而进行的。接入网络包括多个接入点。在一实施例中,数据网络是因特网。在另一实施例中,是数据网络。本技术领域内的人员可以理解数据网络可以是本技术领域内的任何已知数据网络。第一接入终端可以通过在反向链路上将数据发射到接入网络或数据网络而与第二接入终端通信。
当数据发射到接入网络时,接入网络接收数据而后在前向链路上将其路由到第二接入终端或将该数据路由到另一接入网络。该前向链路指从接入网络到接入终端的传输而反向链路指从接入终端到接入网络的传输。在IS-95系统中,前向链路和反向链路被分配了分开的频率。
接入终端为接收前向链路信号计算信噪和干扰比C/I。该接入终端计算的C/I确定支持从接入点到用户的接入终端的前向链路的信息速率。即,在相应C/I级别上获得前向链路的某给定性能。选择信息速率的方法和装置揭示在美国专利申请号08963386,题为“METHOD AND APPARATUS FOR HIGH RATE PACKETTRANSMISSION”,提交与1997年11月3日,被转让给本发明的受让人,并通过引用被结合于此。
接入点将数据发射到接入终端的功率称为前向链路发射功率。该前向链路发射功率处在通过前向链路可靠地发射数据所需的电平上。它常常大于用于给定可靠数据速率所需的值。超出的值称为“量化损失”。量化损失是前向链路上超出对可靠数据速率的规定值的那部分发射功率,因此是损失的即浪费的发射功率。由于量化损失是限制前向链路吞吐效率和吞吐量的过量发射功率,所以这是一个问题。接入点的过量发射功率引起对由相邻接入点服务的接入终端的干扰。该干扰引起由接入点服务的接入终端遵循低C/I且由此引起更低的数据率。因此,吞吐量受到限制。
减少量化损失会引起前向链路吞吐效率和吞吐量的增益。因此,需要希望有减少由过量发射功率引起的损失的系统和方法。
测量数据通信系统的效率和质量的参数是传输数据包的传输时延和系统的平均吞吐速率。传输时延对数据通信的影响不同于它对语音通信的影响,但是一个重要的测量数据通信系统的质量的度量。平均吞吐量速率是通信系统的数据传输容量的效率的测量。
当接入终端是在有限干扰的范围内,即在小区边界上,接入终端可以接收从多个接入点来的导频信号,它与从服务接入终端的接入点来的导频产生干扰。结果是,接入终端符合的C/I在小区边界上要低于当接入终端不在小区边界上情况。因此,接入终端要比接入终端不在小区边界上时有更低的服务速率。该服务速率是接入点安排接入终端提供服务的速率。该数据速率上接入点将前向链路数据发送到接入终端的速率。
从服务观点看,假设接入终端由同一接入点提供服务,在小区边界上的接入终端得到的服务减慢(更高的传输时延)以及比起不在小区边界上的接入终端更低的数据速率(即平均吞吐速率)。需要一种在时间段内提供给更多用户服务和更快地服务于这些用户的系统和方法。
                          摘要
描述的实施例是为了通信系统内的前向功率控制的系统和方法。在一方面,前向功率控制的系统和方法包括接入终端的初始功率控制。在另一方面,前向功率控制系统和方法包括接入点的初始功率控制。
在一方面,用于接入终端初始功率控制的系统和方法包括无线电寻呼接入终端关于即将到来的数据传输,基于一组参数选择接入点,从被选择的接入点测量前向链路信号的过量C/I,将该过量C/I测量发送到所述的被选择接入点,以及根据所述的过量C/I的测量以某一发射功率从所述的被选择的接入点发射数据。在另一方面,接入终端初始的前向功率控制的系统和方法包括将包括过量C/I测量的数据请求消息到所述的接入点。在另一方面,接入终端的初始前向功率控制的系统和方法包括在第一信道上将数据请求消息发送到所述的被选择接入点并在第二信道上将过量C/I测量发送到所述的被选中接入点。
在一方面,接入点初始的前向功率控制的系统和方法包括从多个接入终端接收数据请求消息,多个接入终端的每个计算平均服务速率,计算多个接入终端的每个的被请求数据速率与平均服务速率之比,安排从有最大被请求数据速率与平均服务速率比的接入终端的数据传输的进度,以及根据所述数据请求消息以随机变化的发射功率从所选择的接入点发射数据。在另一方面,接入点的初始前向功率控制的系统和方法包括基于被请求数据速率与平均服务速率比对从接入终端来的数据传输规划时刻实现一偏置。
在另一方面,接入点初始的前向功率控制的系统和方法包括根据所述数据请求消息从所述的被选择的接入点以随机可变发射功率发射数据。在另一方面,接入点初始的前向功率控制的系统和方法包括根据所述的数据请求消息以与相邻接入点同步的发射功率从被选择接入点发射的数据。
                       附图的简要说明
图1是包括多个小区、多个接入点和多个接入终端的实施例内的数据通信系统图;
图2是实施例的数据通信系统的子系统框图;
图3A-3B是一个实施例的一个前向链路结构的框图;
图4A是一个实施例的前向链路时隙结构;
图4B是功率控制信道的复合波形;
图5(6)是实施例的反向链路结构的框图;以及
图6(10)是典型六边形蜂窝布局内的C/I分布的累积分布函数(CDF)。
                      最优实施例的详细描述
I.接入终端和接入点
在本规定中,接入点指与接入终端通信的硬件。在一些应用中,接入点也称作基站(又称基站收发机或结点B)。在一些应用中,接入终端称为移动站(又称移动、订户单元、远程站或用户设备)。小区指硬件或地理覆盖区域,这取决于该术语用于何种情况下。扇区是小区的一部分。由于CDMA系统的扇区有小区的性质,以小区描述的教义也可用于扇区。
在通信时,接入终端与至少一个接入点通信。CDMA接入终端能在软切换时同时与若干接入点通信。软切换是在与前一个接入点断开链路前与新的接入点建立链路的过程。软切换最小化了丢失呼叫的概率。在软切换时通过多于一个接入点提供与接入终端通信的方法和系统揭示在美国专利号5267261内,题为“MOBILEASSISTED SOFT HANDOFF IN A CDMA CELLULAR TELEPHONE SYSTEM”,被转让给本发明的受让人,并通过引用被结合于此。软切换是通信发生在多个扇区间的过程,而这多个扇区是由同一接入点服务的。软切换的过程在美国专利申请号08763498内有详细描述,题为“METHOD AND APPARATUS FOR PERFORMING HANDOFFBETWEEN SECTORS OF A COMMON BASE STATION”,1996年12月11日提交,被转让给本发明的受让人,并通过引用被结合与此.
已知在蜂窝系统中任何用户的信噪和干扰比C/I是在覆盖区域内的用户的定位的函数。为维持给定的服务水平,TDMA和接入点MA系统采用频率重复使用技术,即在每个接入点内不是所有的频率信道和/或时隙都被使用。在CDMA系统中,同样的频率分配重复使用在系统的每个小区内而改善了整体效率。
任何给定用户的取得的C/I是路径损失的函数,对陆地蜂窝系统随r3到r5而增加,其中r是到发射源的距离。而且,路径损失受到无线电波的路径内的人为或自然障碍的随机变化影响。这些随机变化一般模型化为对数正态屏蔽随机过程,带有8dB标准偏差。图6示出了带全方向接入点天线的一般六边形蜂窝布局内产生的C/I分布、r4传播定律以及带8dB标准偏差的屏蔽过程。
如果接入终端由取得最大C/I值且不管其到每个接入点的物理距离的最佳接入点提供服务,则在任何时间和任何地方可以实现获得的C/I分布。由于上面描述了路径损失的随机性质,带最大C/I值的信号可能是一个不同于与其他接入终端间的最小物理距离的信号。对比之下,如果接入终端只通过最小距离的接入点通信,则C/I可能严重恶化。因此最好接入终端在任何时候都与最佳服务接入点来回通信,以取得最佳C/I值。在以上理想化模型和图6所示,可以观察得到获得的C/I的值的范围限于大约1∶56或15dB。因此对于CDMA接入点可能给接入终端提供变化达56倍的信息比特速率的服务,因为成立以下关系式:
R b = W ( C / I ) ( E b / I o ) ′ - - ( 1 )
其中Rb代表到某特定接入终端的信息速率,W是扩频信号占的总带宽,以及Eb/Io是为达到给定性能水平的每比特能量除以干扰密度。例如,如果扩频信号占据1.2288MHZ的带宽W且可靠通信要求平均Eb/Io是3dB,则接入终端,获得到最佳接入点3dB的C/I值可以以高达1.2288Mbps的数据速率通信。在另一方面,给定参数值,如果接入终端受从相邻接入点来的重要干扰的影响且只能有-7dB的C/I,在大于122.88Kbps的速率下不能保证可靠通信。设计以最优化平均吞吐量的通信系统因此会试图从最佳服务接入点并以远程用户能可靠支持的最大数据速率Rb服务每个远程用户。因此需要一种使用C/I值以改善从CDMA接入点到接入终端的数据吞吐量的数据通信系统。
在一实施例中,每个接入终端与一个或多个接入点通信并在与接入点通信期间监控控制信道。控制信道可以为接入点使用以发射少量数据,无线电寻呼到特定接入终端的消息,并对所有接入终端广播消息。该寻呼消息通知接入终端接入点有大量数据要发送到接入终端。
在从一个或多个接入点接收到无线电寻呼消息时,接入终端在每个时隙测量前向链路信号(例如前向链路导频信号)的信噪和干扰比(C/I)并使用一组参数选择最佳接入点,参数可能包括当前和以前的C/I测量值。使用一组参数选择最佳接入点的方法和装置揭示在美国专利申请号08963386中,题为“METHODAND APPARATUS FOR HIGH RATE PACKET TRANSMISSION”,在1997年11月3日提交,在前通过引用被结合于此。
在每个时隙处,接入终端在专用数据请求(DRC)信道上将已经测量的C/I能可靠支持的最高数据速率传输请求发射到被选择接入点。该请求可采用不同的形式。在一实施例中,该请求指明被请求的数据速率。在一个实施例中,该请求是指示被请求的数据速度的号码。在另一个实施例中,该请求是数据速率表的索引,因此指明了被请求的数据速率。在另一实施例中,该请求指明前向链路的质量,这反过来由接入点评估以确定数据速率。
被选中的接入点以数据分组发射数据,以一不超过在DRC信道上从接入终端接收到的数据速率传输。通过在每个时隙从最佳接入点发送,可得到经改善的吞吐量和传输时延。
接入终端选择最佳接入点候选以通信,基于在美国专利号6151502内描述的过程,该专利于2000年11月21日发表,题为“METHOD AND APPARATUS FORPERFORMING SOFT HANDOFF IN A WIRELESS COMMUNICATION SYSTEM”,在1997年1月29提交,被转让给本发明的受让人,并通过引用被结合于此。在一实施例中,如果接收的导频信号在预定的加阀值之上,则接入点可以加入接入终端的活动组内,如果导频信号在预定的加阀值之下,则它移出活动组。在另一实施例中,如果接入点的附加能量(例如由导频信号测量的)和已在活动组内的接入点的能量超过某预定阀值,则接入点可被加入活动组。具有发射能量包括了在接入终端处接收的总能量的不重要部分的接入点不被加入活动组。
在一实施例中,接入终端在DRC信道上以一种方式发射数据速率请求,使得只有与接入终端通信的接入点内的被选中的接入点能区别DRC消息,因此保证在任何给定时隙的前向链路传输是从被选择接入点而来。在一实施例中,每个与接入终端通信的接入点被分配以唯一Walsh码。接入终端用对应被选择的接入点的Walsh码覆盖了DRC消息。本领域的技术人员可知其他码也可用于覆盖DRC消息。在一实施例中,非Walsh码正交码用于覆盖DRC消息。
根据一实施例,以或以接近前向链路和系统能支持的最大数据速率,前向链路数据传输发生在从一接入点到一接入终端(见图1)。反向链路数据通信可以发生在从一个接入终端到一个或多个接入点。以下详细描述了前向链路传输的最大数据速率的计算。数据被分为数据分组,每个数据分组在一个或多个时隙上被发送。在每个时隙处,接入点可以将数据传输引导到任何与接入点通信的接入终端。
开始时,接入终端使用预定的访问过程与接入点建立通信。在连接状态下,接入终端可以接收从接入点来的数据和控制消息并能将数据和控制消息发送到接入点。该接入终端监控从接入终端的活动组内的接入点来的用于传输的前向链路。该活动组包括与接入终端通信的接入点列表。特别是,接入终端测量活动组内的接入点来的前向链路导频的信噪和干扰比(C/I),这是在接入终端处接收的。如果接收导频信号在某预定加阀值之上或某预定丢弃阀值之下,则接入终端将此报告给接入点。接着从接入点来的消息指示接入终端相应地将接入点加入活动组或从活动组内删除。
如果没有数据要发送,接入终端回到休眠状态并断开到接入点的数据速率信息的传输。当接入终端在休眠状态时,接入终端从活动组内的一个或多个接入点监控控制信道用于寻呼消息。
如果有数据要发送到接入终端,则数据由在接入终端内的中央控制器发送到所有活动组内的接入点并存贮在每个接入点的队列内。寻呼消息然后由一个或多个接入点在相应的控制信道上发送到接入终端。该接入点可能同时在几个接入点上发射所有该种寻呼消息以保证接收即使当接入终端在两个接入点间切换时。接入终端在一个或多个控制信道上对信号解调并解码以接收寻呼消息。
一当对寻呼电消息解码,且对直到数据传输结束前的每个时隙,接入终端测量按照在接入终端接收的活动组内的接入点来的前向链路信号的C/I。前向链路信号的C/I可以通过测量相应导频信号得到。接入终端然后基于一组参数选择最佳接入点。该组参数可能包括当前和前面的C/I测量以及比特误差率或分组误差率。在一实施例中,最佳接入点基于最大C/I测量而被选择。接入终端然后在数据请求信道上识别最佳接入点并将数据请求消息发送到被选择的接入点(在此称为DRC消息)。在一实施例中,DRC消息包括被请求的数据速率。在另一实施例中,DRC消息包括前向链路信道的质量指示(例如,C/I测量本身、比特差错率或分组差错率)。
II.系统描述
参考附图,图1代表一实施例的通信系统,它包括多个小区2a-2g。每个小区2由相应接入点4提供服务。不同接入终端6分散在数据通信系统内。在每个时隙每个接入终端6与最多一个接入点4在前向链路上通信,但它可以与一个或多个接入点4在反向链路上通信,这取决于接入终端6是否处于软切换。例如,在时隙n的前向链路上,接入点4a只将数据发送到接入终端6a,接入点4b只将数据发送到接入终端6b,接入点4c只将数据发送到接入终端6c。在图1内,带箭头的实线指明从接入点4到接入终端6的数据传输。带箭头的折线指明接入终端6正在接收导频信号,但没有从接入点4来的数据传输。为简洁之便,反向链路通信未在图1示出。
如图1示出,在任何给定时刻每个接入点4将数据发送到一个接入终端6。接入终端6,特别是那些位于小区边界附近的,可以接收从多个接入点4来的导频信号。如果该导频信号在某预定阀值之上,接入终端6可以请求将接入点4加到接入终端6的活动组中。接入终端6可能从活动组的零个、一个、两个或更多的成员接收数据传输。
图2是一个实施例的基本子系统框图。接入点控制器10与分组网络接口24,PSTN 30接口,以及在数据通信系统内的所有接入点4(为简洁之便在图2只示出一个接入点4)接口。接入点控制器10协调接入终端6和其他连到分组网络接口24和PSTN 30的用户间的通信。PSTN 30通过标准电话网络(未在图2示出)与用户接口。
为了简洁在图2只示出了一个元件,接入点控制器10包括许多选择器元件14。一个选择器元件14被分配以控制一个或多个接入点4和一个接入终端6间的通信。如果选择器元件14尚未分配给接入终端6,则呼叫控制器16被通知需要寻呼接入终端6。呼叫控制处理器16然后将接入点4定向到寻呼接入终端6。
数据源20包括要发送到接入终端6的数据。数据源20提供数据给分组网络接口24。分组网络接口24接收数据并将数据路由到选择器元件14。选择器元件14将数据发送到每个与接入终端6通信的接入点4。每个接入点4维持数据队列40,这包括要发射到接入终端6的数据。
数据分组指预定量的数据,且与数据速率无关。在一实施例中,前向链路上数据分组用其他控制和编码比特格式化且被编码。如果数据传输发生在多个Walsh信道上,则被编码的分组经多路分解成平行流,每个流在一个Walsh信道上发送。
数据以数据分组从数据队列40发送到信道元件42。对每个数据分组,信道元件42插入必须的控制字段。经格式化分组包括数据分组,控制字段、帧检测序列比特以及编码尾比特。信道元件42然后对一个或多个经格式化的分组编码并在经编码的分组内交织(重新安排)码元。下一步,经交织的分组用扰码序列被扰乱,用Walsh复盖被覆盖,并以长PN码和短PNI和PNQ码扩展。扩展数据是被正交调制、滤波且由RF单元44内的发射机放大。前向链路信号通过天线46在前向链路50向空中发射。
在接入终端6,前向链路信号由天线60接收并被路由到前端62内的接收机。接收机对该信号进行滤波、放大、正交解调并量化。数字化的信号提供给解调器(DEMOD)64,以长PN码和短PNI和PNQ码解扩展,用Walsh复盖去除覆盖,并用相同的扰码序列解扰码。经解调的数据提供给解码器66,它实现在接入点4处所实现的信号处理功能的相反功能,特别是解交织、解码以及帧校验功能。经解码数据提供给数据接收器68。如上所述的硬件,支持数据传输、发消息、语音、视频以及在前向链路上的通信。
系统控制和调度功能可有许多实现来完成。信道调度器48的定位取决于是否需要中央或分布的控制/调度处理。例如,对分布式处理,信道调度器48可以位于每个接入点4内。相反,对于中央化处理,则信道调度器48可能位于接入点控制器10内且可能设计成协调多个接入点4的数据传输。以上描述的功能的实现可以在本发明的范围内被考虑。
如图1所示,接入终端6散布在数据通信系统内且可与前向链路上的零个或一个接入点4通信。在一实施例中,信道调度器48协调一个接入点4的前向链路数据传输。在一实施例中,信道调度器48连接到接入点4内的数据队列40和信道元件42并接收队列大小,这是指明发射到接入终端6的数据量。在一实施例中,信道调度器48从接入终端6接收DRC消息。
在一实施例中,数据通信系统支持反向链路上数据和消息传输。在接入终端6内,控制器76通过将数据或消息路由到编码器72以处理数据或消息传输。控制器76可以在微控制器内、微处理器、数字信号处理(DSP)芯片内实现或在编程以实现上述功能的ASIC内实现。
在一实施例中,编码器72根据前述的美国专利号5504773内描述的与Blank和Burst信令数据格式一致的格式对消息编码。编码器72生成并添加一组CRC比特,添加一组尾码比特,对数据和添加比特编码并在经编码数据内重新安排码元。经交织的数据提供给调制器(MOD)74。
调制器74可以实现在许多实施例中。在一实施例中(见图5),经交织的数据由Walsh码覆盖,经长PN码扩展,并进一步由短PN码扩展。经扩展数据提供给前端62内的发射机。发射机调制、滤波、放大并通过天线46在反向链路52上经空中发射反向链路信号。
在一实施例中,接入终端6根据长PN码对反向链路数据扩展。每个反向链路信道根据普通长PN序列的时间偏移而定义。在两个不同偏移处产生的调制序列不相关。接入终端6的偏移是根据接入终端6的唯一数字标识确定的,该数字标识是在IS-95接入终端6的实施例中是接入终端特定标识号。因此,每个接入终端6在一个不相关的由其唯一电子序列号确定的反向链路信道上发射。
在接入点4,反向链路信号由天线46接收并提供给RF单元44。RF单元44滤波、放大、解调并量化该信号,将该量化信号提供给信道元件42。信道元件42对经数字化的信号用短PN码和长PN码解扩展。信道元件42还实现Walsh码去覆盖以及导频和DRC抽取。信道元件42然后重新安排经解调的数据、对经解交织的数据解码并执行CRC校验功能。经解码数据,即数据或消息,提供给选择器元件14。选择器元件14将数据和消息路由到合适的目的地。信道元件42还可能将质量指示符转送到选择器元件14以指明接收数据分组的条件。
在一实施例中,接入终端能通过使用Walsh码而将DRC消息的传输导入特定接入点,该Walsh码唯一地标识了接入点。DRC消息码元与唯一Walsh码进行异或(XOR)。由于接入终端的活动组内的每个接入点由唯一Walsh码标识,只有实现与接入终端相同XOR操作的被选择的接入点,连同正确的Walsh码,可以对DRC消息正确地解码。接入点使用从每个接入终端来的DRC消息以最高可能速率有效地发射前向链路数据。
在每个时隙,接入点可能选择经寻呼的接入终端的中的任一个以实现数据传输。随后接入点基于从接入终端接收到的DRC消息的最近值,确定发射数据到被选择的接入终端的数据速率。另外,接入点通过使用对该接入终端唯一的扩展码唯一地标识到特定接入终端的传输。在一实施例中,该扩展码是长伪噪声(PN)码,由IS-95标准定义。
接入终端是数据分组要发到的地方,它接收数据传输并对数据分组解码。每个数据分组包括多个数据单元。在一实施例中,数据单元包括八信息比特,虽然不同数据单元大小可在本发明范围内定义。在一实施例中,每个数据单元与序列号相关联且接入终端能识别或丢失或重复的传输。在该种情况下,接入终端通过反向链路数据信道传输丢失的数据单元的序列号。接入点控制器,它从接入终端接收数据消息,然后向所有与该特定接入终端通信的接入点指明哪些数据单元未由接入终端接收。接入点而后安排这些数据单元的重新传输。数据通信系统内的每个接入终端能在反向链路上与多个接入点通信。在一实施例中,出于若干原因,数据通信系统支持软切换和反向链路上更软的切换。第一,软切换并不消耗在反向链路上附加的容量而是允许接入终端以最小功率电平发射数据使得接入点中至少一个能可靠地对数据进行解码。第二,更多接入点的反向链路信号的接收增加了传输的可靠性且在接入点处只需要附加硬件。
在一实施例中,数据传输系统的前向链路容量由接入终端的速率请求确定。前向链路容量的附加增益可以通过使用方向性天线和/或自适应空间滤波器来达到。用于提供方向性传输的示范方法和装置揭示在美国专利号5857147,1999年1月5日提交,题为“METHOD AND APPARATUS FOR DETERMINING THETRANSMISSION DATA RATE IN A MULTI-USER COMMUNICATION SYSTEM”,提交于1995年12月20日,以及美国申请序列号08925521,题为“METHOD ANDAPPARATUS FOR PROVIDING ORTHOGONAL SPOT BEAMS,SECTORS,AND PICOCELLS”,1997年9月8日提交,被转让给本发明的受让人,并通过引用被结合于此。
在一实施例内,数据传输部分地基于通信链路质量而被安排。示范通信系统,它基于链路质量而选择传输速率被揭示在美国专利序列号08741320,题为“METHOD AND APPARATUS FOR PROVIDING HIGH SPEED DATA COMMUNICATIONS INA CELLULAR ENVIRONMENT”,1996年9月11日提交,被转让给本发明的受让人,并通过引用被结合于此。数据通信的安排可以基于附加考虑,诸如用户的GOS、队列大小、数据类型、已经历的时延量、以及数据传输的差错率。这些在美国专利号08798951内有详述,题为“METHOD AND APPARATUS FOR FORWARDLINK RATE SCHEDULING”,申请序列号08798951,于1997年2月11日提交,以及美国专利号5923650,1999年6月13提交,题为“METHOD AND APPARATUSFOR REVERSE LINK RATE SCHEDULING”,于1997年8月20日提交,被转让给本发明的受让人,并通过引用被结合于此。
在一实施例中,数据传输基于接入终端的初始前向功率控制而被安排。另一实施例中,数据传输基于接入点的初始前向功率控制而被安排。
III.接入终端初始功率控制
在一实施例中,前向功率控制由接入终端初始化。接入终端的初始功率控制的使用减少了前向链路速率量化损失(前向链路有限速率的结果)。
接入终端将被选择速率的过量C/I估计报告给接入点。接入点然后在服务该接入终端时,将其发射功率减少一合适量。
过量C/I是在前向链路上存在有限数据速率的结果。过量C/I测量是在某个给定数据速率上达到某给定性能需要的C/I之上的那部分。过量C/I测量的使用能减少由于前向链路发射功率大于某给定可靠数据速率需要而引起的量化损失。在一实施例中,过量C/I测量用于减少在话务信道上与过量C/I测量相当的发射功率。在一实施例中,过量C/I测量用于减少在导频信道上和话务信道上与过量C/I测量相当的发射功率。
表1说明了支持数据速率和解码阀值的示范定义。
表1-话务信道参数
  参数                                                             数据速率Kbps
    38.4   76.8   153.6   307.2   307.2   614.4   614.4   1228.8   1228.8   1843.2   2457.6
  2048比特     1024   1024   1024   1024   1024   1024   1024   2048   2048   3072   4096
  分组长度(毫秒)     26.67   13.33   6.67   3.33   3.33   1.67   1.67   1.67   1.67   0.83   0.83
  时隙/分组     16   8   4   1   2   1   2   1   2   1   0.5
  时隙/传输     16   8   4   2   2   1   1   1   1   1   1
  阀值(dB)    -11.5  -9.7  -6.8  -3.9  -3.8  -0.6  -0.8   1.8   3.7   7.5   9.7
  速率索引     0   1   2   3   4   5   6   7   8   9   10
本领域的技术人员可以理解支持的数据速率的不同定义可以在本发明的范围内考虑。本领域的技术人员还可以理解任何数目的支持的数据速率和其他不列在表1内的数据速率的使用可以在本发明的范围内考虑。
表1示出在1%分组差错率(PER)时对每个数据速率解码需要的C/I阀值。PER=#badpackets/#goodpackets。前向链路有有限的速率组以及成功对分组解码需要的阀值,例如相继速率的时间的1%有3.7dB的间隙。另外,如果估计的C/I比最大速率要求的要大,则接入点能减少其发射功率。
较靠近小区边界时,接入点的过量发射功率引起对由临近接入点服务的接入终端的干扰。该干扰引起由临近接入点服务的接入终端遵循更低C/I并由此前向链路数据速率变低。因此,减少接入点的发射功率减少了对临近接入点服务的接入终端烦扰,由此增加了接入终端的C/I测量。接入终端的增加的C/I测量引起在接入终端的被请求前向链路数据速率的增加。该接入终端的增加的C/I测量可能引起有效服务数据速率的增加。
一旦接入终端报告了过量C/I,在发射到该接入终端时,接入点可能将其发射功率减少某合适量。这保证了接入终端以1%的PER对被请求的分组解码。另外,由接入终端的相邻扇区内观察到的前向链路干扰被减少了。
DRC信道携带关于被请求的速率和请求来自的扇区。在一实施例中,DRC消息还包括过量C/I的测量。在DRC消息码字内还有附加比特以指明过量C/I的量。在另一实施例中,过量C/I测量被包括在分开反馈信道上的另一消息内。
一旦接入点从接入终端接收到过量C/I的指示,如果它选择服务该接入终端,则它将其发射功率减少由接入终端指明的过量C/I相等的量。数字基带的发射功率被修改以减少接入点的发射功率。
在一实施例中,过量C/I的范围是从0.5dB到3.5dB。假设步距为0.5dB和7级,3比特代表该消息。本领域的技术人员可以明白,步距可以是任何dB增量且可以是dB分级的任意数且在本发明的范围内。
IV.接入点初始功率控制
在一实施例中,前向功率控制自动在接入点处实现。数据传输的安排基于接入点初始前向功率控制。接入点初始前向功率控制方法用于增加接收到相当干扰量的用户的吞吐量。接入点在时间上或随机或与通信系统内的接入点同步地改变其发射功率。
在一实施例中,所有接入点以时间同步的方式变化其发射功率。在另一实施例中,所有接入点以随机方式变化其发射功率。在一实施例中,随机模式是周期模式,诸如正弦模式或三角模式。在另一实施例中,随机模式为非周期模式。本领域内的技术人员可以理解随机模式可能是任何模式。
作为发射功率变化的结果,接入终端测量可变的C/I。接入终端将可变的C/I作为速率请求发送到接入点。接入点在其调度算法中使用速率请求可变的C/I。
在一实施例中,前向链路调度器,即接入点的信道调度器48使用速率请求内的变化以当接入终端的被请求速率比接入终端的平均服务速率要高时将其服务转到接入终端。
在一实施例中,信道调度器48为下一个数据传输作选择,选择具有由该接入终端请求的瞬时DRC与该接入终端的平均服务速率的最高比的接入终端I:
DRCI(n)/RI(n),其中RI(n)=(1-1/tc)*RI(n-1)+(1/tc)。
RI(n)是时隙在n-1到I内的平均服务速率,tc是调度器时间常量。在一实施例内,tc是1000个时隙。本领域的技术人员可以理解时间常量可以是任何大于一的整数且取决与应用。
当接入终端有从相邻小区来的干扰而位于小区相交处或附近时,接入终端的C/I是有限的干扰。如果在接入终端观察到的C/I是时变的,则接入终端会得到相对于一部分时间的平均C/I更高的C/I以及相对于其余时间的平均C/I更低的C/I。接入点计算从从接入终端接收来的多个C/Is的平均C/I。对有比平均C/I高的接入终端由接入点调度器进行调度。在调度数据传输调度中还要考虑其他因子且这在本发明的范围内。
在实施例中,其中所有接入点以同步方式变化其发射功率,一个接入点的所有扇区均受到功率控制使得最大功率发生的时刻取决于接入点的中心站点(boresite)方位角:
     P(t)=P0(dBm)+(dB)*Cos(2*π*t/T-θ)其中
P0是接入点额定发射功率;
θ是方位角;
T是扫描360度的时间(1到2秒);以及
=峰值,Pmax变化=1到4dB。
这导致即使接入终端为静止时在越区切换边界处或附近接入终端有时变的C/I,且它们的最大C/I比其平均C/I优dB。当接入点增加接入终端方向上的功率时,接入终端周围的另一接入点减少它们的发射功率。功率变化的时间周期是要在前向链路调度器的时间常量内。同步的方法可以被看作为过程,它动态移动由固定用户即接入终端察觉的越区切换边界。
在另一实施例中,所有接入点以随机模式变化其发射功率。接入点随机变化即以一种不协调的方式改变功率。
在一实施例中,总功率受控制。在另一实施例中,导频信道和话务信道受控制。在另一实施例中,只有话务信道是功率控制的。
V.无越区切换情况
在没有越区切换的情况下,接入终端6与一个接入点4通信。参考图2,到特定接入终端6的数据提供给选择器元件14,它被分配以控制与接入终端6的通信。选择器元件14将数据转发到接入点4内的数据队列40。接入点4对数据排队并在控制信道上发射寻呼消息。接入点4监控反向链路DRC信道上从接入终端6来的DRC消息。如果DRC信道上没有检测到任何信号,则接入点4将寻呼消息重新发射直到DRC消息被检测到。在超过重新传输尝试的预定次数后,接入点4能中止处理或从重新始发与接入终端6的呼叫。
在一实施例中,接入终端6将以DRC消息形式的被请求的数据速率发送到DRC信道上的接入点4。在另一实施例中,接入终端6将前向链路信道的质量指示(例如C/I测量)发送到接入点4。在一实施例中,接入终端6将过量C/I测量发射到接入点4。
在一实施例中,DRC消息是3比特长且由接入点4用软判决解码。在一实施例中,DRC消息在每个时隙的前一半内被发射。如果该时隙可用于到接入终端6的数据传输,则接入点4然后用时隙剩下的一半对DRC消息解码并把硬件配置为在下一相继时隙的数据传输。如果下一相继时隙不可用,则接入点4等待下一可用时隙并继续监控DRC信道的新DRC消息。
在一实施例中,接入点4以被请求数据速率发射。该实施例中接入终端6要作出选择数据速率的重要决定。一直以所请求的数据速率发送的好处在于接入终端6知道等待的是哪种数据速率。因此,接入终端6根据所请求数据速率只对话务信道解调和解码。接入点4不需要发射消息到接入终端6以指明接入点4正在使用哪个数据速率。
在一实施例中,在接收到寻呼消息后,接入终端6继续试图在所请求数据速率上对数据解调。接入终端6对前向话务信道解调并提供给解码器软判决码元。解码器对码元解码并在经解码的分组上实现帧校验以确定分组是否正确地被接收了。如果分组错误被接收了或如果分组被引导到另一接入终端6,则帧校验会指明分组差错。或者,接入终端6在一个时隙一个时隙的基础上对数据解调。在一实施例中,接入终端6能基于先导序列确定是否是针对它的数据传输,先导序列包括在每个被发射的数据分组内。因此,如果确定传输是针对另一接入终端6时,则接入终端6可以中止解码过程。在两种情况下,接入终端6将否定确定(NACK)消息发射到接入点4以确认数据单元的不正确接收。在接收到NACK消息时,错误接收的数据被重发。
NACK消息的传输可以与CDMA系统内的差错指示符比特(EIB)的传输同样的方式实现。EIB传输的实现和使用揭示在美国专利号5568483,题为“
METHOD AND APPARATUS FOR THE FORMATTING OF DATA FOR TRANSMISSION”,被转让给本发明的受让人,并通过引用被结合于此。或者,NACK可以与消息一起发送。
在一实施例中,数据速率是用从接入终端6来的输入由接入点4确定。接入终端6实现C/I测量并将链路质量指示(例如C/I测量)发射到接入点4。在另一实施例中,接入终端6实现过量C/I测量并将过量C/I测量发射到接入点4。接入点4可以基于接入点4可用的资源调整所请求数据速率,诸如队列大小和可用发射功率。实现速率确定的方法和装置在美国专利号5751725内详细描述,1998年5月12日发表,题为“METHOD AND APPARATUS FOR DETERMININGTHE RATE OF RECEIVED DATA IN A VARIABLE RATE COMMUNICATION SYSTEM”,提交于1996年10月18日的专利号6175590B1,也题为“METHOD AND APPARATUSFOR DETERMINING THE RATE OF RECEIVED DATA IN A VARIABLE RATECOMMUNICATION SYSTEM”,提交于1997年8月8日,被转让给本发明的受让人,并通过引用被结合于此。如果帧校验结果是否定的,则接入终端6发射上述的NACK消息。
VI.越区切换情况
在越区切换情况下,接入终端6在反向链路上与多个接入点4通信。接入终端初始功率控制独立于越区切换操作。在越区切换中,接入终端从由一个接入点服务转为由另一接入点服务。在任何时间,服务该接入终端的接入点的发射功率根据由接入点服务的接入终端测量的过量C/I而减小。
接入点初始功率控制还独立于越区切换操作。接入终端由接入点提供服务,和接入点一起接入终端测量最高接收C/I。当接入终端的所请求的速率高于接入终端的服务速率时,该接入点调度到接入终端的前向链路数据。
在一实施例中,前向链路上到特定接入终端6的数据传输从一个接入点4发生。然而,接入终端6可以同时从多个接入点4接收导频信号。如果接入点4的C/I测量在预定阀值之上,则接入点4被加入接入终端6的活动组。在软越区切换方向消息中,新接入点4将接入终端6分配给下述的反向功率控制(RPC)Walsh信道。与接入终端6实现软切换的每个接入点4监控反向链路传输并在他们相应的RPC Walsh信道上发送RPC比特。
参考图2,分配以控制与接入终端6的通信的选择器元件14将数据转发到所有接入终端6的活动组内的接入点4。所有从选择器元件14接收数据的接入点4在其相应的控制信道上,将寻呼消息发射到接入终端6。当接入终端6在连接状态,接入终端6实现两个功能。第一,接入终端6基于一组参数选择最佳接入点4,该组参数可能是最佳C/I测量。接入终端6然后根据C/I测量选择数据速率。在一实施例中,接入终端6将DRC消息发射到被选中的接入点4。接入终端6能通过用分配给该特定接入点4的Walsh覆盖来覆盖DRC消息,将DRC消息的传输引导到特定接入点4。在另一实施例,接入终端6将过量C/I测量发射到特定接入点4。
接入终端6试图根据每个相继时隙的被请求的数据速率对前向链路信号解调。在发射寻呼消息后,所有在活动组内的接入点4监控DRC信道从接入终端6来的DRC消息。同样,由于DRC消息由Walsh码覆盖的,被选择的分配以同样Walsh码的接入点4能去覆盖DRC消息。在接收到DRC消息时,被选择的接入点4在下一可用时隙时将数据发射到接入终端6。
在一实施例中,接入点4以所请求数据速率将包括多个数据单元的分组数据发射到接入终端6。如果数据单元不正确地由接入终端6接收,NACK消息在反向链路上被发射到活动组内的所有接入点4。在一实施例中,NACK消息由接入点4解调并被解码,且被转发到选择器元件14以处理。在处理NACK消息时,数据单元使用上述的过程被重新发射。在一实施例中,选择器元件14将从所有接入点4接收到的NACK信号组合成一个NACK消息并将该NACK消息发送到活动组内的所有接入点4。
在一实施例中,接入终端6可能检测到最佳C/I测量内的变化并动态请求在不同时隙从不同接入点4来的数据传输以改善效率。由于在一实施例中,数据传输在任一给定时隙处仅从一个接入点4发生,活动组内的其他接入点4可能不知道哪个数据单元,如果有的话,已被发射到接入终端6。在一实施例中,发射接入点4通知选择器元件14有关数据的传输。选择器元件14然后发送消息到所有活动组内的接入点4。在一实施例中,被发射的数据假设已由接入终端6正确接收。因此,如果接入终端6请求从活动组内的不同接入点4来的数据传输,则新接入点4发送剩余数据单元。在一个实施例中,新接入点4根据从选择器元件14来的最近传输更新而发送。或者,新接入点4选择下一数据单元以使用基于诸如平均传输速率和选择器元件14来的先前更新的度量的预测方案而进行发送。这些机制通过在不同时由多个接入点4最小化了同一数据单元的复制的重新传输,因为重复传输引起效率损失。如果先前的传输被错误接收,接入点4可以重发射序列中的这些数据单元,这是因为每个数据单元由下述的唯一序列号标识。在一实施例中,如果建立空穴(或无发送数据单元)(例如一个接入点4到另一接入点4的越区切换的结果),则该丢失数据单元被认为错误接收。对应丢失数据接入终端6发射NACK消息,这些数据单元被重发。
在一实施例中,活动组内的每个接入点4维持一个独立的数据队列40,包括要发送到接入终端6的数据。所选择的接入点4将在数据队列40内的数据按序列顺序发射,除了错误接收的数据单元的重发和信令消息。在一实施例中,被重发的数据单元在传输后从队列40内删除。
VII.前向链路话务信道
图3A示出的是一个实施例的一个前向链路结构的框图。数据分为数据分组并提供给CRC编码器112。对每个数据分组,CRC编码器112产生帧检验比特(即CRC一致校验比特)并插入尾码比特。该从CRC编码器112来的经格式化分组包括数据、帧检查和尾码比特以及其他开销比特,如下所述。经格式化的分组提供给编码器114,在一例实施例中,根据揭示在前述美国专利号5933462内的编码格式对分组编码。其他编码格式也可使用且在本发明范围内。从编码器114来的经编码分组提供给交织器116,它重新安排分组内的码元符号。经交织的分组提供给帧截短元件118,它移去分组中的一部分,方法下述。经截短的分组提供给乘法器120,它用从扰码器122来的扰码序列对数据进行扰乱。截短元件118和扰码器122在以下详述。从乘法器120的输出包括经扰码的分组。
经扰码的分组提供给可变速率控制器130,它将分组多路分解为K个平行的同相和正交信道,其中K取决与数据速率。在一实施例中,经扰码的分组首先经多路分解为同相(I)和正交(Q)流。在一实施例中,I流包括偶数的经索引的符号而Q流包括奇数的经索引符号。每个流进一步经多路分解为K个平行信道使得每个信道的码元速率对所有数据速率固定。每个流的K个信道提供给Walsh覆盖元件132,它用Walsh函数覆盖每个信道以提供正交信道。正交信道数据提供给增益元件134,它对数据进行比例变换以对所有数据速率维持恒定的每码片总能量(因此恒定的输出功率)。从增益元件134来的经比例变换的数据提供给多路复用器(MUX)160,它用先导序列对数据多路复用。先导序列在以下详述。来自MUX 160的输出提供给多路复用器(MUX)162,它对话务数据、功率控制比特以及导频数据实现多路复用。MUX 162的输出包括I Walsh信道和Q Walsh信道。
图3B示出的是用于调制数据的一个调制器的框图。I Walsh信道和Q Walsh信道分别提供给加法器212a和212b,它们相应地对K Walsh信道求和以分别提供信号ISUM和QSUM。该ISUM和QSUM信号提供给复数乘法器214。复数乘法器214还分别从乘法器236a和236b接收PN_I和PN_Q信号,根据以下等式,将两个复数输入相乘:
(Imult+jQmult)=(Isum+jQsum)·(PN_I+jPN_Q)
                                                                        (2)
              =(Isum·PN_I-Qsum·PN_Q)+j(Isum·PN_Q+Qsum·PN_I)其中Imult和Qmult是从复数乘法器214来的输出且j代表复数。Imult和Qmult信号分别提供给滤波器216a和216b,它们对信号滤波。从滤波器216a和216b来的经滤波的信号分别提供给乘法器218a和218b,它们将信号分别用同相正弦COS(wct)和正交正弦SIN(wct)相乘。I调制和Q调制信号提供给加法器220,它对信号求和以提供前向调制波形S(t)。
在一实施例中,数据分组用长PN码和短PN码扩展。长PN码对分组进行扰码使得只有分组要发到的接入终端6能对该分组反扰码。在一实施例中,导频和功率控制比特以及控制信道分组用短PN码扩展而不是长PN码以允许所有接入终端6能接收这些比特。长PN码序列由长码发生器232生成且提供给多路复用器(MUX)234。长PN掩码确定长PN序列的偏移且唯一分配给目的接入终端6。从MUX 234的输出是在传输的数据部分持续时间(例如在导频和功率控制部分持续时间)的长PN序列,否则为零。从MUX 234来的门控长PN序列和从短码发生器238来的短PNI和PNQ序列分别提供给多路复用器236a和236b,它们将两组序列相乘以分别形成PN_I和PN_Q信号。该PN_I和PN_Q信号提供给复数乘法器214。
图3A和3B示出的一个话务信道的框图是许多结构中的一种,它支持前向链路上的数据编码和解调。其他结构,诸如CDMA系统内的前向链路话务信道的符合IS-95标准的结构,也可以使用且在本发明的范围内。
在一实施中,由接入点4支持的数据速率是预定的且每个支持的数据速率分配以一个唯一的速率索引。接入终端6基于C/I测量选择支持的数据速率的一个。由于所请求的数据速率需要被发送到接入点4以使该接入点4能在所请求的数据速率上发送数据,要在所支持的数据速率数目和需要用以标识所请求的数据速率的比特的数目间折衷。在一实施例中,支持的数据速率的数目是七且3比特速率索引用于识别所请求的数据速率。本领域的技术人员可以理解支持数据速率的数据和n比特速率索引可考虑并在本发明的范围内。
在一实施例中,最小数据速率是38.4Kbps,最大数据速率为2.4576Mbps。最小数据速率的选择是基于系统内的最差情况的C/I测量、系统的处理增益、正错码的设计以及期望的性能级别。在一实施例中,支持的数据速率被选择使得相继的支持数据速率间的差别为3dB。该3dB的增加是几个因子间的协调,其中包括可由接入终端6获得的C/I测量的准确性、基于C/I测量而对数据速率量化结果引起的损失(无效性)以及需要从接入终端6发送被请求数据速率到接入点4的比特数据(或比特率)。更多的支持数据速率需要更多的比特以识别被请求的数据速率但允许更有效地使用前向链路,这是由于在被计算的最大数据速率和所支持的数据速率间的更小量化误差。
在一实施例中,话务信道传输被分为帧。在一实施例中的帧定义为短PN序列的长度或26.67毫秒。每个帧能携带到所有接入终端6的控制信道信息(控制信道帧)、到所有特定接入终端6的话务数据(话务帧)、或可以是空帧(空闲帧)。每个帧的内容由发射接入点4实现的调度安排确定。在一实施例中,每个帧包括16个时隙,每个时隙持续1.667毫秒。1.667毫秒的时隙对于接入终端6实现前向链路信号的C/I测量足够了。1.667毫秒的时隙保证了充分有效分组数据传输的时间。在一实施例中,每个时隙进一步被分为四个四分之一时隙。
在一实施例中,每个数据分组在如表1示出的一个或多个时隙上发送。在一实施例中,每个前向链路数据分组包括1024或2048个比特。因此,发射每个数据分组的时隙数取决与数据速率和范围,从对38.4Kbps的16个时隙到对1.2288Mbps的1个时隙或更高。
图4A是一个实施例的前向链路时隙结构。在一实施例中,每个时隙包括四个时间多路复用信道的三个、话务信道、控制信道、导频信道以及功率控制信道。在一实施例中,导频和功率控制信道以两个导频和功率控制突发被发射,它们位于每个时隙的同一同一位置。关于导频和功率控制突发的描述在美国专利专利申请号08963386中有描述,题为“METHOD AND APPARATUS FOR HIGH RATEPACKET TRANSMISSION”,提交于1997年11月3日,在前引用被结合于此。
VIII.前向链路导频信道
在一实施例中,前向链路导频信道提供导频信号,它为接入终端6使用于初始捕获、相位恢复、定时恢复和比例组合。这些使用类似与符合IS-95标准的CDMA通信系统的情况。在一实施例中,导频信号还接入终端6用于实现C/I测量。
图3A示出一实施例中的前向导频信道的框图。导频数据包括提供给乘法器156的全零的序列(或全1)。乘法器156用Walsh码W0覆盖导频数据。由于Walsh码W0是全零序列,乘法器156的输出为导频数据。导频数据被MUX 162时间多路复用且提供给由复数乘法器214(见图3B)内的短PNI码扩展的I Walsh信道。在一实施例中,导频数据不用长PN码扩展,它在导频突发时由MUX 234关闭,以使得所有的接入终端6都能接收。导频信号因此是未经调制的BPSK信号。
图4A示出导频信号的图表。在一实施例中,每个时隙包括两个导频突发306a和306b,它们发生在时隙的第一个和第三个四分之一末端。在一实施例中,每个导频突发持续为64码片(Tp=64码片)。在每个话务数据或控制信道不存在的情况下,接入点4只发射导频和功率控制突发,引起在1200Hz周期速率处的不连续波形突发。
IX.反向链路功率控制比特增益
在一实施例中,前向链路功率控制信道用于发送功率控制指令用于控制从远程站6来的反向链路传输的发射功率。在反向链路上,每个发射接入终端6起到了对网络内其他所有接入终端6的干扰源作用。为最小化反向链路上的干扰并最大化容量,每个接入终端6的发射功率由两个功率控制环控制。在一实施例中,功率控制环类似于CDMA系统中的情况,这揭示于美国专利号5056109,题为“METHOD AND APPARATUS FOR CONTROLLING TRANSMISSION POWER IN A CDMACELLULAR MOBILE TELEPHONE SYSTEM”,被转让给本发明的受让人,并通过引用被结合于此。也可以考虑其他在本发明范围内的功率控制机制。
第一功率控制环调整接入终端6的发射功率使得反向链路信号质量维持在一设定水平。信号质量由接入点4处接收的反向链路信号的每比特能量与噪声加干扰比Eb/Io测量。该设定水平称为Eb/Io设定点。第二个功率控制环调整设定点以维持帧误差率(FER)测量的性能的期望水平。功率控制在反向链路上尤为关键,因为每个接入终端6的发射功率是对通信系统内其他接入终端6的干扰。最小化反向链路发射功率能减少干扰并增加反向链路容量。
在第一功率控制环内,反向链路信号的Eb/Io在接入点4处测量。接入点4然后将经测量的Eb/Io与设定点比较。如果经测量的Eb/Io大于设定点,则接入点4将功率控制消息发送到接入终端6以减少发射功率。或者,如果经测量的Eb/Io低于设定点,则接入点4发送将功率控制消息发送到接入终端6以增加发射功率。在一实施例中,功率控制消息由一个功率控制比特实现。在一实施例中,功率控制比特的高值命令接入终端6增加其发射功率,低值命令接入终端6减少发射功率。
在一实施例中,与每个接入点4通信的所有接入终端6的功率控制比特在功率控制信道上被发射。在一实施例中,功率控制信道包括高达32个正交信道,由16比特Walsh覆盖扩展。每个Walsh信道周期性间隔发射一个反向功率控制(RPC)比特或一个FAC比特。每个活动的接入终端6被分配一个RPC索引,它为要到接入终端6的RPC比特流的传输定义了Walsh覆盖和QPSK调制相位(例如,同相或正交)。在一实施例中,RPC索引中的0是为FAC比特保留的。
图3A示出功率控制信道的一个框图。RPC比特提供给符号中继器150,它将每个RPC比特重复预定次数。经重复的RPC比特提供给Walsh覆盖元件152,它用对应与RPC索引的Walsh覆盖覆盖这些比特。经覆盖的比特提供给增益元件154。在一实施例中,增益元件154在调制前按比例缩放比特以维持恒定的总发射功率。在一实施例中,RPC Walsh信道的增益经标准化使得总RPC信道功率等于总可用发射功率。Walsh信道的增益在维持到所有活动接入终端6的可靠RPC传输的同时可随总接入点发射功率的有效利用的时间而变。在一实施例中,不活动接入终端6的Walsh信道增益被设为零。RPC Walsh信道的自动功率控制在使用从接入终端6来的对应的DRC信道来的前向链路质量测量的估计时是可能的。从增益元件154来的经比例调节的RPC比特提供给MUX 162。
在一实施例中,RPC索引从0到15分别分配给了Walsh覆盖W0到W15,且大致在时隙内的第二个导频突发时发送(图4B的RPC突发304)。RPC索引16到31相应地分配给Walsh码W0到W15,且大致在时隙内的第二个导频突发时发送(图4B的RPC突发308)。在一实施例中,RPC比特是用偶Walsh覆盖(例如W0、W2、W4等)在同相信号上进行BPSK调制,以及奇Walsh覆盖(例如W1、W3、W5等)在正交信号上调制。为减少峰值比均值的包络,最好能平衡同相和正交功率。另外,为减少由于解调器相位估计误差引起的串话,最好能将正交覆盖分配给同相和正交信号。
在一实施例内,在每个时隙内可以在31个RPC信道上发射达31个RPC比特。在一实施例中,15个RPC比特在前半时隙上发射且16个RPC比特在后一半时隙上发射。RPC比特由加法器212组合(见图3B),图4B示出功率控制信道的复合波形。
图4A描述功率控制信道的定时图。在一实施例中,RPC比特速率是600bps,或每时隙一RPC比特。每个RPC比特是时间多路复用的并在两个RPC突发(例如RPC突发304a和304b)上发送,如图4B和4C所示。在一实施例中,每个RPC突发宽度上是32个PN码片(或2个Walsh符号),每个RPC比特的总宽度为64个PN码片(或4个Walsh符号)。其他RPC比特率可以通过改变符号重复的次数得到。例如,1200b0ps的RPC比特速率(以同时支持达63个接入终端6或增加功率控制速率)可以通过在RPC突发304a和304b上发送第一组31个RPC比特,以及在RPC突发308a和308b上发送第二组32个RPC比特而得到。在这种情况下,所有Walsh覆盖用于同相和正交信号。
由于与每个接入点4通信的接入终端6的数目可能少于可用PRC Walsh信道的数据,功率控制信道具有突发性。在该情况下,一些RPC Walsh信道通过增益元件154的增益的合适调整而设为零。
在一实施例中,RPC比特在未经编码或交织的情况下发送到接入终端6以最小化处理时延。另外,功率控制比特的错误接收对于数据通信系统无损害,这是因为误差可以在下一时隙由功率控制环纠正。
在一实施例中,接入终端6可以在反向链路上与多个接入点4软切换。软切换时的接入终端6的反向链路功率控制的方法和装置揭示于美国专利号5056109内。处于软切换的接入终端6为活动组内的每个接入点4监控RPCWalsh信道,并根据前述的美国专利号5056109内的方法组合RPC比特。在一实施例内,接入终端6实现下调功率指令的逻辑OR。如果任何接收到的RPC比特命令接入终端6减小发射功率,则接入终端6减少发射功率。在一实施例中,处于软切换的接入终端6可以在作出硬判决前组合RPC比特的软判决。还可以在本发明范围内考虑其他处理接收RPC比特的实施例。
在一实施例中,FAC比特指示接入终端6相关的导频信道的话务信道是否在下一半帧上发送。使用FAC比特通过广播有关干扰活动的知识改善了接入终端6的C/I估计以及数据速率请求。在一实施例中,FAC比特只在半帧的边界处变化并在接着的八个相继时隙内被重复,产生了75bps的比特速率。
使用FAC比特,接入终端6可以如下计算C/I测量:
( C I ) i = C i I - Σ j ≠ i ( 1 - α j ) C j - - ( 3 )
其中(C/I)i是第i个前向链路信号的C/I测量,Ci是第i个前向链路信号的总接收功率,Cj是第j个前向链路信号的接收功率,如果所有的接入点4在发射,则I是总干扰,αj是第j个前向链路信号的FAC比特且取决于FAC比特可为0或1。
X.反向链路结构
在一实施例的数据通信系统中,反向链路传输在几方面不同于前向链路传输。在前向链路上,数据传输一般发生在从一个接入点4到一个接入终端6。然而,在反向链路上,每个接入点4可能进发地从若干接入终端6接收数据传输。在一实施例中,每个接入终端6可能以几个数据速率中的一个发射,这取决于要发到接入点4的数据量。该系统的设计反映了数据通信的不对称性。
在一实施例中,反向链路上的时间基单元等于前向链路上的时间基单元。在一实施例中,前向链路和反向链路数据传输发生在时隙上,时隙持续期为1.667毫秒。然而,由于在反向链路上的数据传输一般发生在较低数据速率处,更长的时间基单元可用于改善效率。
在一实施例中,反向链路支持可变速率数据传输。可变速率提供灵活性并允许接入终端6在几个数据速率中的一种发射,这取决于要发射到接入点4的数据量。在一实施例中,接入终端6可以在任何时间以最低数据速率发射数据。在一实施例中,更高数据速率的数据传输需要获得接入点4的允许。该实现最小化了反向链路传输时延,同时提供了反向链路资源的有效利用。
在一实施例中,反向链路支持两个信道:导频/DRC信道以及数据信道。这些信道的每个的功能和实现如下所述。导频/DRC信道用于发射导频信号和DRC消息,数据信道用于发射话务数据。
在一实施例中,任何时候接入终端6接收高速数据传输时,接入终端6在每个时隙内在导频/DRC信道上发射DRC消息。或者,当接入终端6不接收高速数据传输时,导频/DRC信道上的整个时隙包括导频信号。通过接收接入点4导频信号被用于实现许多功能:帮助初始捕获、作为导频/DRC和数据信道的相位参考、作为闭环反向链路功率控制的源。
在一实施例中,反向链路的带宽被选择为1.2288MHZ。该带宽选择允许使用现存的符合IS-95标准的CDMA系统的硬件设计。然而,其他带宽可用于增加容量和/或符合系统需求。在一实施例中,由IS-95标准规定的同样的长PN码和短PNI和PNQ码用于扩展反向链路信号。在一实施例中,反向链路信道使用QPSK调制发射。或者,OQPSK调制可用于对已调制信号的最小化峰值对均值幅度变化,这样可以改善性能。可以在本发明范围内考虑不同系统带宽的使用、PN码以及调制方案。
在一实施例中,导频/DRC信道上的反向链路传输的发射功率和数据信道受控制使得在接入点4测量得的反向链路信号的Eb/Io维持在预定的Eb/Io设定点,如上所述的美国专利号5506109讨论的。在与接入终端6通信中,功率控制由接入点4维持,指令如上所述经由RPC比特发送。
XI.反向链路数据信道
图5是一个实施例的反向链路结构的框图。数据被分为数据分组,并提供给编码器612。对每个数据分组,编码器612生成CRC一致校验比特,插入尾码比特并对数据编码。在一实施例中,编码器612根据前述的美国专利申请序列号08743688对分组编码。本发明范围内的其他编码的格式也可用。从编码器612来的已编码分组提供给模块交织器614,它对分组内的码元符号重新排序。经交织的分组提供给乘法器616,它用Walsh覆盖实现数据覆盖并提供经覆盖的数据给增益元件618,增益元件618对数据实现尺度缩放以维持任何数据速率下的恒定的每比特能量Eb。从增益元件618来的经缩放的数据提供给乘法器650b和650d,它们用相应的PN_Q和PN_I序列对数据实现扩展。从乘法器652b和650d来的扩展数据提供给相应的滤波器652b和652d,它们对数据实现滤波。从滤波器652a和652b来的经滤波的信号提供给加法器654a,从滤波器652c和652d来的经滤波的信号提供给加法器654b。加法器654对从数据信道来的信号和从导频/DRC信道来的信号求和。加法器654a和654b的输出分别包括的IOUT和QOUT,并分别用同相正弦COS(wct)和正交正弦SIN(wct)调制(如在前向链路),并被求和(图5未示出。在一实施例中,话务数据在正弦的同相和正交相位上被发射。
在一实施例中,数据用长PN码和短PN码扩展。长PN码对数据实现扰频使得接收的接入点4能识别发射的接入终端6。短PN码在系统带宽上对信号实现扩展。长PN序列由长码发生器642生成并提供给乘法器646。短PNI和PNQ序列由短码发生器644生成且分别提供给乘法器646a和646b,它们将两组序列相乘以分别形成PN_I和PN_Q信号。定时/控制电路640提供定时参考。
图5示出的数据信道结构的一个模块图是许多反向链路上支持数据编码和调制的结构之一。对高速率数据传输,可以使用类似于前向链路使用的若干正交信道的结构。其他结构,诸如符合IS-95标准的CDMA内的反向链路话务信道的结构,可以在本发明的范围内考虑。高速数据传输的调度机制在前述的美国专利申请序列号08798951内详细描述。
XII.反向链路导频/DRC信道
图5示出了导频/DRC信道的框图。DRC消息提供给DRC编码器626,它根据预定的编码格式对消息编码。DRC消息的编码很重要,这是由于必须要保证DRC消息的出错概率足够小,因为不正确的前向链路数据速率确定影响系统吞吐量性能。在一实施例中,DRC编码器626是码率(8,4)CRC分组编码器,它将3比特DRC消息编码为8比特码字。经编码的DRC消息提供给乘法器628,它用唯一标识该DRC消息发到的目标接入点4的Walsh码覆盖消息。Walsh码由Walsh发生器624提供。经覆盖的DRC消息提供给多路复用(MUX)630,它用导频数据多路复用消息。DRC消息和导频数据提供给乘法器650a和650c,它分别用PN_I和PN_Q信号对数据实现扩展。因此,导频和DRC消息同时在正弦的同相和正交相位上发射。
在一实施例中,DRC消息发送到被选中的接入点4。这通过用识别被选中的接入点4的Walsh码覆盖DRC消息来实现。在一实施例中,Walsh码为128码片长。128个码片Walsh码推导在技术领域内已知。唯一的Walsh码被分配给每个与接入终端6通信的接入点4。每个接入点4对DRC信道上的信号用其分配得的Walsh码实现去覆盖。被选择的接入点4能对DRC消息去覆盖并作为相应将数据发送到前向链路上的请求接入终端6。其他接入点4能确定所请求的数据速率不是送到它们的,这是由于这些接入点4被分配了不同的Walsh码。
在一实施例中,对数据通信系统内的所有接入点4的反向链路短PN码都是一样的,且在短PN序列内没有偏置来区别不同的接入点4。一个实施例的数据通信系统支持反向链路上的软切换。使用没有偏移的同样的短PN码允许若干接入点4在软切换中接收从接入终端6来的同样的反向链路传输。短PN码提供频谱扩展但不允许用于接入点4的识别。
在一实施例中,DRC消息携带接入终端6所请求的数据速率。在另一实施例中,DRC消息携带前向链路质量的指示(例如由接入终端6测量的C/I消息)。接入终端6能同时从一个或多个接入点4接收前向链路导频信号并在每个接收到的导频信号上实现C/I测量。接入终端6然后基于一组参数选择最佳接入点4,这可能包括当前和先前的C/I测量。速率控制信息被格式化为DRC消息,在几个实施例中的一个内,它可以被发送到接入点4。
在一个实施例中,接入终端6基于所请求的数据速率发送DRC消息。所请求的数据速率是最高可支持数据速率,它在接入终端6测量的C/I处具有令人满意的性能。从C/I测量,接入终端6计算最大数据速率,它产生令人满意性能。一旦最大数据速率已被计算,最大数据速率然后被量化为支持数据速率中的一个,并称为请求的数据速率。对应请求的数据速率的数据速率索引发射到所选择的接入点4。支持的数据速率和对应的数据速率索引的示范组在表1示出。
接入终端6还计算过量C/I测量。过量C/I测量值是超过满意性能需要的C/I。在一实施例中,接入终端6基于C/I测量发送DRC消息。在这个实施例中,接入点4计算产生满意性能的最大数据速率。在其他实施例中,接入终端6基于C/I测量和过量C/I测量发射DRC消息。在另一实施例中,接入终端6在另一信道上发射过量C/I测量。在过量C/I测量被计算的实施例中,接入点4计算产生满意性能的最大数据速率并基于过量C/I测量减少话务信道发射功率。然后,接入终端6解调器64根据该减少按比例调节话务信道发射功率。
在一实施例中,其中接入终端6将前向链路质量指示发射到被选择的接入点4,接入终端6发射C/I索引,它代表了C/I测量的量化值。C/I测量可以映射到表并与C/I索引相关。使用更多比特以代表C/I索引实现C/I测量更精细的量化。并且,映射可以是线性的或预失真的。对于线性映射,C/I索引内的每次增加都代表了相应的C/I测量内的对应的增加。例如,在C/I索引内的每级代表C/I测量内的2.0dB的增加。对预失真映射,C/I索引的每次增加可以代表C/I测量的不同增加。例如,预失真映射可以用于对C/I测量量化以匹配如图6示出的C/I分布的累积分布函数(CDF)曲线。
还可以在本发明的范围内考虑其他实施例能实现将速率控制信息从接入终端6发送到接入点4。另外,不同数目的比特使用以代表速率控制信息也在本发明的范围内。
在一实施例中,C/I测量和过量C/I测量可以以与CDMA系统使用的类似的方法在前向链路导频信号上实现。实现C/I测量的方法和装置揭示于美国专利号5903554,题为“METHOD AND APPARATUS FOR MEASURING LINK QUALITY IN ASPREAD SPECTRUM COMMUNICATION SYSTEM”,提交于1996年9月27日,被转让给本发明的受让人,并通过引用被结合于此。总之,导频信号上的C/I测量可以通过用短PN码对接收信号实现反扩展得到。如果信道条件在C/I测量的时间和实际数据传输时间间有改变,则导频信号的C/I测量可能有不准确性。在一实施例中,在确定所请求的数据速率时,FAC比特的使用允许接入终端6考虑前向链路活动性。
在另一实施例中,C/I测量和过量C/I测量可以在前向链路话务信道上实现。话务信道信号首先用长PN码和短PN码解扩展并用Walsh码去覆盖。数据信道上的信号的C/I测量可以更准确,这是由于经发射的功率的更大的一部分被分配给了数据传输。还可以在本发明的范围内考虑测量接入终端6的接收前向链路信号的C/I的其他方法。
在一实施例中,所请求的数据速率使用绝对参考和相对参考被发送到接入点4。在这实施例中,包括所请求的数据速率的绝对参考是周期性发射的。绝对参考允许接入点4以确定接入终端6所请求的准确的数据速率。对在绝对参考的传输间的每个时隙,接入终端6发射相对参考到接入点4,它指明要到来的时隙的请求数据速率是更高、更低或和前一时隙的请求数据速率相同。周期性地,接入终端6发送绝对参考。数据速率索引的周期性传输允许所请求的数据速率设定为已知状态并保证相对参考的错误接收不累积。绝对参考和相对参考的使用可以减少到接入点6的DRC消息的传输速率。还可以在本发明范围内考虑其他协议以发射请求数据速率。
接入终端6使用反向链路访问信道以在注册阶段将消息发射到接入点4。接入终端6在反向链路NACK信道上发射NACK消息。
虽然本发明是以NACK协议为背景描述的,但可以在本发明的范围内考虑使用ACK协议。
上述优选实施例的描述使本领域的技术人员能制造或使用本发明。这些实施例的各种修改对于本领域的技术人员来说是显而易见的,且一般的原理也可适用于其他实施例。因此,本发明并不限于这里示出的实施例,而要符合与这里揭示的原理和新颖特征一致的最宽泛的范围。

Claims (29)

1.一种从至少一个接入点到另一个接入终端的分组数据传输方法,包括:
寻呼接入终端关于即将待传送的数据传输;
基于一组参数选择接入点;
从被选择的接入点测量前向链路信号的过量C/I;
将该过量C/I测量发送到所述被选择的接入点;以及
根据所述的过量C/I测量以某一发射功率从所述被选择的接入点发射数据。
2.如权利要求1所述的方法,其特征在于,所述发射步骤根据所述接入终端的优先级由调度器安排进度。
3.如权利要求1所述的方法,其特征在于,所述测量、选择以及发送步骤在每个时隙上执行直到所述的数据传输完成。
4.如权利要求1所述的方法,其特征在于,所述发射步骤使用方向性波束执行。
5.如权利要求1所述的方法,其特征在于,所述数据以数据分组被发送到所述的接入终端。
6.如权利要求5所述的方法,其特征在于还包括:
为没有被所述接入终端接收的数据分组发送否定确认(NACK)消息。
7.如权利要求5所述的方法,其特征在于还包括:
根据所述的NACK消息重发所述的未被接入终端接收的数据分组。
8.如权利要求5所述的方法,其特征在于,所述数据分组对所有数据速率是固定大小。
9.如权利要求5所述的方法,其特征在于,所述数据分组在一个或多个时隙上被发送。
10.如权利要求5所述的方法,其特征在于,每个数据分组包括一个先导序列。
11.如权利要求10所述的方法,其特征在于,所述先导序列的长度基于所述数据速率。
12.一种从至少一个接入点到接入终端的分组数据传输的方法,包括:
无寻呼接入终端关于即将待传送的数据传输;
根据一组参数选择接入点;
从被选择的接入点测量前向链路信号的过量C/I;
将该过量C/I测量发送到所述的被选择接入点;以及
根据所述的过量C/I测量以某一发射功率从所述被选择的接入点发射数据。
13.如权利要求12所述的方法,其特征在于,所述数据请求消息指示所请求的数据速率。
14.如权利要求12所述的方法,其特征在于,所述所请求的数据速率是多个数据速率的一个。
15.一种从至少一个接入点到接入终端的分组数据传输的方法,包括:
寻呼接入终端关于即将待传送的数据传输;
根据一组参数选择接入点;
测量从被选择的接入点来的前向链路信号的过量C/I;
在第一信道上将数据请求消息发送到所述被选择的接入点;
在第二信道上将过量C/I测量发送到所述被选择的接入点;以及
根据所述数据请求消息以某以数据率和根据所述被测量的过量C/I测量以某一发射功率从所述的接入点发射数据。
16.如权利要求15所述的方法,其特征在于,所述数据请求消息指示所请求的数据速率。
17.如权利要求15所述的方法,其特征在于,所述所请求数据速率是多个数据数率的一个。
18.一种从至少一个接入点到接入终端的分组数据传输的方法,包括:
从多个接入终端接收数据请求消息;
计算多个接入终端的每个的平均服务速率;
计算多个接入终端的每个的被请求的数据速率与平均服务速率的比;
安排从有最大被请求数据速率与平均服务速率比的接入终端的数据传输的进度;以及
根据所述数据请求消息以一随机变化发射功率从所选择的接入点发射数据。
19.如权利要求18所述的方法,其特征在于,所述比率的计算是:DRCI(n)/RI(n),其中RI(n)=(1-1/tc)*RI(n-1)+(1/tc);DRCI(n)是终端I在时隙n的请求数据率;RI(n)是时隙n-1到I的平均服务速率;tc是调度器的时间常量。
20.通信系统中一种从至少一个接入点到接入终端的分组数据传输方法,包括:
从多个接入终端接收数据请求消息;
对多个接入终端的每个计算平均服务速率;
为多个接入终端的每个计算被请求数据速率与平均服务速率的比;
基于请求的数据速率与平均服务速率之比对从接入终端来的数据传输进度安排实现偏置;以及
根据所述的数据请求消息以与通信系统内的相邻接入点同步地以某发射功率从被选择的接入点发射数据。
21.通信系统内一种从至少一个接入点到接入终端的分组数据传输的方法,包括:
从多个接入终端接收数据请求消息;
计算多个接入终端的每个的平均服务速率;
计算多个接入终端的每个的请求数据速率与平均服务速率之比;
安排从有最大请求数据速率与平均服务速率之比的接入终端的数据传输的进度;以及
根据所述数据请求消息以与通信系统内的相邻接入点同步地以某一发射功率从所选择的接入点发射数据。
22.如权利要求21所述的方法,其特征在于,发射功率最大取决于接入点的中心站点(boresite)的方位角。
23.如权利要求22所述的方法,其特征在于,发射功率P(t)=P0(dBm)+(dB)*Cos(2*π*t/T-θ)其中
P0是接入点额定发射功率;
θ是方位角;
T是扫描360度的时间;以及
=dB的峰值。
24.一种接入终端,包括:
接收机,用于在前向链路信号上接收无线电寻呼消息并实现C/I测量以及前向链路信号的过量C/I测量;
控制器,耦合到所述的接收机以接收从接收机来的所述的寻呼消息、C/I测量和过量C/I测量,所述的控制器选择一个接入点;以及
发射机,耦合到所述的控制器以发射包括C/I测量和过量C/I测量的数据请求消息。
25.一种接入点,包括:
接收机,用于接收C/I测量和过量C/I测量;
信道调度器耦合到所述的接收机以接收从接收机来的所述的C/I测量和过量C/I测量,所述的信道调度器选择用于数据传输的接入终端;以及
发射机耦合到所述的信道调度器以基于C/I测量和过量C/I测量的发射功率发射数据。
26.一种从至少一个接入点到接入终端的高速分组数据传输的通信系统,包括:
所述至少一个的接入点中的每个内的发射机以将在前向链路信号内的寻呼消息发射到所述的接入终端;
所述一个接入终端内的接收机以接收所述的寻呼消息并实现从所述的至少一个接入点内的所述发射机来的所述前向链路信号的C/I测量和过量C/I测量。
所述至少一个接入终端的每个内的控制器,所述控制器耦合到所述的接收机以接收所述的C/I测量和过量C/I测量,所述控制器识别被选择的接入点;以及
所述接入终端内的发射机耦合到所述控制器以发射数据请求消息。
27.一种接入点,包括:
从多个接入终端接收数据请求消息的装置;
为多个接入终端的每个计算平均服务速率的装置;
为多个接入终端的每个计算请求速率与平均服务速率之比的装置;
为安排从带有最大请求数据速率与平均服务速率之比来的数据的传输的进度的装置;以及
根据所述数据请求消息以随机变化发射功率所经选择的接入点发射数据的装置。
28.一种接入点,包括:
从多个接入终端接收数据请求消息的装置;
对多个接入终端的每个计算平均服务速率的装置;
为多个接入终端的每个计算请求的数据速率与平均服务速率之比的装置;
对带有最大请求数据速率与平均服务速率之比的接入终端来的数据的传输的进度安排实现偏置的装置;以及
根据所述的数据请求消息以随机可变发射功率从所选择的接入点发射数据的装置。
29.一种接入点,括:
从多个接入终端接收数据请求消息的装置;
对多个接入终端的每个计算平均服务速率装置;
为多个接入终端的每个计算请求数据速率与平均服务速率之比的装置;
对有最大请求数据速率与平均服务速率之比的接入终端来的数据传输进度安排实现偏置的装置;以及
根据所述的数据请求消息以与通信系统内的相邻接入点同步地以某一发射功率从所选择的接入点发射数据的装置。
CNB018225934A 2001-01-05 2001-12-27 通信系统内的前向功率控制的方法和装置 Expired - Fee Related CN100355215C (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US09/755,654 2001-01-05
US09/755,654 US6850499B2 (en) 2001-01-05 2001-01-05 Method and apparatus for forward power control in a communication system

Publications (2)

Publication Number Publication Date
CN1489834A true CN1489834A (zh) 2004-04-14
CN100355215C CN100355215C (zh) 2007-12-12

Family

ID=25040033

Family Applications (1)

Application Number Title Priority Date Filing Date
CNB018225934A Expired - Fee Related CN100355215C (zh) 2001-01-05 2001-12-27 通信系统内的前向功率控制的方法和装置

Country Status (14)

Country Link
US (2) US6850499B2 (zh)
EP (2) EP2194658A3 (zh)
JP (2) JP2004533133A (zh)
KR (1) KR100877262B1 (zh)
CN (1) CN100355215C (zh)
BR (1) BR0116716A (zh)
CA (1) CA2433939A1 (zh)
HK (1) HK1062092A1 (zh)
IL (1) IL156750A0 (zh)
MX (1) MXPA03006102A (zh)
NO (1) NO20033063L (zh)
RU (1) RU2003124184A (zh)
TW (1) TW525357B (zh)
WO (1) WO2002054617A2 (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101015227B (zh) * 2004-07-20 2012-03-21 高通股份有限公司 利用软越区切换的变速广播
CN101523753B (zh) * 2006-10-10 2012-11-21 华为技术有限公司 用于紧急情况速率调整的系统

Families Citing this family (110)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7123600B2 (en) * 1995-06-30 2006-10-17 Interdigital Technology Corporation Initial power control for spread-spectrum communications
US7929498B2 (en) 1995-06-30 2011-04-19 Interdigital Technology Corporation Adaptive forward power control and adaptive reverse power control for spread-spectrum communications
US6885652B1 (en) 1995-06-30 2005-04-26 Interdigital Technology Corporation Code division multiple access (CDMA) communication system
US7020111B2 (en) * 1996-06-27 2006-03-28 Interdigital Technology Corporation System for using rapid acquisition spreading codes for spread-spectrum communications
ZA965340B (en) * 1995-06-30 1997-01-27 Interdigital Tech Corp Code division multiple access (cdma) communication system
US20020051434A1 (en) * 1997-10-23 2002-05-02 Ozluturk Fatih M. Method for using rapid acquisition spreading codes for spread-spectrum communications
US8019068B2 (en) * 2000-12-01 2011-09-13 Alcatel Lucent Method of allocating power for the simultaneous downlink conveyance of information between multiple antennas and multiple destinations
US7257094B2 (en) * 2001-01-16 2007-08-14 Texas Instruments Incorporated Jointly controlling transmission rate and power in a communications system
KR100663524B1 (ko) * 2001-01-17 2007-01-02 삼성전자주식회사 이동통신 시스템에서 월시 코드를 사용하여 패킷 데이터를전송하기 위한 장치 및 방법
US7236508B2 (en) * 2001-02-05 2007-06-26 The Directv Group, Inc. Application of complex codes to maximize feeder link utilization
US7006483B2 (en) 2001-02-23 2006-02-28 Ipr Licensing, Inc. Qualifying available reverse link coding rates from access channel power setting
IL142843A0 (en) * 2001-04-29 2002-03-10 Nomad Access Ltd Method of dynamic time-slot allocation in data communication systems
US6987778B2 (en) 2001-05-22 2006-01-17 Qualcomm Incorporated Enhanced channel interleaving for optimized data throughput
US7085581B2 (en) * 2001-06-01 2006-08-01 Telefonaktiebolaget Lm Ericsson (Publ) RPC channel power control in a HDR network
KR100571802B1 (ko) * 2001-09-03 2006-04-17 삼성전자주식회사 통신 효율을 높이는 이동통신 시스템 및 그 방법
US20030050074A1 (en) * 2001-09-12 2003-03-13 Kogiantis Achilles George Method for the simultaneous uplink and downlink conveyance of information between multiple mobiles and a base station equipped with multiple antennas
US7558602B2 (en) * 2001-09-12 2009-07-07 Alcatel-Lucent Usa Inc. Method for multi-antenna scheduling of HDR wireless communication systems
KR100429534B1 (ko) * 2001-10-29 2004-05-03 삼성전자주식회사 이동통신시스템의 핸드오프시 역방향 전력제어채널의전송제어를 위한 방법 및 장치
JP3607854B2 (ja) * 2001-11-22 2005-01-05 松下電器産業株式会社 基地局装置、移動局装置および送信電力制御方法
US7174134B2 (en) * 2001-11-28 2007-02-06 Symbol Technologies, Inc. Transmit power control for mobile unit
JP2003163632A (ja) * 2001-11-29 2003-06-06 Hitachi Ltd 端末に対して送信する信号の伝送速度または送信電力を変化させる無線通信装置およびその信号送信方法
KR100434382B1 (ko) * 2001-12-28 2004-06-04 엘지전자 주식회사 순방향 링크 속도 보상을 위한 스케쥴링 방법 및장치
US7444161B2 (en) * 2002-03-22 2008-10-28 Huawei Technologies Co., Ltd. Self & minus; adaptive weighted space time transmitting diversity method and system thereof
US7463616B1 (en) * 2002-03-28 2008-12-09 Nortel Networks Limited Scheduling based on channel change indicia
JP3888205B2 (ja) * 2002-04-04 2007-02-28 セイコーエプソン株式会社 無線通信管理装置
US7352722B2 (en) * 2002-05-13 2008-04-01 Qualcomm Incorporated Mitigation of link imbalance in a wireless communication system
US7965842B2 (en) * 2002-06-28 2011-06-21 Wavelink Corporation System and method for detecting unauthorized wireless access points
US20040014494A1 (en) * 2002-07-16 2004-01-22 Paul Hellhake Double wireless access point bridging system
US20060171335A1 (en) * 2005-02-03 2006-08-03 Michael Yuen Backup channel selection in wireless LANs
US20040038656A1 (en) * 2002-08-22 2004-02-26 Mccall John H. Method and apparatus for distortion reduction and optimizing current consumption via adjusting amplifier linearity
IL151644A (en) 2002-09-05 2008-11-26 Fazan Comm Llc Allocation of radio resources in a cdma 2000 cellular system
US7994388B2 (en) * 2003-01-16 2011-08-09 North Carolina State University Depletion of endogenous primordial germ cells in avian species
US7234097B1 (en) * 2003-01-27 2007-06-19 Marvell International Ltd. Methods of supporting host CRC in data storage systems without RLL coding
US7751337B2 (en) * 2003-02-10 2010-07-06 The Boeing Company Method and apparatus for optimizing forward link data rate for radio frequency transmissions to mobile platforms
EP1600012A1 (en) 2003-02-24 2005-11-30 Floyd Backes Wireless access protocol system and method
CN1293773C (zh) * 2003-03-26 2007-01-03 联想(北京)有限公司 动态调整无线局域网基站接入点覆盖范围的方法
ATE394891T1 (de) 2003-07-11 2008-05-15 Qualcomm Inc Dynamischer gemeinsam benutzter vorwärtsstreckenkanal für ein drahtloses kommunikationssystem
US6958982B2 (en) 2003-07-16 2005-10-25 Interdigital Technology Corporation Method and apparatus for storing mobile station physical measurements and MAC performance statistics in a management information base of an access point
US7295813B2 (en) * 2003-07-30 2007-11-13 Motorola Inc. Current reduction by dynamic receiver adjustment in a communication device
US20050052981A1 (en) * 2003-09-09 2005-03-10 Brian Shim Record controlled sound playback device
JP3971359B2 (ja) * 2003-09-12 2007-09-05 松下電器産業株式会社 無線通信方法及び無線通信端末収容装置並びに無線通信端末
DE10343068B4 (de) * 2003-09-17 2005-10-06 Siemens Ag Verfahren zur Datenübertragung von einer sendenden Station an eine empfangende Station in einem Funkkommunikationssystem sowie sendende Station
KR20050032796A (ko) * 2003-10-02 2005-04-08 삼성전자주식회사 셀룰라 무선 패킷망에서 부하량 제어를 통한 망용량 증대방법
EP1534039B1 (en) * 2003-11-19 2013-01-16 Samsung Electronics Co., Ltd. Apparatus and method for transmitting and receiving common control information in a wireless communication system
US7079494B2 (en) * 2004-01-08 2006-07-18 Interdigital Technology Corporation Wireless communication method and apparatus for determining the minimum power level of access point transmissions
US20050152320A1 (en) * 2004-01-08 2005-07-14 Interdigital Technology Corporation Wireless communication method and apparatus for balancing the loads of access points by controlling access point transmission power levels
KR100797501B1 (ko) * 2004-01-08 2008-01-24 인터디지탈 테크날러지 코포레이션 액세스 포인트의 성능을 최적화하는 무선 통신 방법 및장치
JP2005198154A (ja) * 2004-01-09 2005-07-21 Seiko Epson Corp 無線通信機器の設定方法
DE102004007975B3 (de) * 2004-02-18 2005-07-07 Siemens Ag Verfahren, Funkzugangspunkt und netzseitige Einrichtung zur Kommunikation in einem Funkkommunikationssystem
KR100603561B1 (ko) * 2004-04-16 2006-07-24 삼성전자주식회사 송신 전력 제어 기반 무선랜 시스템 및 그 송신 전력 제어방법
US20050271005A1 (en) * 2004-06-03 2005-12-08 Samsung Electronics Co., Ltd. CDMA network and related method using adaptive coding rate to maximize Walsh code usage
US7539163B2 (en) * 2004-06-07 2009-05-26 Jeou-Kai Lin System and method for a handoff in a multimedia mobile network
GB0414663D0 (en) * 2004-06-30 2004-08-04 Nokia Corp Scheduling data transmission in a wireless communications network
US9137822B2 (en) 2004-07-21 2015-09-15 Qualcomm Incorporated Efficient signaling over access channel
EP1635592B1 (en) * 2004-09-13 2007-05-23 Alcatel Lucent Estimation of channel quality for wireless communication network
US8233907B1 (en) 2004-11-03 2012-07-31 At&T Mobility Ii Llc System and method for constructing a carrier to interference matrix based on subscriber calls
US7499452B2 (en) * 2004-12-28 2009-03-03 International Business Machines Corporation Self-healing link sequence counts within a circular buffer
US7647046B2 (en) * 2005-01-12 2010-01-12 Cisco Technology, Inc. Maintaining uninterrupted service in a wireless access point and client stations thereof
US7724656B2 (en) * 2005-01-14 2010-05-25 Telefonaktiebolaget Lm Ericsson (Publ) Uplink congestion detection and control between nodes in a radio access network
US20060171304A1 (en) * 2005-02-03 2006-08-03 Hill David R WLAN background scanning
US20060171305A1 (en) * 2005-02-03 2006-08-03 Autocell Laboratories, Inc. Access point channel forecasting for seamless station association transition
US7742444B2 (en) * 2005-03-15 2010-06-22 Qualcomm Incorporated Multiple other sector information combining for power control in a wireless communication system
JP2006311475A (ja) * 2005-03-31 2006-11-09 Ntt Docomo Inc 制御装置、移動局および移動通信システム並びに制御方法
US9055552B2 (en) * 2005-06-16 2015-06-09 Qualcomm Incorporated Quick paging channel with reduced probability of missed page
US8750908B2 (en) 2005-06-16 2014-06-10 Qualcomm Incorporated Quick paging channel with reduced probability of missed page
CA2611967C (en) 2005-07-18 2011-11-29 Samsung Electronics Co., Ltd. Apparatus and method for transmitting and receiving a reverse channel in a mobile communication system for packet data
JP4592545B2 (ja) * 2005-08-24 2010-12-01 株式会社エヌ・ティ・ティ・ドコモ 送信電力制御方法及び移動通信システム
US7855976B2 (en) * 2005-10-27 2010-12-21 Qualcomm Incorporated Method and apparatus for reporting CQI in a wireless communication system
US20090207790A1 (en) * 2005-10-27 2009-08-20 Qualcomm Incorporated Method and apparatus for settingtuneawaystatus in an open state in wireless communication system
US20070147226A1 (en) * 2005-10-27 2007-06-28 Aamod Khandekar Method and apparatus for achieving flexible bandwidth using variable guard bands
US8411616B2 (en) 2005-11-03 2013-04-02 Piccata Fund Limited Liability Company Pre-scan for wireless channel selection
US7706311B2 (en) * 2005-12-09 2010-04-27 Alcatel-Lucent Usa Inc. Expanding cell radius in a wireless communication system
JP4709656B2 (ja) * 2006-01-31 2011-06-22 富士通株式会社 移動通信システム
US7738476B2 (en) * 2006-03-31 2010-06-15 Alcatel-Lucent Usa Inc. Method and apparatus for improved multicast streaming in wireless networks
US7639751B2 (en) * 2006-04-04 2009-12-29 Samsung Electronics Co., Ltd. Advanced-VSB system (A-VSB)
KR100788962B1 (ko) 2006-06-27 2007-12-27 주식회사 케이티 Cdma 기반 하향링크 데이터 패킷 스케줄링 장치 및방법
CN101106807B (zh) * 2006-07-12 2012-04-11 株式会社Ntt都科摩 一种基于中继器的蜂窝网络以及空分双工通信方法
US20080063105A1 (en) * 2006-09-13 2008-03-13 Via Telecom, Inc. System and method for implementing preamble channel in wireless communication system
US20080186857A1 (en) * 2007-02-06 2008-08-07 Viasat, Inc. Robust and efficient assignment of scheduled transmissions
JP5216023B2 (ja) * 2007-02-09 2013-06-19 テレコム・イタリア・エッセ・ピー・アー ワイヤレス通信システムにおける同一チャネル干渉の特徴付け
US7940790B2 (en) * 2007-06-11 2011-05-10 Viasat, Inc. Multiple request intervals
US7953060B2 (en) * 2007-06-11 2011-05-31 Viasat, Inc. Quasisynchronous reservation requests
US20090005102A1 (en) * 2007-06-30 2009-01-01 Suman Das Method and Apparatus for Dynamically Adjusting Base Station Transmit Power
US8144680B2 (en) * 2007-11-30 2012-03-27 Viasat, Inc. Contention-based communications
US8520721B2 (en) 2008-03-18 2013-08-27 On-Ramp Wireless, Inc. RSSI measurement mechanism in the presence of pulsed jammers
US20100195553A1 (en) * 2008-03-18 2010-08-05 Myers Theodore J Controlling power in a spread spectrum system
US8958460B2 (en) * 2008-03-18 2015-02-17 On-Ramp Wireless, Inc. Forward error correction media access control system
US8477830B2 (en) 2008-03-18 2013-07-02 On-Ramp Wireless, Inc. Light monitoring system using a random phase multiple access system
US20090279461A1 (en) * 2008-05-12 2009-11-12 Rao Sudarshan A Access terminal router implementation on enhanced HRPD
US20090285133A1 (en) * 2008-05-16 2009-11-19 Rao Sudarshan A Method for over-the-air base station management via access terminal relay
JP5198145B2 (ja) * 2008-05-19 2013-05-15 株式会社エヌ・ティ・ティ・ドコモ 基地局装置及び端末装置並びに方法
US8254905B2 (en) * 2008-07-07 2012-08-28 Cisco Technology, Inc. Service monitoring and disconnection notification in a wireless gateway device
CN101378274B (zh) * 2008-09-25 2012-07-04 华为终端有限公司 一种功率调整方法和接入点设备
US8233406B1 (en) * 2008-11-06 2012-07-31 Sprint Communications Company L.P. Communication system and method for operating a control database for a wireless communication system
CN102273306B (zh) * 2009-01-29 2014-05-21 苹果公司 基于来自另一基站的干扰指示符信息调度基站数据传输的方法和系统
US8363699B2 (en) 2009-03-20 2013-01-29 On-Ramp Wireless, Inc. Random timing offset determination
US8750882B2 (en) * 2009-06-16 2014-06-10 Lg Electronics Inc. Method for cooperative control of power among base stations and base station device using same
US8423065B2 (en) * 2009-06-19 2013-04-16 Clearwire Ip Holdings Llc Method and computer-readable medium for dynamic rate capping
EP2271156A1 (en) 2009-06-30 2011-01-05 NEC Corporation Interference management method between cognitive pilot channel base stations using power control
CN101719809B (zh) * 2009-11-25 2012-10-10 中兴通讯股份有限公司 一种媒体数据包丢包恢复的方法及系统
US10580088B2 (en) * 2010-03-03 2020-03-03 The Western Union Company Vehicle travel monitoring and payment systems and methods
US8346160B2 (en) 2010-05-12 2013-01-01 Andrew Llc System and method for detecting and measuring uplink traffic in signal repeating systems
US8731932B2 (en) * 2010-08-06 2014-05-20 At&T Intellectual Property I, L.P. System and method for synthetic voice generation and modification
CN102412881B (zh) * 2010-09-26 2015-06-17 日电(中国)有限公司 无线通信系统和用于无线通信系统的波束形成训练方法
KR20140051264A (ko) 2011-07-12 2014-04-30 엘지전자 주식회사 피어 투 피어 통신 시스템에서 우선순위에 기반한 데이터 송신 방법
JP2015531553A (ja) * 2012-09-10 2015-11-02 日本電気株式会社 無線通信システム及び無線通信システムにおける実装方法
US9351184B2 (en) * 2012-11-02 2016-05-24 Qualcomm Incorporated System and method for tuning medium access parameters
WO2015163680A1 (ko) * 2014-04-21 2015-10-29 엘지전자(주) 무선 통신 시스템에서 블루투스 저전력 에너지 기술을 이용하여 데이터를 송수신하기 위한 방법 및 장치
US20160112883A1 (en) * 2014-10-17 2016-04-21 Microsoft Corporation Wireless Signal Quality Indicator
KR101770810B1 (ko) * 2015-12-15 2017-08-23 경희대학교 산학협력단 업링크 자원 할당 방법 및 그 방법을 수행하는 인지 소형 셀 네트워크 시스템

Family Cites Families (38)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4901307A (en) 1986-10-17 1990-02-13 Qualcomm, Inc. Spread spectrum multiple access communication system using satellite or terrestrial repeaters
US5506109A (en) 1989-06-26 1996-04-09 Bayer Corporation Vitamin B12 assay
US5056109A (en) 1989-11-07 1991-10-08 Qualcomm, Inc. Method and apparatus for controlling transmission power in a cdma cellular mobile telephone system
US5511073A (en) 1990-06-25 1996-04-23 Qualcomm Incorporated Method and apparatus for the formatting of data for transmission
US5568483A (en) 1990-06-25 1996-10-22 Qualcomm Incorporated Method and apparatus for the formatting of data for transmission
US5103459B1 (en) 1990-06-25 1999-07-06 Qualcomm Inc System and method for generating signal waveforms in a cdma cellular telephone system
US5267261A (en) 1992-03-05 1993-11-30 Qualcomm Incorporated Mobile station assisted soft handoff in a CDMA cellular communications system
US5574982A (en) * 1993-05-14 1996-11-12 Telefonaktiebolaget Lm Ericsson Method and apparatus for regulating a power level of a transmitted radio signal
ZA946674B (en) 1993-09-08 1995-05-02 Qualcomm Inc Method and apparatus for determining the transmission data rate in a multi-user communication system
ZA948134B (en) 1993-10-28 1995-06-13 Quaqlcomm Inc Method and apparatus for performing handoff between sectors of a common base station
US5873028A (en) * 1994-10-24 1999-02-16 Ntt Mobile Communications Network Inc. Transmission power control apparatus and method in a mobile communication system
US5933787A (en) * 1995-03-13 1999-08-03 Qualcomm Incorporated Method and apparatus for performing handoff between sectors of a common base station
US5710982A (en) * 1995-06-29 1998-01-20 Hughes Electronics Power control for TDMA mobile satellite communication system
SE9601606D0 (sv) * 1996-04-26 1996-04-26 Ericsson Telefon Ab L M Sätt vid radiotelekommunikationssystem
FI103555B1 (fi) * 1996-06-17 1999-07-15 Nokia Mobile Phones Ltd Lähetystehon säätö langattomassa pakettidatasiirrossa
US5903554A (en) 1996-09-27 1999-05-11 Qualcomm Incorporation Method and apparatus for measuring link quality in a spread spectrum communication system
US5751725A (en) 1996-10-18 1998-05-12 Qualcomm Incorporated Method and apparatus for determining the rate of received data in a variable rate communication system
US6496543B1 (en) * 1996-10-29 2002-12-17 Qualcomm Incorporated Method and apparatus for providing high speed data communications in a cellular environment
US5933462A (en) 1996-11-06 1999-08-03 Qualcomm Incorporated Soft decision output decoder for decoding convolutionally encoded codewords
US6151502A (en) 1997-01-29 2000-11-21 Qualcomm Incorporated Method and apparatus for performing soft hand-off in a wireless communication system
US6335922B1 (en) * 1997-02-11 2002-01-01 Qualcomm Incorporated Method and apparatus for forward link rate scheduling
US5923650A (en) 1997-04-08 1999-07-13 Qualcomm Incorporated Method and apparatus for reverse link rate scheduling
JP3132427B2 (ja) * 1997-07-11 2001-02-05 日本電気株式会社 S/n測定回路,送信電力制御装置,及びディジタル通信システム
JP3529983B2 (ja) 1997-08-04 2004-05-24 日本電信電話株式会社 光増幅中継伝送システム
US6175590B1 (en) 1997-08-08 2001-01-16 Qualcomm Inc. Method and apparatus for determining the rate of received data in a variable rate communication system
US6285655B1 (en) * 1997-09-08 2001-09-04 Qualcomm Inc. Method and apparatus for providing orthogonal spot beams, sectors, and picocells
US6574211B2 (en) * 1997-11-03 2003-06-03 Qualcomm Incorporated Method and apparatus for high rate packet data transmission
US6745049B1 (en) 1997-12-10 2004-06-01 Mitsubishi Denki Kabushiki Kaisha Mobile communication system
US6449462B1 (en) * 1998-02-27 2002-09-10 Telefonaktiebolaget L M Ericsson (Publ) Method and system for quality-based power control in cellular communications systems
US6597705B1 (en) * 1998-09-10 2003-07-22 Qualcomm Incorporated Method and apparatus for distributed optimal reverse link scheduling of resources, such as a rate and power in a wireless communication system
US6317435B1 (en) * 1999-03-08 2001-11-13 Qualcomm Incorporated Method and apparatus for maximizing the use of available capacity in a communication system
DE19911146C2 (de) * 1999-03-12 2003-10-02 Siemens Ag Verfahren zur Sendeleistungsregelung in einem Funk-Kommunikationssystem
DE60040137D1 (de) * 1999-03-12 2008-10-16 Qualcomm Inc Verfahren und vorrichtung zur leistungszuteilung auf eine rückwärtsleistungssteuerung eines kommunikationssystems
US6160511A (en) * 1999-09-30 2000-12-12 Motorola, Inc. Method and apparatus for locating a remote unit within a communication system
US6650904B1 (en) * 1999-12-16 2003-11-18 Ericsson Inc. Optimization of radio receiver uplink power
US6414938B1 (en) * 2000-02-14 2002-07-02 Motorola, Inc. Method and system for retransmitting data packets in a communication system having variable data rates
US6385462B1 (en) * 2000-05-26 2002-05-07 Motorola, Inc. Method and system for criterion based adaptive power allocation in a communication system with selective determination of modulation and coding
US6879561B1 (en) * 2000-11-03 2005-04-12 Nortel Networks Limited Method and system for wireless packet scheduling with per packet QoS support and link adaptation

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101015227B (zh) * 2004-07-20 2012-03-21 高通股份有限公司 利用软越区切换的变速广播
CN101523753B (zh) * 2006-10-10 2012-11-21 华为技术有限公司 用于紧急情况速率调整的系统

Also Published As

Publication number Publication date
NO20033063L (no) 2003-09-04
EP2194658A3 (en) 2010-10-06
JP2008011543A (ja) 2008-01-17
US20040233867A1 (en) 2004-11-25
US20020131376A1 (en) 2002-09-19
EP1356604A2 (en) 2003-10-29
EP2194658A2 (en) 2010-06-09
IL156750A0 (en) 2004-02-08
JP2004533133A (ja) 2004-10-28
HK1062092A1 (en) 2004-10-15
US7515580B2 (en) 2009-04-07
WO2002054617A3 (en) 2003-06-19
KR100877262B1 (ko) 2009-01-07
CN100355215C (zh) 2007-12-12
TW525357B (en) 2003-03-21
RU2003124184A (ru) 2005-02-27
MXPA03006102A (es) 2004-05-04
NO20033063D0 (no) 2003-07-04
BR0116716A (pt) 2004-08-31
KR20030064896A (ko) 2003-08-02
WO2002054617A2 (en) 2002-07-11
US6850499B2 (en) 2005-02-01
CA2433939A1 (en) 2002-07-11

Similar Documents

Publication Publication Date Title
CN1489834A (zh) 通信系统内的前向功率控制的方法和装置
CN1124754C (zh) 高速率分组数据传输的方法和装置
CN1173586C (zh) 最小化不能发送时段的装置和方法
CN1153378C (zh) 具有专用控制信道的移动通信系统的数据通信装置和方法
CN100338889C (zh) 用多单元天线发送分集方案发送和接收数据的设备和方法
CN1264289C (zh) Cdma通信系统中上行链路传输功率控制的方法和设备
CN1164044C (zh) 移动无线电通信系统中基站扇区间切换时的正向链路基站功率电平的同步
CN1184749C (zh) 分组交换蜂窝系统中下行链路功率控制的方法
CN1162997C (zh) 用于移动通信系统中下行链路共享信道的功率控制的装置和方法
CN1144390C (zh) 通信系统中功率控制的方法和设备
CN100593354C (zh) 用于通信系统中数据传输的方法和装置
CN1910949A (zh) 用于将扇区负载信息传送给移动台的方法和装置
CN1130451A (zh) 模拟扩展频谱通信网用户装置接收到的干扰的系统和方法
CN1768550A (zh) 无线数据网络中的拥塞控制
CN1376000A (zh) 利用自动重复请求通过反向链路重发数据的方法
CN1527504A (zh) 码分多址移动通信系统中的调度装置和方法
CN1633788A (zh) 数据传送方法
CN1500318A (zh) Cdma通信系统中用于控制多信道发送功率的方法和装置
CN1671072A (zh) 无线通信系统中时分功率分配的方法和装置
CN1669248A (zh) 基站设备及分组发射功率控制方法
CN1329443A (zh) 移动无线系统中的发送功率控制方法
CN1338882A (zh) 用于移动无线网中通信业务负荷控制的方法
CN1762119A (zh) 码分复用信道上的码分复用命令
CN1596514A (zh) 用于产生和发送最佳的小区id码的方法
CN1859765A (zh) 一种hsdpa呼叫准入控制方法

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
REG Reference to a national code

Ref country code: HK

Ref legal event code: DE

Ref document number: 1062092

Country of ref document: HK

C14 Grant of patent or utility model
GR01 Patent grant
REG Reference to a national code

Ref country code: HK

Ref legal event code: GR

Ref document number: 1062092

Country of ref document: HK

CF01 Termination of patent right due to non-payment of annual fee

Granted publication date: 20071212

Termination date: 20141227

EXPY Termination of patent right or utility model