CN1357899A - 碳纳米管用于超级电容器电极材料 - Google Patents

碳纳米管用于超级电容器电极材料 Download PDF

Info

Publication number
CN1357899A
CN1357899A CN00132073A CN00132073A CN1357899A CN 1357899 A CN1357899 A CN 1357899A CN 00132073 A CN00132073 A CN 00132073A CN 00132073 A CN00132073 A CN 00132073A CN 1357899 A CN1357899 A CN 1357899A
Authority
CN
China
Prior art keywords
electrode material
carbon nano
tube
metal
composite oxide
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN00132073A
Other languages
English (en)
Inventor
瞿美臻
于作龙
江奇
周固民
陈栋梁
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Chengdu Institute of Organic Chemistry of CAS
Original Assignee
Chengdu Institute of Organic Chemistry of CAS
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Chengdu Institute of Organic Chemistry of CAS filed Critical Chengdu Institute of Organic Chemistry of CAS
Priority to CN00132073A priority Critical patent/CN1357899A/zh
Publication of CN1357899A publication Critical patent/CN1357899A/zh
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/13Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
    • H01M4/133Electrodes based on carbonaceous material, e.g. graphite-intercalation compounds or CFx
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G11/00Hybrid capacitors, i.e. capacitors having different positive and negative electrodes; Electric double-layer [EDL] capacitors; Processes for the manufacture thereof or of parts thereof
    • H01G11/22Electrodes
    • H01G11/30Electrodes characterised by their material
    • H01G11/32Carbon-based
    • H01G11/36Nanostructures, e.g. nanofibres, nanotubes or fullerenes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/58Selection of substances as active materials, active masses, active liquids of inorganic compounds other than oxides or hydroxides, e.g. sulfides, selenides, tellurides, halogenides or LiCoFy; of polyanionic structures, e.g. phosphates, silicates or borates
    • H01M4/583Carbonaceous material, e.g. graphite-intercalation compounds or CFx
    • H01M4/587Carbonaceous material, e.g. graphite-intercalation compounds or CFx for inserting or intercalating light metals
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/13Energy storage using capacitors

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Power Engineering (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Nanotechnology (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Inorganic Chemistry (AREA)
  • Electric Double-Layer Capacitors Or The Like (AREA)

Abstract

本发明公开了一种复合型超级电容器电极材料,由碳纳米管与金属复合氧化物组成。在有效利用碳纳米管大比表面的基础上,利用碳纳米管的高导电性和特殊的纳米协同效应,使电极材料既能依靠电双层原理储能,又可依靠金属复合氧化物通过电池原理或锂离子电池原理储能,不但可获得高的能量密度,同时又可获得高的比功率。

Description

碳纳米管用于超级电容器电极材料
本发明公开了一种超级电容器电极材料,也可用作锂离子电池电极材料,属于电化学领域。
超级电容器(supercapacitor),又叫电化学电容器、电双层电容器,其工作原理是在电极与电解液界面形成空间电荷层(电双层),依靠这种电双层积蓄电荷,储存能量。随着研究的深入和技术的进步,对超级电容器储能的方式又有了新的认识,如“法拉第准电容(pseudocapacitance)”储能等。与普通电容器相比,超级电容器的上限容量骤然跃升了3~4个数量级,达到了数F及以上的大容量。正缘于此,它享有“超级电容器”的美称。
超级电容器类似于可充电电池,但比可充电电池(如镍氢电池和锂离子电池)具有更高的比功率和更长的循环寿命,其比功率达到千瓦数量级以上,循环寿命在万次以上,几乎没有充放电过电压,工作温度范围宽。超级电容器在移动通讯、信息技术、电动汽车、航空航天和国防科技等方面都有着极其重要和广阔的应用前景。大功率的超级电容器对于电动汽车的启动、加速和上坡行驶具有特别重要的意义:在汽车启动和爬坡时快速提供大电流以获得大功率,在正常行驶时由蓄电池对其充电;在刹车时快速储存发电机产生的大电流。这样可免除蓄电池大电流放电,大大延长蓄电池的使用寿命,提高电动汽车的实用性;若其容量能进一步提高,可望取代电池的使用。鉴于电化学超级电容器的重要性,各工业发达国家都给予了高度的重视,并作为国家重点的战略研究和开发项目:1996年欧洲共同体制定了电动汽车超级电容器的发展计划(Development of Supercapacitorsfor Electric Vehicles)美国能源部(包括美国军方)也制定了相应的发展电化学超级电容器的研究计划,其近期(1998-2003年)目标要达到500W/Kg的比功率,2003年以后更高的目标是要达到1500W/Kg的比功率,循化使用寿命在10000次以上。现在关键的问题是如何提高超级电容器的容量。
电极材料是影响超级电容器容量的决定因素。理想的电极材料要求结晶度高、导电性好、比表面积大、微孔集中在一定的范围内(要求微孔大于2nm)。现有的电双层电容器电极材料主要有:活性炭系列和过渡金属氧化物系列。以活性炭为电极材料的电双层电容器的研究是从1954年Beck发表的相关专利开始的。满足要求的碳材料有活性炭粉末、活性碳纤维、碳气溶胶、网络结构活性炭以及某些有机物的炭化产物等。到目前为此,得到的比表面积最大的活性炭比表面积可超过2000m2/g。但是比表面积大,并不意味着由其构成的电容器的容量就大。因为与容量大小直接相关的是电极材料的有效比表面积,虽然现在找到的活性碳的比表面积有2000m2/g,但其实际利用率不超过30%,因为小于2nm的微孔是不能形成电双层的。就现有的活性炭电极材料来看,其单电极的容量没有超过200F/g。但是碳材料来源丰富,价格低廉,同时其表面易形成活性官能团(如=C=O、-OH、-COOH等),可以产生“法拉第准电容”现象,由准电容现象所产生的电容量往往可以是由纯粹的电双层现象产生的电容量的10-100倍以上,从而大大提高超级电容器的电容量。
正是为了充分利用准电容原理,提高电双层电容器的容量,经科学家的不断探索,发现过渡金属氧化物作电极材料具有良好的效果。如:RuO2、RuO2·XH2O、MoOx、VOx、TiO2等。其中效果最好的是由T.R.JOW研究的RuO2·XH2O电极材料,其单电极的电容量可达到720F/g。在活性电极中加入导电乙炔后,会使材料的大电流放电性能大大改善,功率密度可达到100KW/Kg,且可在-52~73℃的范围内连续充放电60000次以上。可以说是目前效果最好的制作超级电容器的电极材料。但它有一个致命的弱点,就是成本太高,无法推广使用。所以人们开始寻找其他的过渡金属氧化物作电极材料,但到目前还没有多大进展。
碳纳米管的出现为超级电容器的开发提供了新的机遇。
碳纳米管是九十年代初发现的一种纳米级无缝管状石墨结构碳材料,管径几纳米到几十纳米,管长几微米到几十微米。碳纳米管比表面积大,结晶度高,导电性好,管内外径可通过合成工艺加以控制,可使比表面利用率达到100%,因而有可能成为一种理想的超级电容器电极材料。
美国专利6,031,711对采用碳纳米管(CNTs)作超级电容器电极材料作了原理性分析和详细的推测,包括筛选特殊的碳纳米管、对碳纳米管进行表面处理以增加法拉第容量和使碳纳米管表面功能化(官能团化)等提高超级电容器的性能,其基本原理还是通过电双层储能和电极材料表面的氧化还原反应储能。
尽管有将RuO2·XH2O与碳纳米管复合作为超级电容器电极材料的报道,但RuO2·XH2O的量占总重量的70%以上,没有从根本上降低成本,不具备商业开发价值。
本发明的目的是提供一种复合型超级电容器电极材料,由碳纳米管和金属复合氧化物组成。与现有的超级电容器电极材料相比,它具有更高的能量密度;与现有的电池电极材料相比,它又具有更大的比功率。
本发明是通过如下过程实现的:将碳纳米管与过渡金属氧化物(如MoOx、VOx、TiO2等)或金属复合氧化物(如锂离子电池正极材料Li0.75Na0.25MnO1.92I0.08、LiMn2O4、LiCoO2、LiFeO2、LiNiO2等)等复合形成复合材料,利用碳纳米管的大比表面、高导电性和特殊的纳米协同效应,不但可使金属复合氧化物高度分散,获得大电流充放电性能,同时可利用金属复合氧化物作为电池电极材料时高能量密度,提高复合材料的比容量。所形成复合材料既适合用作超级电容器电极材料,也可用于电池电极材料。
碳纳米管与金属复合氧化物形成电极材料,除电双层原理储能之外,更主要的是利用电池或锂离子电池原理储能。由于碳纳米管的高导电性和纳米协同效应,使得锂离子的嵌入和脱嵌的速度大大加快,保证了能量的快速存储与释放。
碳纳米管本身有效比表面相对较大,加上与纳米级的金属复合氧化物复合,使比表面大大增加,能通过电双层存储更多的能量;碳纳米管与金属复合氧化物之间存在着较强的相互作用(首先表现在碳纳米管的高导电性,其次是协同效应),这种相互作用使得金属复合氧化物在充放电过程中能较快的输出或得到电子,降低极化程度,使金属复合氧化物作为电化学储能的主体成为可能。或许这种方式不能将金属复合氧化物中储存的能量全部释放出来,但与锂离子电池相比,其大电流密度充放电的性能得到了根本的改变。
由于碳纳米管存在较大的比表面,利用锂离子电池原理储能时就会消耗大量金属复合氧化物中的锂来形成钝化膜(SEI膜),结果只有少量锂嵌入和脱嵌,达不到大量储能的目的。一种方法是采用预先形成SEI膜的方式减少金属复合氧化物中锂的消耗:将碳纳米管与金属复合氧化物的复合材料制成电极片,用金属锂作对电极,1M LiClO4/PC或1M LiPF6/PC为电解液,通过充电过程在复合材料表面形成SEI膜。这种处理不但可提高储能密度,同时可使电解液耐更高的电压。另一种方法是对碳纳米管表面进行有机物包裹,使其成为离子导体,电子的绝缘体,如包裹聚醋酸乙烯、聚丙烯酸盐等,降低碳纳米管表面形成的SEI膜的厚度,从而减少金属复合氧化物中锂的消耗。
碳纳米管与金属复合氧化物的重量比例应有一个合适的范围。这个范围取决于碳纳米管的表面性质和金属复合氧化物能提供锂离子的能力。如果碳纳米管石墨化程度高、缺陷少,则复合材料中金属复合氧化物的量可以从零增加到90%(重量)。金属复合氧化物的量增加到60%(重量)以后,以复合材料为电极材料的超级电容器更类似于电池,有高的能量密度,但充放电电流与电双层电容器的相比要明显降低。
当碳纳米管表面羟基和羧基官能团摩尔数之和与碳纳米管总碳摩尔数比小于5%时,复合材料中金属复合氧化物的量可以从5%(重量)增加到60%(重量)。如果碳纳米管表面羟基和羧基官能团摩尔数之和与碳纳米管总碳摩尔数比大于10%,则增加复合材料中金属复合氧化物的重量分数也不能达到提高复合材料比容量的目的,因为在利用锂离子电池原理储能时,锂因形成SEI膜而大量消耗。即使通过预先形成SEI膜的方式避免锂的消耗,但也存在电极材料的导电性明显下降的问题。最好碳纳米管表面羟基和羧基官能团摩尔数之和与碳纳米管总碳摩尔数比小于2%。
以碳纳米管与金属复合氧化物的复合材料为超级电容器电极材料时,电解液最好用有机电解液,同时含有锂盐,如1M N(C2H5)4BF4/PC含1M LiClO4、LiPF6、LiBF4等或1M N(C2H5)4BF4/EC-DEC含1M LiClO4、LiPF6、LiBF4等。
本发明与现有技术的区别是:
现有技术利用碳纳米管的特殊结构和表面易形成官能团的特点将它用作超级电容器电极材料,依靠电双层原理和表面的氧化还原反应储能;或者利用碳纳米管与RuO2·XH2O形成复合材料,依靠碳纳米管的有效大比表面来分散RuO2·XH2O而获得高的比功率和能量密度。
本发明在利用碳纳米管有效的大比表面的基础上,利用碳纳米管的高导电性和特殊的纳米协同效应,将碳纳米管与过渡金属氧化物或金属复合氧化物等形成复合材料,在依靠电双层原理储能的同时,依靠金属复合氧化物的电池原理或锂离子电池原理储能。
本发明中对碳纳米管的要求是:内径在2-20nm,外径6-30nm,石墨化程度高,表面官能团少。最好碳纳米管的石墨化程度大于60%,表面羟基和羧基官能团摩尔数之和与碳纳米管总碳摩尔数比小于2%。
本发明中的碳纳米管可用其他碳材料替代,如活性炭粉末、活性碳纤维、碳气溶胶、网络结构活性炭以及某些有机物的炭化产物等,可通过添加高导电碳材料(如乙炔黑、碳纳米管等)来改变这些碳材料的导电性。
本发明的能量密度和比功率均介于纯粹电双层电容器电极材料与电池电极材料之间。能量密度比电池的低,比纯粹电双层电容器的高;比功率比纯粹电双层电容器的低,比电池的高。

Claims (10)

1.一种超级电容器电极材料,其特征在于电极材料由碳纳米管和金属复合氧化物复合而成。
2.根据权利要求1所述的电极材料,其特征在于所述金属复合氧化物中有一种元素为Li。
3.根据权利要求2所述的电极材料,其特征在于所述金属复合氧化物为Li0.75Na0.25MnO1.92I0.08、LiMn2O4、LiCoO2、LiFeO2、LiNiO2中的一种或几种。
4.根据权利要求2或3所述的电极材料,其特征在于所述电极材料在制成电极片之后,经过预处理形成SEI膜,然后再组装成电容器。
5.根据权利要求2或3所述的电极材料,其特征在于所述电极材料在制成电极片之前,经过有机物包裹处理。
6.根据权利要求1所述的电极材料,其特征在于所述金属复合氧化物在复合材料中的重量比在0%-90%之间。
7.根据权利要求6所述的电极材料,其特征在于所述金属复合氧化物在复合材料中的重量比在2%-60%之间。
8.根据权利要求1所述的电极材料,其特征在于所述碳纳米管内径在2-20nm,外径6-30nm,石墨化程度大于60%。
9.根据权利要求8所述的电极材料,其特征在于所述碳纳米管表面羟基和羧基官能团摩尔数之和与碳纳米管总碳摩尔数比小于5%。
10.根据权利要求9所述的电极材料,其特征在于所述碳纳米管表面羟基和羧基官能团摩尔数之和与碳纳米管总碳摩尔数比小于2%。
CN00132073A 2000-12-13 2000-12-13 碳纳米管用于超级电容器电极材料 Pending CN1357899A (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN00132073A CN1357899A (zh) 2000-12-13 2000-12-13 碳纳米管用于超级电容器电极材料

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN00132073A CN1357899A (zh) 2000-12-13 2000-12-13 碳纳米管用于超级电容器电极材料

Publications (1)

Publication Number Publication Date
CN1357899A true CN1357899A (zh) 2002-07-10

Family

ID=4594943

Family Applications (1)

Application Number Title Priority Date Filing Date
CN00132073A Pending CN1357899A (zh) 2000-12-13 2000-12-13 碳纳米管用于超级电容器电极材料

Country Status (1)

Country Link
CN (1) CN1357899A (zh)

Cited By (22)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2005069412A1 (en) * 2004-01-14 2005-07-28 Kh Chemicals Co., Ltd. Carbon nanotube or carbon nanofiber electrode comprising sulfur or metal nanoparticles as a binder and process for preparing the same
CN1315139C (zh) * 2002-07-12 2007-05-09 四川工业学院 碳纳米管复合电极超大容量电容器及其制造方法
CN1328818C (zh) * 2005-04-21 2007-07-25 复旦大学 混合型水系锂离子电池
US7531267B2 (en) 2003-06-02 2009-05-12 Kh Chemicals Co., Ltd. Process for preparing carbon nanotube electrode comprising sulfur or metal nanoparticles as a binder
WO2011029130A1 (en) * 2009-08-27 2011-03-17 Commonwealth Scientific And Industrial Research Organisation Electrical storage device and electrode thereof
US8232006B2 (en) 2003-09-18 2012-07-31 Commonwealth Scientific And Industrial Research Organisation High performance energy storage devices
CN102637529A (zh) * 2011-02-11 2012-08-15 张泽森 纳米碳化硅用于超级电容器电极材料
CN101438360B (zh) * 2004-11-24 2012-09-26 加利福尼亚大学董事会 具有碳纳米管电极的高功率密度超电容器
CN102187413B (zh) * 2008-08-15 2013-03-20 加利福尼亚大学董事会 电化学储能用分级结构纳米线复合物
US8420258B2 (en) 2008-02-25 2013-04-16 Ronald Anthony Rojeski High capacity electrodes
US9203116B2 (en) 2006-12-12 2015-12-01 Commonwealth Scientific And Industrial Research Organisation Energy storage device
US9450232B2 (en) 2009-04-23 2016-09-20 Commonwealth Scientific And Industrial Research Organisation Process for producing negative plate for lead storage battery, and lead storage battery
US9508493B2 (en) 2009-08-27 2016-11-29 The Furukawa Battery Co., Ltd. Hybrid negative plate for lead-acid storage battery and lead-acid storage battery
US9524831B2 (en) 2009-08-27 2016-12-20 The Furukawa Battery Co., Ltd. Method for producing hybrid negative plate for lead-acid storage battery and lead-acid storage battery
CN106571449A (zh) * 2015-10-09 2017-04-19 中国科学院成都有机化学有限公司 利用4,4’‑二羟基二苯砜对镍锰酸锂电化学性能改善的方法
CN106601489A (zh) * 2016-12-28 2017-04-26 宁波中车新能源科技有限公司 一种无需预嵌锂型锂离子电容器及其制备方法
US9666860B2 (en) 2007-03-20 2017-05-30 Commonwealth Scientific And Industrial Research Organisation Optimised energy storage device having capacitor material on lead based negative electrode
US9812703B2 (en) 2010-12-21 2017-11-07 Commonwealth Scientific And Industrial Research Organisation Electrode and electrical storage device for lead-acid system
US10854394B2 (en) 2018-06-29 2020-12-01 Tsinghua University Stretchable capacitor electrode-conductor structure
US10879525B2 (en) 2018-06-29 2020-12-29 Tsinghua University Method of making stretchable composite electrode
US10910650B2 (en) 2018-06-29 2021-02-02 Tsinghua University Stretchable composite electrode and stretchable lithium ion battery using the same
US11319210B2 (en) 2018-06-29 2022-05-03 Tsinghua University Stretchable film structure and method of making the same

Cited By (28)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1315139C (zh) * 2002-07-12 2007-05-09 四川工业学院 碳纳米管复合电极超大容量电容器及其制造方法
US7531267B2 (en) 2003-06-02 2009-05-12 Kh Chemicals Co., Ltd. Process for preparing carbon nanotube electrode comprising sulfur or metal nanoparticles as a binder
US8278010B2 (en) 2003-06-02 2012-10-02 Kh Chemicals Co., Ltd. Carbon nanotube electrode comprising sulfur or metal nanoparticles as a binder and process for preparing the same
US8232006B2 (en) 2003-09-18 2012-07-31 Commonwealth Scientific And Industrial Research Organisation High performance energy storage devices
WO2005069412A1 (en) * 2004-01-14 2005-07-28 Kh Chemicals Co., Ltd. Carbon nanotube or carbon nanofiber electrode comprising sulfur or metal nanoparticles as a binder and process for preparing the same
CN101438360B (zh) * 2004-11-24 2012-09-26 加利福尼亚大学董事会 具有碳纳米管电极的高功率密度超电容器
CN1328818C (zh) * 2005-04-21 2007-07-25 复旦大学 混合型水系锂离子电池
US9203116B2 (en) 2006-12-12 2015-12-01 Commonwealth Scientific And Industrial Research Organisation Energy storage device
US9666860B2 (en) 2007-03-20 2017-05-30 Commonwealth Scientific And Industrial Research Organisation Optimised energy storage device having capacitor material on lead based negative electrode
US8658310B2 (en) 2008-02-25 2014-02-25 Catalyst Power Technologies, Inc. High capacity electrodes
US8420258B2 (en) 2008-02-25 2013-04-16 Ronald Anthony Rojeski High capacity electrodes
US8652683B2 (en) 2008-02-25 2014-02-18 Catalyst Power Technologies, Inc. High capacity electrodes
CN102187413B (zh) * 2008-08-15 2013-03-20 加利福尼亚大学董事会 电化学储能用分级结构纳米线复合物
US9450232B2 (en) 2009-04-23 2016-09-20 Commonwealth Scientific And Industrial Research Organisation Process for producing negative plate for lead storage battery, and lead storage battery
US9401508B2 (en) 2009-08-27 2016-07-26 Commonwealth Scientific And Industrial Research Organisation Electrical storage device and electrode thereof
WO2011029130A1 (en) * 2009-08-27 2011-03-17 Commonwealth Scientific And Industrial Research Organisation Electrical storage device and electrode thereof
US9508493B2 (en) 2009-08-27 2016-11-29 The Furukawa Battery Co., Ltd. Hybrid negative plate for lead-acid storage battery and lead-acid storage battery
US9524831B2 (en) 2009-08-27 2016-12-20 The Furukawa Battery Co., Ltd. Method for producing hybrid negative plate for lead-acid storage battery and lead-acid storage battery
US9812703B2 (en) 2010-12-21 2017-11-07 Commonwealth Scientific And Industrial Research Organisation Electrode and electrical storage device for lead-acid system
CN102637529A (zh) * 2011-02-11 2012-08-15 张泽森 纳米碳化硅用于超级电容器电极材料
CN106571449A (zh) * 2015-10-09 2017-04-19 中国科学院成都有机化学有限公司 利用4,4’‑二羟基二苯砜对镍锰酸锂电化学性能改善的方法
CN106601489A (zh) * 2016-12-28 2017-04-26 宁波中车新能源科技有限公司 一种无需预嵌锂型锂离子电容器及其制备方法
CN106601489B (zh) * 2016-12-28 2019-06-21 宁波中车新能源科技有限公司 一种无需预嵌锂型锂离子电容器及其制备方法
US10854394B2 (en) 2018-06-29 2020-12-01 Tsinghua University Stretchable capacitor electrode-conductor structure
US10879525B2 (en) 2018-06-29 2020-12-29 Tsinghua University Method of making stretchable composite electrode
US10910650B2 (en) 2018-06-29 2021-02-02 Tsinghua University Stretchable composite electrode and stretchable lithium ion battery using the same
TWI737924B (zh) * 2018-06-29 2021-09-01 鴻海精密工業股份有限公司 可拉伸電容器電極-導體結構及超級電容器
US11319210B2 (en) 2018-06-29 2022-05-03 Tsinghua University Stretchable film structure and method of making the same

Similar Documents

Publication Publication Date Title
Tie et al. Hybrid energy storage devices: Advanced electrode materials and matching principles
Dong et al. Materials design and preparation for high energy density and high power density electrochemical supercapacitors
CN1357899A (zh) 碳纳米管用于超级电容器电极材料
Liu et al. High energy and power lithium-ion capacitors based on Mn3O4/3D-graphene as anode and activated polyaniline-derived carbon nanorods as cathode
CN100372035C (zh) 聚苯胺/碳纳米管混杂型超电容器
Ates et al. Reliability of electrode materials for supercapacitors and batteries in energy storage applications: a review
JP2014517507A (ja) ポリイミド系キャパシタ電池及びその製造方法
CN101165827A (zh) 一种混合电化学电容器及其制造方法
CN101261899A (zh) 一种高工作电压超级电容器及其制造方法
CN102637529A (zh) 纳米碳化硅用于超级电容器电极材料
Yang et al. From intercalation to alloying chemistry: structural design of silicon anodes for the next generation of lithium-ion batteries
CN104966621A (zh) 一种溶剂共嵌入型钠离子电容器
Zhu et al. Characterization of asymmetric ultracapacitors as hybrid pulse power devices for efficient energy storage and power delivery applications
CN103178244A (zh) 混合型储能元件
KR20120129569A (ko) 하이브리드 커패시터
Peng et al. Hierarchical porous biomass activated carbon for hybrid battery capacitors derived from persimmon branches
CN102945754B (zh) 超级电化学电容器及其制备方法
Bhajekar et al. Comparative analysis of symmetrical, asymmetrical and hybrid supercapacitors as a pulse current device
Zhang et al. MXene‐Stabilized VS2 Nanostructures for High‐Performance Aqueous Zinc Ion Storage
TWI557761B (zh) Asymmetrical supercapacitor
Kumar et al. Battery-supercapacitor hybrid systems: An introduction
CN1420507A (zh) 车用高比能量超级电容器
Singh et al. Recent progress on materials, architecture, and performances of hybrid battery-supercapacitors
Ball et al. A capacity for change
Cai et al. Characteristics of Sodium‐Ion Capacitor Devices

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C57 Notification of unclear or unknown address
DD01 Delivery of document by public notice

Addressee: Chengdu Institute of Organic Chemistry, Chinese Academy of Sciences

Document name: Deemed as a notice of withdrawal

C57 Notification of unclear or unknown address
DD01 Delivery of document by public notice

Addressee: Sun Zhanwei

Document name: Deemed as a notice of withdrawal

C02 Deemed withdrawal of patent application after publication (patent law 2001)
WD01 Invention patent application deemed withdrawn after publication