CN1421941A - 用pld法制备具有室温正巨磁阻效应的铁碳薄膜材料 - Google Patents

用pld法制备具有室温正巨磁阻效应的铁碳薄膜材料 Download PDF

Info

Publication number
CN1421941A
CN1421941A CN03100177.7A CN03100177A CN1421941A CN 1421941 A CN1421941 A CN 1421941A CN 03100177 A CN03100177 A CN 03100177A CN 1421941 A CN1421941 A CN 1421941A
Authority
CN
China
Prior art keywords
room temperature
magnetoresistive effect
film
giant magnetoresistive
film material
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN03100177.7A
Other languages
English (en)
Other versions
CN1200468C (zh
Inventor
章晓中
薛庆忠
朱丹丹
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tsinghua University
Original Assignee
Tsinghua University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tsinghua University filed Critical Tsinghua University
Priority to CN03100177.7A priority Critical patent/CN1200468C/zh
Publication of CN1421941A publication Critical patent/CN1421941A/zh
Application granted granted Critical
Publication of CN1200468C publication Critical patent/CN1200468C/zh
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Hall/Mr Elements (AREA)
  • Thin Magnetic Films (AREA)

Abstract

本发明公开了属于磁学量传感器材料的一种用PLD法制备具有室温正巨磁阻效应的铁碳薄膜材料。是在Si(100)基片上,用不同比例的Fe-C复合冷压靶材,在3-5Pa氩气条件下,利用PLD方法在一定温度下沉积得Fe-C薄膜。在同样制备条件下,不同靶材成分,其薄膜厚度不同,薄膜厚度约为:30-120nm。该材料在温度为300K、外加磁场为1T的条件下的正磁阻效应可高达49.5%。Fe-C材料价格低廉,性能优越,是一种很好的磁传感器材料。

Description

用PLD法制备具有室温正巨磁阻效应的铁碳薄膜材料
技术领域:
本发明属于信息传感材料中的磁学量传感器材料,特别涉及一种用PLD法制备具有室温正巨磁阻效应的铁碳薄膜材料。
技术背景:
具有巨磁电阻效应的颗粒膜材料已有少数报道,如在Takeda H,Fujita A,Fukamichi K.Journal of applied physics,2002,91(10):7780-7782中报道的钴-银颗粒膜,是通过射频磁控溅射方法,在一定的条件下沉积在玻璃基片上制备的,Ag72Co28纳米颗粒薄膜在室温下,1T外场的情况下,磁阻达到-13%;在GeSH,LiHH,LiC,XiL,LiW,Chi JH.Journal of physics-condensed matter.2000,12(27):5905-5916.中公开的钴-铜颗粒膜,钴-铜颗粒膜是通过电镀方法制备,在最佳制备条件下,在室温,1.3T外场下,GMR最大可以达到-5%,77K,外场为0.9T时可以达到-10%;在XiL,Zhang ZZ,Wang JB,LiCX,LiFS,GeSH,Xu T,Yang SR.Journal of physics D-apllied physics.2000,33(6):621-626.中公开的铁-二氧化硅颗粒膜,铁-二氧化硅颗粒膜是通过溅射的方法制备,室温下,外加磁场为1.6T时,最大的磁电阻效应值为-3.3%。及铁-银颗粒膜等,其巨磁电阻值在室温及外加磁场为1特斯拉时都小于13%,并且其数值为负值,使其应用受到限制。
发明内容
本发明的目的是提供一种用PLD法制备具有室温正巨磁阻效应的铁碳薄膜材料,其特征在于:所述Fe-C薄膜是在Si(100)基片上,用铁含量的重量比为1-70%压成Fe-C复合冷压靶材,在真空镀膜室中,用PLD法在3-5Pa氩气条件下,基片在恒定温度下沉积,获得铁碳薄膜。
本发明的有益效果是1.采用的原材料成本低,在室温下具有高性能的正巨磁电阻效应。该材料在温度为300K、外加磁场为1T的条件下的正磁阻效应可高达49.5%。2.采用PLD方法,利用Fe-C冷压靶材沉积,可得薄膜厚度约为:30-120nm。方法简单,工艺稳定,具有很高的制备效率。
附图说明
图1为所得到的Fe5C95薄膜的室温正磁阻性能。
图2为所得到Fe5C95薄膜的TEM像。
具体实施方式
本发明为一种用PLD方法制备的具有室温正巨磁阻效应的铁碳薄膜材料,所述具有室温正巨磁阻效应的铁碳薄膜材料的组成为冷压靶材的成分,其铁含量(重量比)为1-70%,在具体实施中,所用靶材的比例为Fe2C98、Fe5C95、Fe10C90、Fe30C70、Fe50C50、Fe70C30、其制备方法是仅以Fe5C95复合冷压靶材为例,在真空镀膜室中用PLD方法,在Si(100)基片上,在3-5Pa氩气条件下,基片在恒定温度下沉积,获得铁碳薄膜。具体工艺是在真空镀膜室中进行:由KrF激光器(LambdaPhysics LPX205,248nm,25ns FWHM)在真空镀膜室中沉积,激光重复频率控制在10HZ,单脉冲能量为250-300mJ,通过焦距为75cm的透镜会聚到靶上。靶与激光束夹角约为45°,激光束在靶材上的束斑大小约为0.4cm×0.6cm。靶基距为4cm。沉积时间为5-10分钟。实验中所用基片为Si(100),大小约为1cm×0.5cm。沉积过程中温度保持在300℃。靶材为冷压Fe5C95靶材,靶直径为18mm,厚5mm。实验前,先将基片依次放入丙酮和酒精中用超声波清洗10min,然后用HF酸腐蚀。实验中,抽真空至<5×10-4Pa以后,加热基片至300℃,然后通入氩气至3-5Pa。沉积结束后,薄膜自然冷却至室温。膜厚度由SEM测量;形貌通过TEM和SEM观察确定;磁阻性能由SQUID(超导量子磁强计)测量。薄膜厚度约为:30-120nm。在同样制备条件下,不同靶材成分,其薄膜厚度不同。本例成分为Fe5C95的薄膜的磁阻性能如图1所示,形貌如图2所示。

Claims (1)

1.一种用PLD法制备具有室温正巨磁阻效应的铁碳薄膜材料,其特征在于:所述Fe-C薄膜是在Si(100)基片上,用铁含量的重量比为1-70%压成Fe-C复合冷压靶材,在真空镀膜室中,用PLD法在3-5Pa氩气条件下,基片在恒定温度下沉积,获得具有室温正巨磁阻效应的铁碳薄膜。
CN03100177.7A 2003-01-09 2003-01-09 用激光脉冲沉积法制备室温正巨磁阻效应的铁碳薄膜材料 Expired - Fee Related CN1200468C (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN03100177.7A CN1200468C (zh) 2003-01-09 2003-01-09 用激光脉冲沉积法制备室温正巨磁阻效应的铁碳薄膜材料

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN03100177.7A CN1200468C (zh) 2003-01-09 2003-01-09 用激光脉冲沉积法制备室温正巨磁阻效应的铁碳薄膜材料

Publications (2)

Publication Number Publication Date
CN1421941A true CN1421941A (zh) 2003-06-04
CN1200468C CN1200468C (zh) 2005-05-04

Family

ID=4789788

Family Applications (1)

Application Number Title Priority Date Filing Date
CN03100177.7A Expired - Fee Related CN1200468C (zh) 2003-01-09 2003-01-09 用激光脉冲沉积法制备室温正巨磁阻效应的铁碳薄膜材料

Country Status (1)

Country Link
CN (1) CN1200468C (zh)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN100372141C (zh) * 2003-12-18 2008-02-27 安泰科技股份有限公司 巨磁阻抗材料的复合式焦耳处理方法
CN100372030C (zh) * 2003-12-05 2008-02-27 清华大学 具有电流控制电阻效应的掺杂半导体/绝缘体/半导体材料
CN101840941A (zh) * 2010-03-05 2010-09-22 清华大学 具有光伏和光电导效应的掺铁碳薄膜材料及其制备方法
CN101550530B (zh) * 2009-04-03 2010-11-10 清华大学 激光脉冲沉积法制备白光光电导效应的掺铁的碳薄膜材料
CN101013098B (zh) * 2007-02-02 2012-01-04 中国石油大学(华东) 一种具有nh3气体敏感效应的碳/硅异质结材料
CN103544968A (zh) * 2013-10-14 2014-01-29 中国计量学院 一种磁记录薄膜结构及其制备方法
CN106452242A (zh) * 2016-07-27 2017-02-22 浙江工业大学 基于串并联估计模型的永磁同步电机混沌模糊控制方法

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN100372030C (zh) * 2003-12-05 2008-02-27 清华大学 具有电流控制电阻效应的掺杂半导体/绝缘体/半导体材料
CN100372141C (zh) * 2003-12-18 2008-02-27 安泰科技股份有限公司 巨磁阻抗材料的复合式焦耳处理方法
CN101013098B (zh) * 2007-02-02 2012-01-04 中国石油大学(华东) 一种具有nh3气体敏感效应的碳/硅异质结材料
CN101550530B (zh) * 2009-04-03 2010-11-10 清华大学 激光脉冲沉积法制备白光光电导效应的掺铁的碳薄膜材料
CN101840941A (zh) * 2010-03-05 2010-09-22 清华大学 具有光伏和光电导效应的掺铁碳薄膜材料及其制备方法
CN103544968A (zh) * 2013-10-14 2014-01-29 中国计量学院 一种磁记录薄膜结构及其制备方法
CN103544968B (zh) * 2013-10-14 2017-01-25 中国计量学院 一种磁记录薄膜结构及其制备方法
CN106452242A (zh) * 2016-07-27 2017-02-22 浙江工业大学 基于串并联估计模型的永磁同步电机混沌模糊控制方法

Also Published As

Publication number Publication date
CN1200468C (zh) 2005-05-04

Similar Documents

Publication Publication Date Title
Tarozait et al. Composition, microstructure and magnetic properties of electroless-plated thin Co–P films
Kovylina et al. Controlling exchange bias in Co–CoOx nanoparticles by oxygen content
CN1200468C (zh) 用激光脉冲沉积法制备室温正巨磁阻效应的铁碳薄膜材料
CN105088157A (zh) 一种制备纳米钴薄膜包覆铜颗粒复合颗粒膜的方法
Hu et al. Fabrication and magnetic properties of CoxPd1− x composite nanowire
Sahoo et al. Substrate Temperature Dependent Anomalous Magnetic Behavior in $\hbox {CoFe} _ {2}\hbox {O} _ {4} $ Thin Film
CN102194472B (zh) 一种超高密度垂直磁记录磁性薄膜的制备方法
CN1188543C (zh) 用pld方法制备的具有正巨磁阻效应的钴碳薄膜材料
CN1267575C (zh) 用pld法制备具有室温正巨磁阻效应的镍碳薄膜材料
CN100564266C (zh) 铁磁性铬氧化物纳米颗粒薄膜的低温低压气相制备方法
CN100470868C (zh) 具有低场室温巨磁电阻效应的FexC1-x/Fe/Si多层膜材料
CN101359716B (zh) 具有室温低场巨磁电阻效应的CoxC1-x/Co/Si多层结构颗粒膜材料
Li et al. Magnetoresistance in Co/ZnO films
Yi et al. Sputter deposited Co/CoO composite materials
Suominen et al. Pure and fully texturized Sr2FeMoO6 thin films prepared by pulsed laser deposition from target made with citrate-gel method
Wang et al. Influence of various substrate materials on the structure and magnetic properties of Fe–N thin films deposited by DC magnetron sputtering
CN110993785A (zh) 一种具有零场冷却交换偏置效应的Co/CoO纳米复合薄膜及其制备方法及应用
Altuncevahir et al. Deposition-order-dependent coercivity of CoNi/Gd bilayers
Saravanan et al. Tailoring the structural and magnetic properties of sol-gel derived Sm–Co nanogranular films
Raghavender et al. Enhanced magnetization by doping aluminum in laser ablated copper ferrite thin films
CN100364130C (zh) 具有室温低场巨磁电阻效应的C/Co/Si多层膜材料
Tsai et al. Magnetization reversal of Nd (Dy)–Fe–B thin films on Si (111) or Ta/Si (111)
Xu et al. Yttria-stabilized zirconia: a suitable substrate for c-axis preferred Nd–Fe–B thin films fabricated by pulsed–laser deposition
Balarnuruganf et al. Cluster synthesis, direct ordering, and alignment of rare-earth transition-metal nanomagnets
Song et al. Phase formation and magnetic properties of SmFe 7 N x+ α Fe composite thin films

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C14 Grant of patent or utility model
GR01 Patent grant
C17 Cessation of patent right
CF01 Termination of patent right due to non-payment of annual fee

Granted publication date: 20050504

Termination date: 20110109