CN1329553C - 一种制备大面积金刚石膜中抗裂纹的方法 - Google Patents

一种制备大面积金刚石膜中抗裂纹的方法 Download PDF

Info

Publication number
CN1329553C
CN1329553C CNB2004100095008A CN200410009500A CN1329553C CN 1329553 C CN1329553 C CN 1329553C CN B2004100095008 A CNB2004100095008 A CN B2004100095008A CN 200410009500 A CN200410009500 A CN 200410009500A CN 1329553 C CN1329553 C CN 1329553C
Authority
CN
China
Prior art keywords
transition layer
diamond
deposition
tin
zrn
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CNB2004100095008A
Other languages
English (en)
Other versions
CN1598047A (zh
Inventor
李成明
李惠青
吕反修
唐伟忠
陈广超
宋建华
佟玉梅
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
University of Science and Technology Beijing USTB
Original Assignee
University of Science and Technology Beijing USTB
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by University of Science and Technology Beijing USTB filed Critical University of Science and Technology Beijing USTB
Priority to CNB2004100095008A priority Critical patent/CN1329553C/zh
Publication of CN1598047A publication Critical patent/CN1598047A/zh
Application granted granted Critical
Publication of CN1329553C publication Critical patent/CN1329553C/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Crystals, And After-Treatments Of Crystals (AREA)
  • Chemical Vapour Deposition (AREA)

Abstract

本发明提供了一种制备大面积金刚石膜中抗裂纹的方法,选择抗热震性好的高纯石墨做衬底,过度层采用两类热膨胀系数差异较大的化合物SiC、TiN、CrN、ZrN,非金属Si或金属Ti、Cr、Zr、V、W、Mo,形成双重过渡层;第一种过度层沉积物包括化合物SiC、TiN、CrN、ZrN,或金属Ti、Cr、Zr、V、W、Mo;第二种过渡层的过渡为易于生长金刚石的过渡层,沉积物包括化合物SiC、TiN、CrN、ZrN,非金属Si或金属Ti、Cr、Zr、V、W、Mo;化合物或金属过渡层的沉积方法为化学气相沉积或物理气相沉积;在石墨衬底通过沉积双重过渡层,再沉积金刚石膜。本发明的优点在于不会产生衬底的穿透性裂纹,保持石墨衬底和沉积金刚石膜的完整。

Description

一种制备大面积金刚石膜中抗裂纹的方法
技术领域
本发明属于大面积金刚石膜制备技术领域,特别是提供了一种制备大面积金刚石膜中抗裂纹的方法。应用于制备光学级自支撑金刚石膜。
背景技术
金刚石具有极其优异的光学性能,从紫外(0.22μm)到远红外,直至微波波段,除在4~6μm位置存在微小的本征吸收峰外(吸收系数为12.3cm-1),不存在任何其它吸收峰。此外金刚石还具有最高的硬度(80~100GPa)和弹性模量(1050GPa),最高的热导率(20Wcm-1K-1),极低的热膨胀系数(≈1×10-6-1)、极低的微波介电损耗(在35GHz时tanδ10-4)和极佳的化学稳定性(常温下不与任何酸碱介质反应),因此被认为是最理想的红外光学窗口材料(Daniel C,Harris,Proc.3 rd Int.Conf.on Appl.of Diamond Films and Related Materials,1995:529;J.V.Busch,J.D.Dismukes,Diamond and Related Materials,1994,3:295.; GLu,K.J.Gray,E.F.Borchelt,L.K.Bigelow,J.E.Graebner,Diamond and Related Materials,1993,2:1064)。在国防和电子工业中有重要的应用。
国内外普遍采用高功率工业等离子体炬(电弧等离子体加热器)来建造大面积高质量金刚石自支撑膜沉积所要求的高功率DC Arc Plasma Jet CVD金刚石膜沉积系统。大都采用超音速等离子体炬,等离子体射流速度和气体温度都非常高,但等离子体炬喷口直径较小,因此在大面积金刚石膜沉积方面仍有一定困难。Norton公司的高功率Jet采用磁混合和扩展弧技术(MMSARC)成功地解决了大面积和高质量问题,成功制备了Φ150mm光学级窗口和头罩,但迄今为止未向外界透露任何技术细节,发表的文章也仅仅是对金刚石膜进行表征。
我国在最近几年在光学级自支撑金刚石厚膜的研究有一定进展,各相关研究单位均制备出了光学级自支撑金刚石膜。但在面积和厚度上与国外领先水平有极大的差距。我们在30KW基础上发展了100KW高功率DC Arc Plasma Jet CVD系统,该系统采用磁控/流动力学控制大口径旋转电弧等离子体炬技术和半封闭式气体循环系统,成功制备了Φ60mm大面积光学级金刚石自支撑膜,厚度接近1mm(F.X.Lu, W.Z.Tang,T.B.Huang,J.M.Liu,J.H.Song,W.X.Yu,Y.M.Tong,Large areahigh quality diamnd film deposition by high power DC arc plasma jet operating at gasrecycling mode,Diamond and Related Materials,2001,10:1551-1558)。
然而,面积的大幅度提高,对相关技术提出了更高的要求,出现了更多且更复杂的问题。一是,由于衬底与金刚石膜由于膨胀系数的差异,面积的大幅增加,产生的更大的收缩量的差别,以及由此而引发的热应力导致的裂纹和开裂更加显著;二是,膜厚的均匀性;三是,气体的逃逸等因素引发的膜质量的均匀性等。最关键的是膜的裂纹问题(C.S.J.Pickles,T.D.Madgwick,R.S.Sussmann,Diamondand Related Materials,9(2000)916-920;S.E.Coe,R.S.Sussmann,Optical,thermal andmechanical properties of CVD diamond,Diamond and Related Materials,9(2000)1726-1729)。
膜的开裂只是释放应力的一种方式,另外还有弯曲、接触面分离和基体开裂。薄膜是否开裂决定于应力分布和诸如断裂强度和接触面附着力这样的临界材料的性能。实验和理论分析表明,在冷却过程中,热应力在薄膜的边缘处集中,中心是压应力,而且附加的拉应力在边缘上起作用,这与前述的实验结果相吻合。在附加了高的热应力条件下,低的接触面附着力在产生裂纹过程中扮演着重要的角色。接触面的分离是由剪切应力σ1和剥离应力σ2造成的,而膜的裂纹由平面内的圆周应力σ3造成的。因而在薄膜的边缘处有接触面应力集中,所以接触面分离就从那里开始。所以当两个条件满足时,裂纹就会产生。一是薄膜的混合圆周应力应高于其断裂强度Sf,二是圆周应力与剥离应力的比值σ32,应该比薄膜的断裂强度与其接触面的附着力Sa的比值大。这两个条件可描述为:
σ3>Sf σ 3 σ 2 > S f S a
为了抑制薄膜裂纹的产生,上述不等式永远不应得到满足。假定金刚石的断裂强度是不变的,减小σ3和σ32的值,增加Sf/Sa的值是可以有效地抑制薄膜的开裂。
发明内容
本发明的目的在于提供了一种制备大面积金刚石膜中抗裂纹的方法,解决了制备大面积金刚石膜的裂纹问题。
本发明的技术方案是,选择抗热震性好的材料做衬底,防止基体裂纹的产生,本发明的衬底选择高纯石墨,过渡层采用两类热膨胀系数差异较大的化合物(SiC、TiN、CrN、ZrN)、非金属(Si)或金属(Ti、Cr、Zr、V、W、Mo),形成双重过渡层,沉积金刚石后形成梯度应力,使金刚石膜冷却过程中,具有匹配的残余应力和结合强度,恰好使涂层在两种过渡层之间脱落。根据这一思想,石墨有优异的抗热震能力,作为衬底的首选。第一种过渡层沉积物包括化合物SiC、TiN、CrN、ZrN,或金属Ti、Cr、Zr、V、W、Mo;第二种过渡层为易于生长金刚石的过渡层,沉积物包括化合物SiC、TiN、CrN、ZrN,非金属Si或金属Ti、Cr、Zr、V、W、Mo。这种过渡层与先前大量使用过渡层的区别在于:以前过渡层的目的,一是提高结合强度,二是在不易生长金刚石的材料表面,通过过渡层沉积金刚石。而在本发明中,主要是利用过渡层的热膨胀系数这一物理性能,两种过渡层之间有较大的热膨胀系数差异,而分别与金刚石和石墨形成强的结合强度,达到应力的梯度设计控制残余应力的目的,并且考虑有利于生长高质量的金刚石膜。
沉积光学级大面积金刚石厚膜所用的衬底为W、Mo和Si。
本发明提出在石墨衬底通过沉积双重过渡层,再沉积金刚石膜,通过过渡层进行应力的释放,以解决裂纹问题。
第一种过渡层包括化合物(SiC、TiN、CrN、ZrN)和金属(Ti、Cr、Zr、V、W、Mo)等。
第二种过渡层包括化合物(SiC)、非金属(Si)或金属(Ti、Cr、Zr、V、W、Mo)等,其特点是有利于生长金刚石。
过每种渡层为2~28层,但最上层必须是有利于金刚石的生长。
本发明所用过渡层的沉积方法为化学气相沉积或物理气相沉积,包括脉冲辅助过滤电弧、电弧离子镀、磁控溅射、微波等离子体方法等。
本发明所金刚石膜的沉积方法采用等离子体喷射法、微波等离子体法、热丝法、射频等离子体法等各种金刚石膜沉积方法。
本发明的优点在于:
选择石墨为衬底,由于石墨具有较小的膨胀系数,且热震性非常好。因而,在沉积和冷却中,不会产生衬底的穿透性裂纹。
石墨上形成多层化的过渡层,有利于沉积过程中形成的应力的释放。
金刚石膜沉积后在冷却中,由于应力产生的破坏,发生在过渡层之间,使过渡层产生碎裂,而保持石墨衬底和沉积金刚石膜的完整。
附图说明
图1为本发明衬底和过渡层及生长金刚石的示意图。其中.石墨衬底1,第一过渡层2,包括化合物(SiC、TiN、CrN、ZrN)和金属(Ti、Cr、Zr、V、W、Mo);第二过渡层3,包括化合物(SiC)、非金属(Si)或金属(Ti、Cr、Zr、V、W、Mo);生长的金刚石膜4。
图2为本发明所制备的厚度为700微米的金刚石厚膜照片示意图。
具体实施方式
实施例1:采用高纯石墨为衬底,应用脉冲辅助电弧离子镀技术在石墨衬底表面首先沉积TiN,然后沉积金属Ti。用等离子体喷射法在具有过渡层的石墨衬底沉积金刚石膜,采用的反应气体为Ar、CH4、H2,沉积温度为900℃,获得厚度为700微米的金刚石厚膜。如图2所示。
其他实施例:采用高纯石墨为衬底,采用不同方法沉积过镀层和沉积金刚石的结果如表1所示。
衬底 高纯石墨 高纯石墨 高纯石墨 高纯石墨 高纯石墨 高纯石墨 高纯石墨
第一过渡层 种类 奇TiN偶CrN28层 奇TiN偶ZrN8层 SiC Ti Mo Mo Ti
方法 电弧离子镀 电弧离子镀 磁控溅射 电弧离子镀 化学气相沉积 化学气相沉积 电弧离子镀
第二过渡层 种类 Ti V W Mo Ti Si SiC
方法 电弧离子镀 电弧离子镀 化学气相沉积 化学气相沉积 电弧离子镀 微波等离子体 磁控溅射
金刚石膜厚度(微米) 800 800 1500 1500 700 300 500

Claims (4)

1、一种制备大面积金刚石膜中抗裂纹的方法,其特征在于:选择抗热震性好的高纯石墨做衬底,过渡层采用两类热膨胀系数差异较大的化合物SiC、TiN、CrN、ZrN,非金属Si或金属Ti、Cr、Zr、V、W、Mo,形成双重过渡层;第一种过渡层沉积物包括化合物SiC、TiN、CrN、ZrN,或金属Ti、Cr、Zr、V、W、Mo;第二种过渡层为易于生长金刚石的过渡层,沉积物包括化合物SiC、TiN、CrN、ZrN,非金属Si或金属Ti、Cr、Zr、V、W、Mo;过渡层的沉积方法为化学气相沉积或物理气相沉积;在石墨衬底通过沉积双重过渡层,再沉积金刚石膜。
2、按照权利要求1所述的方法,其特征在于:所述的每种过渡层的层数为2~28层。
3、按照权利要求1或2所述的方法,其特征在于:所述的化学气相沉积或物理气相沉积,包括脉冲辅助过滤电弧、电弧离子镀、磁控溅射、微波等离子体法。
4、按照权利要求1所述的方法,其特征在于:金刚石膜的沉积采用等离子体喷射法、微波等离子体法、热丝法、射频等离子体法。
CNB2004100095008A 2004-08-31 2004-08-31 一种制备大面积金刚石膜中抗裂纹的方法 Active CN1329553C (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CNB2004100095008A CN1329553C (zh) 2004-08-31 2004-08-31 一种制备大面积金刚石膜中抗裂纹的方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CNB2004100095008A CN1329553C (zh) 2004-08-31 2004-08-31 一种制备大面积金刚石膜中抗裂纹的方法

Publications (2)

Publication Number Publication Date
CN1598047A CN1598047A (zh) 2005-03-23
CN1329553C true CN1329553C (zh) 2007-08-01

Family

ID=34662515

Family Applications (1)

Application Number Title Priority Date Filing Date
CNB2004100095008A Active CN1329553C (zh) 2004-08-31 2004-08-31 一种制备大面积金刚石膜中抗裂纹的方法

Country Status (1)

Country Link
CN (1) CN1329553C (zh)

Families Citing this family (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN100385036C (zh) * 2005-11-14 2008-04-30 吴大维 太阳能电池纳米晶硅薄膜的物理气相沉积装置及其方法
CN101775590B (zh) * 2010-01-08 2011-08-10 刘锡潜 一种具有保护涂层的石墨基座及其制备方法
CN101787530B (zh) * 2010-03-01 2011-06-29 南京航空航天大学 SiC先驱体法制备金刚石涂层的方法
CN101831616B (zh) * 2010-05-11 2012-01-04 广东工业大学 一种纳米复合钛铬硅氮化物刀具涂层及其制备方法
CN101880866B (zh) * 2010-06-14 2012-07-04 大连理工大学 一种在硬质合金上为金刚石涂层制备金刚石-碳化硅-硅化钴复合中间层的方法
CN103499474B (zh) * 2013-09-18 2015-10-21 中国航空工业集团公司北京航空制造工程研究所 电子束物理气相沉积板材拉伸试样的制备方法
CN104561925B (zh) * 2015-01-20 2017-04-26 太原理工大学 一种自支撑金刚石膜的制备方法
CN106835274A (zh) * 2017-01-23 2017-06-13 中国科学院半导体研究所 异质外延金刚石及其制备方法
CN107434435B (zh) * 2017-08-02 2020-07-07 中南钻石有限公司 一种石墨搪瓷材料及其制作方法
CN107545936A (zh) * 2017-08-22 2018-01-05 廊坊西波尔钻石技术有限公司 金刚石膜与石墨复合材料
CN108315737A (zh) * 2018-02-07 2018-07-24 上海三朗纳米技术有限公司 一种基于切削刀具的复合涂层制备工艺
CN111341836B (zh) * 2020-03-05 2022-05-03 中国科学院半导体研究所 用于异质外延的石墨烯中间层柔性衬底及其制备方法
CN113776934A (zh) * 2021-08-05 2021-12-10 长江存储科技有限责任公司 结合强度的测量方法和样品

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5314652A (en) * 1992-11-10 1994-05-24 Norton Company Method for making free-standing diamond film

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5314652A (en) * 1992-11-10 1994-05-24 Norton Company Method for making free-standing diamond film

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
通过过渡层改善金刚石膜和基底间的结合性能 梨向锋,左敦稳,王珉,材料开发与应用,第15卷第1期 2000 *

Also Published As

Publication number Publication date
CN1598047A (zh) 2005-03-23

Similar Documents

Publication Publication Date Title
CN1329553C (zh) 一种制备大面积金刚石膜中抗裂纹的方法
Schultrich Tetrahedrally bonded amorphous carbon films I: Basics, structure and preparation
EP0157212B1 (en) Articles coated with adherent diamondlike carbon films
Wachtman et al. ceramic films and coatings–an overview
CN106086886B (zh) 一种自润滑二硼化钛/类金刚石涂层及其制备方法和应用
CN104044313B (zh) 防刮伤超硬玻璃及其制备方法
CN103757597B (zh) 一种TiN/CrAlSiN纳米复合多层涂层及其制备方法
EP1997620B1 (en) Laminated body and carbon film deposition method
CN101880866B (zh) 一种在硬质合金上为金刚石涂层制备金刚石-碳化硅-硅化钴复合中间层的方法
CN109467450B (zh) 一种含Ti3SiC2界面层的SiCf/SiC复合材料的制备方法
Zhang et al. A hard yet tough CrAlSiN nanocomposite coating for blades deposited by filtered cathode vacuum arc
EP0437830B1 (en) CVD diamond coated annulus components and method of their fabrication
Amirhaghi et al. Growth and erosive wear performance of diamond coatings on WC substrates
CN105463391A (zh) 一种纳米晶ZrB2超硬涂层及制备方法
CN100395371C (zh) 微波等离子体增强弧辉渗镀涂层的装置及工艺
Lung et al. Effect of gradient a-SiCx interlayer on adhesion of DLC films
KR100991770B1 (ko) 입방정계 질화붕소 박막의 증착 방법
CN106756833A (zh) 一种高硬度TiCrN/TiSiN纳米多层结构涂层及其制备方法
Partridge et al. Chemical vapour deposited diamond fibres: manufacture and potential properties
Freller et al. Influence of intermediate layers and base materials on adhesion of amorphous carbon and metal-carbon coatings
JP3203437B2 (ja) 耐摩耗性プラスチック成形物及びその製造方法
CN101967638B (zh) 压裂井口金刚石膜内壁的制备方法
CN101104926B (zh) 磷化硼硬质涂层的制备方法
CN113564551B (zh) 一种多相BN-Y/CrAlN复合涂层及其制备方法
Song et al. Deposition and characterization of SixC1− x/Al2O3 coatings by magnetron sputtering for nuclear fusion applications

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C14 Grant of patent or utility model
GR01 Patent grant
EE01 Entry into force of recordation of patent licensing contract

Application publication date: 20050323

Assignee: Shaoxing Hongye source Investment Limited

Assignor: University of Science and Technology Beijing

Contract record no.: 2015990000903

Denomination of invention: Process for preparing large area high quality anti-crack on diamant film

Granted publication date: 20070801

License type: Exclusive License

Record date: 20151030

LICC Enforcement, change and cancellation of record of contracts on the licence for exploitation of a patent or utility model