CN1489226A - 微型温差电池及其制造方法 - Google Patents

微型温差电池及其制造方法 Download PDF

Info

Publication number
CN1489226A
CN1489226A CNA031305687A CN03130568A CN1489226A CN 1489226 A CN1489226 A CN 1489226A CN A031305687 A CNA031305687 A CN A031305687A CN 03130568 A CN03130568 A CN 03130568A CN 1489226 A CN1489226 A CN 1489226A
Authority
CN
China
Prior art keywords
layer
microcell
type
thermoelectric material
type thermoelectric
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CNA031305687A
Other languages
English (en)
Other versions
CN100349307C (zh
Inventor
为 王
王为
贾法龙
郭鹤桐
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tianjin University
Original Assignee
Tianjin University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tianjin University filed Critical Tianjin University
Priority to CNB031305687A priority Critical patent/CN100349307C/zh
Publication of CN1489226A publication Critical patent/CN1489226A/zh
Application granted granted Critical
Publication of CN100349307C publication Critical patent/CN100349307C/zh
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Electromechanical Clocks (AREA)

Abstract

本发明提供微型温差电池及其制造方法。微型温差电池是由C层/B层/A层/B*层/C*层组成,其中,A层位于层状结构微型温差电池的中间层;B层和B*层分别设置在A层的两边;C层和C*层又分别设置在B层和B*层的两边;A层是以具有贯穿型多孔结构的材料为模板,在该模板上的P型温差电材料微区的微孔中沉积有P型温差电材料,在N型温差电材料微区的微孔中沉积有N型温差电材料;本发明的微型温差电池的制造方法为:(1)A层制造;(2)B层和B*层制造;(3)C层和C*层制造。本发明制造出的微型温差电池可以具有很高的输出电压,同时使用材料方便,操作方法简便,它将成为微系统的最佳电源。

Description

微型温差电池及其制造方法
                               技术领域
本发明涉及温差电池技术领域,特别涉及一种与微加工技术相结合,制造微型温差电池及其方法。
                               背景技术
在纳米电子学、纳米材料学、纳米生物学、纳米制造学及纳米测量等新兴学科的基础上,具有强烈交叉学科色彩的微系统(Microsystem)已迅速崛起。体积十分微小的微系统集微型机构、微型传感器、微型执行器以及信息处理和控制电路、直至接口通讯和电源等于一体具有多种功能。最近国外又提出了″芯片系统(system on a chip)″的概念,它将微系统推向一更高层次。微系统离不开微型电源,最新的技术进步已使微系统的能量消耗降低到微瓦(μW)量级,且还将不断降低。适应微系统的发展,对新型自供式微型温差电池的研究及开发已引起发达国家的高度重视。无疑制造这种微型温差电池将为微系统技术的发展带来突破,极大地开拓微系统的应用领域。
近年的研究发现,降低材料维数,如采用二维纳米薄膜材料或一维纳米线材料,可获得具有很高温差电转换效率的温差电材料。用这类高效温差电材料制备出的微型温差电池具有很高的输出电压。
微型温差电池的特点主要表现在以下几方面:1)体积小,具有片状或薄膜状外形。易于采用集成化技术,将微型温差电池集成到需要电能的器件上直接为器件供电;2)微型温差电池可从环境接受各种形式的热能,包括各种辐射热、太阳能、人体体温、系统运行过程的发热以及各种废热等,并高效率地直接将其转变为电能输出。因而,微型温差电池不会对环境造成任何形式的污染,是一种真正意义上的绿色电源;3)微型温差电池是一种物理电源,其使用寿命长(超过20年),性能高度稳定,且使用温度范围宽。它完全不同于通常意义上的各种化学电源和物理电源,属新一代自供式微型发电元件。这种新一代自供式微型高效温差电池在各种高、精、尖技术不断向小型化和微型化发展的今天,特别是在各种微系统中,如微型探测器、微型控制器、微型飞行器以及诸如心脏起搏器那样的微型生物器件中,有着广泛的应用,它将成为微系统的最佳电源。
在现有技术中,我们在2001年已经提出的专利申请号为01140414.0的发明专利名称为:“由一维纳米线阵列结构温差电材料构制的微温差电池”,它公开了一个用一维纳米线阵列结构温差电材料构制的微温差电池,但是,操作方法比较复杂,制造技术上难度大。
                               发明内容
本发明提供一种制造方法更加合理,具有更强的可操作性的微型温差电池及其制造方法。
本发明的微型温差电池是由C层/B层/A层/B*层/C*层组成,如图1所是。其中,A层位于层状结构微型温差电池的中间层;B层和B*层分别设置在A层的两边;C层和C*层又分别设置在B层和B*层的两边;其特征是A层是以具有贯穿型多孔结构的材料为模板,通过在该模板上划分P型和N型温差电材料微区以及位于P型和N型温差电材料微区之间的非导电微区,并且在P型温差电材料微区的微孔中沉积P型温差电材料,在N型温差电材料微区的微孔中沉积N型温差电材料而成的温差电材料层;B层和B*层是相同的或不同的导电金属材料层,并且是按照实现A层的P型温差电材料微区和N型温差电材料微区相串联的结构刻蚀而成的导电金属层,在B层或B*层上设置有二个导电外接点;C层和C*层是相同的或不同的具有导热性且不导电的材料层。
其中所述的A层模板采用的是片状材料或者薄膜状材料,厚度是在50厘米至10纳米的尺度范围。A层模板是具有贯穿型多孔结构的无机材料或有机材料,例如:多孔结构氧化硅材料、多孔结构氧化铝材料、多孔结构硅材料、多孔结构氧化镁材料、多孔结构氧化锆材料、多孔结构氧化钛材料、多孔结构氧化钨材料、多孔结构碳材料、多孔结构纤维素及其衍生物材料、多孔结构聚丙烯材料、多孔结构聚苯乙烯材料、多孔结构光刻胶等。贯穿型多孔结构模板材料的微孔形状是规则的正方形、圆形、矩形、菱形、椭圆形或是不规则的任意形状;对矩形微孔或正方形、或菱形、或者不规则形状微孔等的边长是在20毫米至1纳米的尺度范围,对圆形微孔或椭圆形、或不规则孔的孔径是在是在20毫米至1纳米的尺度范围。A层模板上的P型温差电材料微区、N型温差电材料微区以及位于P型微区和N型微区之间的非导电微区的形状是任意的,或是规则的圆形、椭圆形、矩形、正方形、菱形等、或者是不规则的形状;微区面积大小是在50平方厘米至1平方纳米的尺度范围;P型微区和N型微区以及位于P型微区和N型微区之间的非导电微区的数量可以是几个或数十个,也可以是很多,甚至超过数百万个。划分出的N型及P型微区以及位于N型及P型微区之间的非导电微区的数量可根据温差电池设计的输出电压大小以及所采用温差电材料的性能来确定。
本发明的微型温差电池的制造方法,操作步骤如下:
(1)A层制造:
选择具有贯穿型多孔结构、一定厚度的片状材料或者薄膜状材料作为制造温差电材料的模板;在多孔结构模板的表面进行微区划分;划分出的微区包括P型温差电材料微区、N型温差电材料微区以及位于P型微区和N型微区之间的非导电微区;在P型温差电材料微区的微孔中沉积P型温差电材料,在N型温差电材料微区的微孔中沉积N型温差电材料;制造出A层;
(2)B层和B*层制造:
在A层的两面沉积上导电金属层;采用微加工技术,按照实现A层的P型温差电材料微区和N型温差电材料微区相串联的结构分别对A层两面沉积的导电金属层进行刻蚀,制造出微型温差电池的B层和B*层;在B层或B*层引出两个导电外接点,或在B层和B*层各引出一个外接点;
(3)C层和C*层制造:
分别在导电的B层和B*层的外表面沉积上或者涂敷上具有导热性且不导电的材料,制造出C层和C*层;也可以将具有导热性且不导电的片状或薄膜状材料作为C层和C*层粘贴到导电的B层和B*层的外表面。
在实际操作中,只要能够达到上述步骤的效果的方法都可以。本发明采用如下步骤:
第一步:选择具有贯穿型多孔结构、一定厚度的片状材料或者薄膜状材料作为制造温差电材料的模板。上述片状材料或者薄膜状材料的成分可以是无机材料,也可以是有机材料。例如:多孔结构氧化硅材料、多孔结构氧化铝材料、多孔结构硅材料、多孔结构氧化镁材料、多孔结构氧化锆材料、多孔结构氧化钛材料、多孔结构氧化钨材料、多孔结构碳材料、多孔结构纤维素及其衍生物材料、多孔结构聚丙烯材料、多孔结构聚苯乙烯材料、多孔结构光刻胶等。选择的片状材料或者薄膜状材料的厚度在50厘米至10纳米的尺度范围。选择的具有贯穿型多孔结构模板材料的微孔形状可以是规则的,如正方形、圆形、矩形、菱形、椭圆形等,也可以具有不规则形状。孔径(或者微孔的边长)在20毫米至1纳米的尺度范围。
第二步:将第一步选择的贯穿型多孔结构模板的二个表面的其中一面沉积上导电金属层。导电金属层的沉积可以采用物理方法,如物理气相沉积PVD法、熔融态金属喷射法、熔融态金属浸泡法等,也可以采用化学方法,如液相金属电沉积方法、液相金属化学沉积法、化学气相沉积CVD法、气相外延生长MOCVD法等。
第三步:采用微加工技术,将第二步制备的多孔结构模板的未沉积导电金属层的另一表面进行微区划分。划分出的微区包括P型温差电材料微区、N型温差电材料微区以及位于P型微区和N型微区之间的非导电微区。上述P型温差电材料微区、N型温差电材料微区以及位于P型微区和N型微区之间的非导电微区的形状可以是任意的,例如,可以是规则的圆形、椭圆形、矩形、正方形、菱形等等,也可以是任意的不规则形状。P型温差电材料微区、N型温差电材料微区以及位于P型微区和N型微区之间的非导电微区的形状可以相同,也可以不同。P型温差电材料微区、N型温差电材料微区以及位于P型微区和N型微区之间的非导电微区的面积大小可以相同,也可以不相同。P型温差电材料微区、N型温差电材料微区以及位于P型微区和N型微区之间的非导电微区的面积大小是在50平方厘米至1平方纳米的尺度范围。上述对模板表面进行的P型温差电材料微区、N型温差电材料微区以及位于P型微区和N型微区之间的非导电微区的划分可以是同时进行,一次性完成,也可以是分步进行,或者是与第四步的制造过程交替进行,分步完成。交替进行的情况下,多孔模板表面未划分的区域应该用绝缘材料覆盖。
第四步:将第三步划分了P型温差电材料微区、N型温差电材料微区以及位于P型微区和N型微区之间的非导电微区的模板,在P型温差电材料微区的微孔中沉积P型温差电材料,在N型温差电材料微区的微孔中沉积N型温差电材料。实现P型温差电材料以及N型温差电材料分别在P型温差电材料微区以及N型温差电材料微区的微孔内沉积的方法,可以采用化学方法,如采用电化学液相电沉积技术,或者液相化学沉积技术,或者化学气相沉积CVD技术,或者气相外延生长MOCVD技术等等,也可以采用物理方法,如采用物理气相沉积PVD技术,熔融态温差电材料高压注入法、熔融态温差电材料浸泡注入法等等。在P型温差电材料微区以及N型温差电材料微区的微孔内沉积的温差电材料可以选择Bi2Te3、Sb2Te3、HgTe、Bi2Se3、Sb2Se3、ZnSb、的PbTe、SbTe、Bi(SiSb2)、Bi2(GeSe)3、GrSi2、MnSi1.7、FeSi2、CoSi、Ge0.3Si0.7、BiTe0.8Se0.2、BiTe0.6Se0.4、BiTe0.4Se0.6、BiTe0.2Se0.8、Bi1Se1、Bi0.8Sb0.2Te0.8Se0.2、Bi0.8Sb0.2Te0.8Se0.4、Bi0.8Sb0.2Te0.8Se0.5、Bi0.8Sb0.2Te0.8Se0.8、Bi0.8Sb0.2Se、Bi0.6Sb0.4Te0.8Se0.2、Bi0.6Sb0.4Te0.6Se0.4、Bi0.6Sb0.4Te0.4Se0.6、Bi0.6Sb0.4Te0.2Se0.8、Bi0.6Sb0.4Se、Bi4Te5、Bi4Se5、Bi4Te3Se2、PbTe+0.5wt%PbI2、Bi、Bi0.4Sb0.6Te0.8Se0.2、Bi2Te1、Bi1.2Sb0.8Te1、Sb2Te1、Bi2Te0.8Se0.2、Bi2Te0.4Se0.6、Bi2Se1、Bi1.4Sb0.6Te0.8Se0.2、Bi3.2Sb0.8Te5、Bi2Sb2Te5、Bi2Sb2Te3Se2、Bi3.2Sb0.8Te4Se1、Sb4Te5、Pb0.75Sn0.25Te等。
第四步的P型及N型温差电材料在P型及N型微区沉积的过程可以是同时进行,也可以是第三步与第四步交替进行。在第三步与第四步交替进行的情况下,贯穿型多孔结构模板的P型温差电材料微区的微孔中沉积出P型温差电材料以及在贯穿型多孔结构模板的N型温差电材料微区的微孔中沉积出N型温差电材料的过程是先后进行的,该过程中,应该将不沉积温差电材料的微区用绝缘材料覆盖。
在P型温差电材料微区和N型温差电材料微区的微孔内沉积出的P型及N型温差电材料应填满整个微孔,或者沉积出的P型及N型温差电材料应覆盖微孔的内孔壁,或者沉积出的P型及N型温差电材料不仅填满整个微孔,而且由微孔内部一直延伸出微孔至多孔模板的表面,或者沉积出的P型及N型温差电材料不仅覆盖微孔的内孔壁,而且由微孔内部一直延伸出微孔至多孔模板的表面。
经第四步制造出的由P型温差电材料微区和N型温差电材料微区以及位于P型温差电材料微区和N型温差电材料微区之间的非导电区域构成的片状或者薄膜状材料即是微型温差电池的A层。
第五步:采用微加工技术,将第二步在多孔模板的一个表面沉积的导电金属层按照实现A层的P型温差电材料微区和N型温差电材料微区相串联的结构进行刻蚀,制造出微型温差电池的一个B层。
第六步:将第四步制造出的微型温差电池A层的未沉积导电金属层的另一表面沉积上导电金属层。导电金属层的沉积可以采用物理方法,如物理气相沉积PVD法、熔融态金属喷射法、熔融态金属浸泡法等,也可以采用化学方法,如液相金属电沉积方法、液相金属化学沉积法、化学气相沉积CVD法、气相外延生长积MOCVD法等。
第七步:采用微加工技术,将第六步沉积在微型温差电池A层表面的导电金属层按照实现A层的P型温差电材料微区和N型温差电材料微区相串联的结构进行刻蚀,制造出微型温差电池的一个B*层。
第八步:在第五步、第七步分别在微型温差电池A层的两面各制造出一层导电B层和B*层后,分别在二个导电B层和B*层的外表面用具有良好导热性且不导电的材料制造C层和C*层,并从B层或B*层延伸出二个导电外接点,用绝缘的有机或无机材料进行封装。可以采用物理的或化学的方法直接在B层的外表面沉积上或者涂敷上一层具有良好导热性且不到电的材料以形成C层和C*层。也可以将具有良好导热性且不导电的片状或薄膜状材料作为C层C*层,用有机或者无机材料将其粘附到B层和B*层的外表面。
根据所采用的沉积P型及N型温差电材料的方式不同,上述第二步与第三步的先后顺序可更换,或者第二步与第四步的先后顺序可更换。第五步与第六步的先后顺序可换。
B层和B*层的结构可以相同,也可以不同,厚度可以相同,也可以不同。构成上述B层和B*层的导电材料的成分可以相同,也可以不相同。制造出B层和B*层后,A层的P型及N型温差电材料微区之间即实现了串联。构成上述C层和C*层的导热材料可以相同,也可以不相同。C层和C*层的形状可以相同,也可以不同,厚度可以相同,也可以不同。正极和负极导电外接点可以制造在微温差电池的同一侧,也可以制造在微温差电池的两端。
需要说明的是,上述有关N型及P型微区以及位于N型及P型微区之间的非导电微区的划分可以根据需要划分得极为精细,划分出的N型及P型微区以及位于N型及P型微区之间的非导电微区的数量可根据温差电池设计的输出电压大小以及所采用温差电材料的性能来确定。划分出的N型及P型微区的面积可以在50平方厘米至1平方纳米的尺度范围。
本发明制造出的微型温差电池可以具有很高的输出电压,同时使用材料方便,操作方法简便,它将成为微系统的最佳电源。
                                   附图说明
图1:本发明微型温差电池的结构示意图;
图2:本发明微型温差电池的制造流程示意图。
                                 具体实施方式
实施例1:
以厚度在微米尺度的具有贯穿型多孔结构的氧化铝薄膜为模板,采用电化学液相电沉积技术在N型及P型微区的微孔内分别沉积N型及P型温差电材料,制造微型温差电池的过程,具体方法如图2所示:
(1)选择具有贯穿型多孔结构的氧化铝薄膜为模板1,厚度为50微米,微孔孔径为40纳米;(2)采用物理气相沉积PVD技术在贯穿型多孔氧化铝模板的表面沉积金属镍层2;(3)采用光刻蚀技术在多孔氧化铝模板的表面形成划分N型微区的绝缘材料覆盖层3;(4)将模板作阴极,采用液相电沉积技术在氧化铝模板的N型微区的微孔中沉积出N型Bi2Te3温差电材料4;(5)去掉模板表面用于划分N型微区的绝缘材料覆盖层;(6)采用光刻蚀技术在多孔氧化铝模板的表面形成划分P型微区的绝缘材料覆盖层5;(7)再将此模板作阴极,采用液相电沉积技术在氧化铝模板的P型微区的微孔中沉积出P型Bi2Te3温差电材料6;(8)去掉模板表面用于划分P型微区的绝缘材料覆盖层;(9)采用光刻蚀技术部分刻蚀掉镍层2,形成实现P型微区和N型微区串联的第一层导电B层8;(10)采用物理气相沉积PVD技术,在沉积了P型温差电材料微区和N型温差电材料微区的多孔氧化铝模板的另一表面沉积金属镍层9;(11)采用光刻蚀技术部分刻蚀掉镍层9,形成实现P型微区和N型微区串联的第二层导电B*层10;(12)将作为C、C*层的两个硅片分别粘附到第一层导电B层8和第二层导电B*层10的外表面,并由B层引出二个导电外接点13。同时,用环氧树脂材料对电池四周进行封装,制造出微型温差电池。本实施例中划分的N型及P型微区的形状为正方形。
需要说明的是,上述有关N型及P型微区的划分实际上极为精细,为获得高的输出电压,划分出的N型及P型微区的面积极小。在本实施例中,表面积为1cm2、厚度为50微米的多孔氧化铝模板表面可分别划分出2万个N型及P型微区。采用本实施例制造出的微型温差电池可以产生40伏的输出电压。
实施例2:
与实施例1所不同的是以具有贯穿型多孔结构的高分子材料薄膜作为模板。采用液相电沉积技术在N型微区沉积N型BiTe0.4Se0.6温差电材料,在P型微区沉积P型Bi1.2Sb0.8Te1温差电材料。采用物理气相沉积PVD的方法,在沉积了N型及P型温差电材料微区的A层的两面分别沉积上导电金属钴,并采用微加工技术将A层两面沉积的导电金属钴层分别刻蚀出实现A层P型微区和N型微区串联的B层和B*层。之后,分别在B层和B*层的外表面涂敷导热硅胶,制造出C层和C*层。在本实施例中,表面积为1cm2、厚度为100微米的多孔结构高分子材料模板表面分别划分出1万个N型及P型微区。采用本实施例制造出的微型温差电池可以产生30伏的输出电压。

Claims (10)

1、一种微型温差电池,它具有层状结构,是由C层/B层/A层/B*层/C*层组成,其中,A层位于层状结构微型温差电池的中间层;B层和B*层分别设置在A层的两边;C层和C*层又分别设置在B层和B*层的两边;其特征是A层是以具有贯穿型多孔结构的材料为模板,通过在该模板上划分P型和N型温差电材料微区以及位于P型和N型温差电材料微区之间的非导电微区,并且在P型温差电材料微区的微孔中沉积P型温差电材料,在N型温差电材料微区的微孔中沉积N型温差电材料而成的温差电材料层;B层和B*层是相同的或不同的导电金属材料层,并且是按照实现A层的P型温差电材料微区和N型温差电材料微区相串联的结构刻蚀而成的导电金属层,在B层或B*层上设置有二个导电外接点;C层和C*层是相同的或不同的具有导热性且不导电的材料层。
2.如权利要求1所述的一种微型温差电池,其特征是:所述的用于制造温差电材料A层的具有贯穿型多孔结构的模板采用的是片状材料或者薄膜状材料,厚度是在50厘米至10纳米的尺度范围。
3.如权利要求1所述的一种微型温差电池,其特征是:所述的A层的模板是具有贯穿型多孔结构的无机材料或有机材料,贯穿型多孔结构模板材料的微孔形状是规则的正方形、圆形、矩形、菱形、椭圆形或是不规则的任意形状;对矩形微孔或正方形、或菱形、或者不规则形状微孔的边长是在20毫米至1纳米的尺度范围,对圆形微孔或椭圆形、或不规则孔的孔径是在20毫米至1纳米的尺度范围。
4.如权利要求1或2所述的一种微型温差电池,其特征是:所述的A层中的P型温差电材料微区、N型温差电材料微区以及位于P型微区和N型微区之间的非导电微区的形状是任意的,或是规则的圆形、椭圆形、矩形、正方形、菱形;微区面积大小是在50平方厘米至1平方纳米的尺度范围。
5.一种微型温差电池制造方法,包括下述步骤:
(1)A层制造:
选择具有贯穿型多孔结构、一定厚度的片状材料或者薄膜状材料作为制造温差电材料的模板;在多孔结构模板的未沉积导电金属层的另一表面进行微区划分;划分出的微区包括P型温差电材料微区、N型温差电材料微区以及位于P型微区和N型微区之间的非导电微区;在P型温差电材料微区的微孔中沉积P型温差电材料,在N型温差电材料微区的微孔中沉积N型温差电材料;制造出A层;
(2)B层和B*层制造:
在A层的两面沉积上导电金属层,采用微加工技术,按照实现A层的P型温差电材料微区和N型温差电材料微区相串联的结构对沉积在A层两面的导电金属层进行刻蚀,制造出微型温差电池的B层和B*层;在B层或B*层引出两个导电外接点,或在B层和B*层各引出一个外接点;
(3)C层和C*层制造:
分别在导电的B层和B*层的外表面沉积上或者涂敷上具有导热性且不导电的材料,制造出C层和C*层;或将具有导热性且不导电的片状或薄膜状材料作为C层和C*层粘贴到导电的B层和B*层的外表面。
6.如权利要求5所述的一种微型温差电池制造方法,操作步骤如下:
(1)选择具有贯穿型多孔结构、一定厚度的片状材料或者薄膜状材料作为制造温差电材料的模板;
(2)在贯穿型多孔结构模板的二个表面的其中一面沉积上导电金属层;
(3)在多孔结构模板的未沉积导电金属层的另一表面进行微区划分;划分出的微区包括P型温差电材料微区、N型温差电材料微区以及位于P型微区和N型微区之间的非导电微区;
(4)在P型温差电材料微区的微孔中沉积P型温差电材料,在N型温差电材料微区的微孔中沉积N型温差电材料;形成A层;
(5)采用微加工技术,将多孔模板的一个表面沉积的导电金属层按照实现A层的P型温差电材料微区和N型温差电材料微区相串联的结构进行刻蚀,制造出微型温差电池的一个B层;
(6)将制造出的微型温差电池A层的未沉积导电金属层的另一表面沉积上导电金属层;
(7)将沉积在微型温差电池A层表面的导电金属层按照实现A层的P型温差电材料微区和N型温差电材料微区相串联的结构进行刻蚀,制造出微型温差电池的B*层;
(8)分别在二个导电的B层和B*层的外表面用具有导热性且不导电的材料制造出C层和C*层,并从B层或B*层延伸出二个导电外接点,用绝缘的有机或无机材料进行封装。
7.如权利要求6所述的一种微型温差电池制造方法,其特征是:所述的步骤(3)和步骤(4)是交替进行的,在贯穿型多孔结构模板上划分出P型温差电材料微区时在P型温差电材料微区的微孔中沉积出P型温差电材料;在贯穿型多孔结构模板上划分出N型温差电材料微区后在N型温差电材料微区的微孔中沉积出N型温差电材料;该过程中,将不沉积温差电材料的微区用绝缘材料覆盖。
8.如权利要求5、6或7所述的一种微型温差电池制造方法,其特征是:所述的在P型温差电材料微区和N型温差电材料微区的微孔内沉积出的P型及N型温差电材料是填满整个微孔,或者沉积出的P型及N型温差电材料不仅填满整个微孔,而且由微孔内部一直延伸出微孔至多孔模板的外表面;或者沉积出的P型及N型温差电材料应覆盖微孔的内孔壁,或者沉积出的P型及N型温差电材料不仅覆盖微孔的内孔壁,而且由微孔内部一直延伸出微孔至多孔模板的表面。
9.如权利要求5、6或7所述的一种微型温差电池制造方法,其特征是:所述的实现P型温差电材料以及N型温差电材料分别在P型温差电材料微区以及N型温差电材料微区的微孔内沉积的方法,是采用化学方法的电化学液相电沉积技术、液相化学沉积技术、化学气相沉积CVD技术或气相外延生长MOCVD技术;或是采用物理方法的物理气相沉积PVD技术、熔融态温差电材料高压注入法或熔融态温差电材料浸泡注入法。
10.如权利要求5、6或7所述的一种微型温差电池制造方法,其特征是:所述的B层和B*层的沉积和C层和C*层的沉积是是采用物理气相沉积PVD法、熔融态材料喷射法、熔融态材料浸泡法,或是采用化学方法的液相电沉积方法、液相化学沉积法、化学气相沉积CVD法、气相外延生长MOCVD法;或者C层和C*层采用涂敷的方法制造。
CNB031305687A 2003-08-15 2003-08-15 微型温差电池及其制造方法 Expired - Fee Related CN100349307C (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CNB031305687A CN100349307C (zh) 2003-08-15 2003-08-15 微型温差电池及其制造方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CNB031305687A CN100349307C (zh) 2003-08-15 2003-08-15 微型温差电池及其制造方法

Publications (2)

Publication Number Publication Date
CN1489226A true CN1489226A (zh) 2004-04-14
CN100349307C CN100349307C (zh) 2007-11-14

Family

ID=34153777

Family Applications (1)

Application Number Title Priority Date Filing Date
CNB031305687A Expired - Fee Related CN100349307C (zh) 2003-08-15 2003-08-15 微型温差电池及其制造方法

Country Status (1)

Country Link
CN (1) CN100349307C (zh)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN100370636C (zh) * 2004-10-25 2008-02-20 天津大学 微型薄膜温差电池的结构及其制造方法
CN103199188A (zh) * 2012-01-09 2013-07-10 天津大学 由薄膜温差电材料制造的叠层结构微型温差电器件及制造方法
CN105322088A (zh) * 2014-07-28 2016-02-10 中国电子科技集团公司第十八研究所 高集成度柔性薄膜温差电池的制作方法
CN109545951A (zh) * 2018-11-16 2019-03-29 清华大学深圳研究生院 一种有机热电器件模板及其制备方法和一种热电器件

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5892656A (en) * 1993-10-19 1999-04-06 Bass; John C. Thermoelectric generator
JPH0832127A (ja) * 1994-07-19 1996-02-02 Seiko Instr Inc 熱電素子および熱電素子を用いた電子機器
AU8249498A (en) * 1997-06-04 1998-12-21 Obschestvo S Ogranichennoi Otvetstvennostyu Mak-Bet Thermo-electric battery, thermo-electric cooling unit and device for heating andcooling a liquid
US6127619A (en) * 1998-06-08 2000-10-03 Ormet Corporation Process for producing high performance thermoelectric modules
US6388185B1 (en) * 1998-08-07 2002-05-14 California Institute Of Technology Microfabricated thermoelectric power-generation devices
CN1293458A (zh) * 1999-10-13 2001-05-02 曹知光 高效电子制冷芯片
JP2002353523A (ja) * 2001-03-22 2002-12-06 Ricoh Co Ltd 熱電変換材料、熱電変換素子およびその製造方法
CN1167141C (zh) * 2001-12-06 2004-09-15 天津大学 由一维纳米线阵列结构温差电材料制造的微温差电池
CN1195331C (zh) * 2002-07-30 2005-03-30 天津大学 液相电沉积n-型及p-型一维纳米线阵列温差电材料及设备和制备方法

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN100370636C (zh) * 2004-10-25 2008-02-20 天津大学 微型薄膜温差电池的结构及其制造方法
CN103199188A (zh) * 2012-01-09 2013-07-10 天津大学 由薄膜温差电材料制造的叠层结构微型温差电器件及制造方法
CN103199188B (zh) * 2012-01-09 2016-06-08 天津大学 由薄膜温差电材料制造的叠层结构微型温差电器件及制造方法
CN105322088A (zh) * 2014-07-28 2016-02-10 中国电子科技集团公司第十八研究所 高集成度柔性薄膜温差电池的制作方法
CN105322088B (zh) * 2014-07-28 2019-01-29 中国电子科技集团公司第十八研究所 高集成度柔性薄膜温差电池的制作方法
CN109545951A (zh) * 2018-11-16 2019-03-29 清华大学深圳研究生院 一种有机热电器件模板及其制备方法和一种热电器件
CN109545951B (zh) * 2018-11-16 2023-02-03 清华大学深圳研究生院 一种有机热电器件模板及其制备方法和一种热电器件

Also Published As

Publication number Publication date
CN100349307C (zh) 2007-11-14

Similar Documents

Publication Publication Date Title
Kim et al. Fabrication and electrochemical characterization of TiO2 three-dimensional nanonetwork based on peptide assembly
Abdelsalam et al. Preparation of arrays of isolated spherical cavities by self‐assembly of polystyrene spheres on self‐assembled pre‐patterned macroporous films
RU2488552C2 (ru) Покрытие и электрическое устройство, его содержащее
US20230144037A1 (en) Transforming a Valve Metal Layer Into a Template Comprising a Plurality of Spaced (Nano)channels and Forming Spaced Structures Therein
CN106537621B (zh) 热电设备和系统
Xu et al. Porous AAO template-assisted rational synthesis of large-scale 1D hybrid and hierarchically branched nanoarchitectures
CN101656486B (zh) 氧化锌纳米线/聚合物纳米复合能量转换器件及其制备方法
Na et al. Preparation of bismuth telluride films with high thermoelectric power factor
CN1822417A (zh) 用于微电池的结构化电解质
WO2006019866A2 (en) Radially layered nanocables and method of fabrication
Dunn et al. Rethinking multifunction in three dimensions for miniaturizing electrical energy storage
WO2003090245A1 (en) Thermionic vacuum diode device with adjustable electrodes
US8378333B2 (en) Lateral two-terminal nanotube devices and method for their formation
CN108538821B (zh) 一种与硅基集成电路集成的全固态超级电容及其制备方法
KR20100064194A (ko) 플렉서블 에너지 변환소자 및 이의 제조방법
Omale et al. Three-dimensional microsupercapacitors based on interdigitated patterns of interconnected nanowire networks
Van Toan et al. Liquid and solid states on-chip micro-supercapacitors using silicon nanowire-graphene nanowall-pani electrode based on microfabrication technology
KR20150122658A (ko) 열전 변환 재료 및 그의 제조 방법 및 열전 변환 모듈
US20170186932A1 (en) Spin thermoelectric device
Li et al. Electrodeposition of Bi2Te3 and Bi2Te3 derived alloy nanotube arrays
Kinoshita et al. Development of a carbon-based lithium microbattery
CN106876580B (zh) 一种透明柔性的压电式纳米发电机的制备方法
CN100349307C (zh) 微型温差电池及其制造方法
Bian et al. Wafer-scale fabrication of silicon nanocones via controlling catalyst evolution in all-wet metal-assisted chemical etching
KR101209000B1 (ko) 그래핀 나노 포어 구조를 이용한 이온 소자 및 dna 분석용 장치

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C14 Grant of patent or utility model
GR01 Patent grant
C17 Cessation of patent right
CF01 Termination of patent right due to non-payment of annual fee

Granted publication date: 20071114

Termination date: 20100815