CN1324515C - 处理工具优化系统和方法 - Google Patents
处理工具优化系统和方法 Download PDFInfo
- Publication number
- CN1324515C CN1324515C CNB03804918XA CN03804918A CN1324515C CN 1324515 C CN1324515 C CN 1324515C CN B03804918X A CNB03804918X A CN B03804918XA CN 03804918 A CN03804918 A CN 03804918A CN 1324515 C CN1324515 C CN 1324515C
- Authority
- CN
- China
- Prior art keywords
- handling implement
- data
- yield rate
- engine
- handling
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Fee Related
Links
- 238000000034 method Methods 0.000 title claims abstract description 115
- 238000007418 data mining Methods 0.000 title claims abstract description 81
- 230000008569 process Effects 0.000 title claims abstract description 67
- 230000004044 response Effects 0.000 claims abstract description 24
- 238000005457 optimization Methods 0.000 claims abstract description 16
- 238000004519 manufacturing process Methods 0.000 claims description 62
- 238000012545 processing Methods 0.000 claims description 38
- 239000000758 substrate Substances 0.000 claims description 18
- 238000012544 monitoring process Methods 0.000 claims description 8
- 230000009471 action Effects 0.000 claims description 5
- 238000013480 data collection Methods 0.000 claims description 3
- 230000002045 lasting effect Effects 0.000 claims description 3
- 238000009412 basement excavation Methods 0.000 claims 3
- 238000004458 analytical method Methods 0.000 abstract description 6
- 238000005259 measurement Methods 0.000 description 23
- 238000001514 detection method Methods 0.000 description 22
- 238000005516 engineering process Methods 0.000 description 11
- 239000004065 semiconductor Substances 0.000 description 9
- 230000007547 defect Effects 0.000 description 8
- 239000000463 material Substances 0.000 description 8
- 230000002950 deficient Effects 0.000 description 7
- 238000005229 chemical vapour deposition Methods 0.000 description 6
- 238000004891 communication Methods 0.000 description 6
- 238000011990 functional testing Methods 0.000 description 6
- 238000012360 testing method Methods 0.000 description 6
- 230000005540 biological transmission Effects 0.000 description 4
- 230000008859 change Effects 0.000 description 4
- RYGMFSIKBFXOCR-UHFFFAOYSA-N Copper Chemical compound [Cu] RYGMFSIKBFXOCR-UHFFFAOYSA-N 0.000 description 3
- 229910052802 copper Inorganic materials 0.000 description 3
- 239000010949 copper Substances 0.000 description 3
- 230000000875 corresponding effect Effects 0.000 description 3
- 238000003066 decision tree Methods 0.000 description 3
- 238000013461 design Methods 0.000 description 3
- 230000000694 effects Effects 0.000 description 3
- 238000012552 review Methods 0.000 description 3
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N Silicium dioxide Chemical compound O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 description 2
- 230000000454 anti-cipatory effect Effects 0.000 description 2
- 238000004140 cleaning Methods 0.000 description 2
- 238000012937 correction Methods 0.000 description 2
- 238000007405 data analysis Methods 0.000 description 2
- 238000007619 statistical method Methods 0.000 description 2
- 238000003860 storage Methods 0.000 description 2
- 230000000007 visual effect Effects 0.000 description 2
- 238000013528 artificial neural network Methods 0.000 description 1
- 230000002596 correlated effect Effects 0.000 description 1
- 238000002425 crystallisation Methods 0.000 description 1
- 230000008025 crystallization Effects 0.000 description 1
- 238000013500 data storage Methods 0.000 description 1
- 238000005137 deposition process Methods 0.000 description 1
- 238000011161 development Methods 0.000 description 1
- 238000010586 diagram Methods 0.000 description 1
- 239000003989 dielectric material Substances 0.000 description 1
- 230000009365 direct transmission Effects 0.000 description 1
- 238000009713 electroplating Methods 0.000 description 1
- 239000000284 extract Substances 0.000 description 1
- 239000011521 glass Substances 0.000 description 1
- 230000006872 improvement Effects 0.000 description 1
- 238000007689 inspection Methods 0.000 description 1
- 238000011900 installation process Methods 0.000 description 1
- 230000010354 integration Effects 0.000 description 1
- 230000003993 interaction Effects 0.000 description 1
- 230000002452 interceptive effect Effects 0.000 description 1
- 230000007774 longterm Effects 0.000 description 1
- 238000012423 maintenance Methods 0.000 description 1
- 229910021421 monocrystalline silicon Inorganic materials 0.000 description 1
- 210000002569 neuron Anatomy 0.000 description 1
- 230000000704 physical effect Effects 0.000 description 1
- 230000001915 proofreading effect Effects 0.000 description 1
- 230000008439 repair process Effects 0.000 description 1
- 230000035945 sensitivity Effects 0.000 description 1
- 235000012239 silicon dioxide Nutrition 0.000 description 1
- 239000000377 silicon dioxide Substances 0.000 description 1
- 230000002123 temporal effect Effects 0.000 description 1
- 238000012549 training Methods 0.000 description 1
- 230000007704 transition Effects 0.000 description 1
Images
Classifications
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L22/00—Testing or measuring during manufacture or treatment; Reliability measurements, i.e. testing of parts without further processing to modify the parts as such; Structural arrangements therefor
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L22/00—Testing or measuring during manufacture or treatment; Reliability measurements, i.e. testing of parts without further processing to modify the parts as such; Structural arrangements therefor
- H01L22/20—Sequence of activities consisting of a plurality of measurements, corrections, marking or sorting steps
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L21/00—Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y10—TECHNICAL SUBJECTS COVERED BY FORMER USPC
- Y10S—TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y10S707/00—Data processing: database and file management or data structures
- Y10S707/99931—Database or file accessing
- Y10S707/99932—Access augmentation or optimizing
Landscapes
- Engineering & Computer Science (AREA)
- Manufacturing & Machinery (AREA)
- Computer Hardware Design (AREA)
- Microelectronics & Electronic Packaging (AREA)
- Power Engineering (AREA)
- Physics & Mathematics (AREA)
- Condensed Matter Physics & Semiconductors (AREA)
- General Physics & Mathematics (AREA)
- General Factory Administration (AREA)
- Management, Administration, Business Operations System, And Electronic Commerce (AREA)
- Testing Or Measuring Of Semiconductors Or The Like (AREA)
Abstract
本发明的一个实施例是一种处理工具优化系统,其包括:(a)数据挖掘引擎,该数据挖掘引擎分析生产线后端成品率数据,以识别与低成品率有关的一个或多个处理工具;与(b)响应上述分析的输出,分析来自一个或多个处理工具的处理工具数据,以识别与低成品率有关的一个或多个处理工具的参数。
Description
技术领域
本发明的一个或多个实施例涉及生产线后端(end-of-line)数据挖掘与处理工具数据挖掘的相关性。
背景技术
用于市场需求驱动电路密度不断增加,半导体器件的制造持续地变得更加复杂。例如,一个典型的制造过程需要从一片单晶硅(此处称之为指晶片或基片)开始,对它的处理要经过一系列的、约300个到500个独立的制造步骤,以在每个晶片上制造许多独立的器件。另外,随着电路密度增加,线宽将减小,并且更新的技术和材料应用在半导体制造中。例如,铜加工工艺正在从0.18μm技术转到0.13μm技术。另外,铜晶籽(copper seed)和电镀的出现,连同在应用新的低介电材料膜时增加的困难,以及填充0.13μm结构的要求,都成为障碍而使得过渡到使用300mm晶片不会更加容易。
作为这一现象的结果,降低缺陷率而不论其是由处理或污染导致的就变得越来越重要,克服缺陷率的一个重要因素是找到根本原因的时间(time-to-root-cause)。为监控缺陷率,并且持续地降低缺陷密度,半导体器件制造商们使用了缺陷数据管理软件和缺陷检测设备。进一步的是,每一代新的半导体处理技术都要求有更详尽的数据来支持工艺的监控与改进。同样,大量数据又推动了晶片加工中的数据存储、数据集成、数据分析以及数据自动化的趋势。
在最近若干年中,已有大量的投资用于配置数据析取系统,该系统被设计用于在晶片正在被处理时记录给定的半导体晶片处理工具的操作条件。尽管目前在先进的工厂中,对一部分晶片处理工具来说这种基于临时的(temporal based)处理工具的数据是有效的,但是,对相对于正在生产的器件(这里指的是集成电路或称IC)而优化工具的性能来说,数据的使用受到了限制。这种限制至少部分是由于在表示器件性能如何的数据与表示处理工具如何的临时数据二者之间脱离关系导致的。例如,对IC的数据测量必然与给定的一定生产量的晶片(称之为一批)、或一个给定的晶片、或所述晶片上的多个IC的一个给定的子集有关。然而,得自处理工具临时数据的数据测量值被表示成在晶片处理过程中的特定时刻、处理工具内的分立的操作条件。例如,如果一个工厂的处理工具具有一个孤立的腔室,则可以当一个给定的晶片被保持于该处理工具的腔室内时,每毫秒都记录该腔室的压力。在这一示例中,任何给定晶片的腔室压力数据都会作为一系列的数以千计的唯一的测量值而被记录下来。将处理工具的临时数据“合并”到分立的数据度量所带来的困难,导致处理工具临时数据作为优化工厂效率的一种手段只得到有限的运用。
现在有许多成品率提高和工厂效率改进的监控尝试都集中于开发生产线后端功能性测试数据与用以制造IC的特定的工厂处理工具之间的相关性,其中上述生产线后端功能性测试数据识别出低成品率晶片。这种分析的一个目标是识别出被怀疑造成低成品率的个别处理工具,并且从工厂处理流程上除去它(它们),直到合格品工程师能够确信这个(这些)工具“正常”操作的时候为止,或者是若有必要则在生产晶片时改变上述工具的性能。众所周知的是利用数据挖掘来完成这些工作(这些类型的相关性工作也在提高新技术的成品率时起到了重要作用)。这些类型的相关性工作可能是乏味而耗时的,这是因为:(a)产生了大量数据;和(b)要花时间整理用于分析的数据。有时,在发现某个信号之前这是一种尝试与错误的事务。另外,这些工作通常并不提供充足的信息来使处理工具能够运行得更好。结果,使用者通常花费更多时间努力找出问题,而不是在处理工具被识别出之后致力于真正修理和调整它们。
鉴于上述原因,需要有方法和装置来解决以上所指出的一个或多个问题。
发明内容
有利的是,本发明的一个或多个实施例解决了上文中指出的一个或多个问题。尤其是,本发明的一个实施例是一种处理工具优化系统,该系统包括:(a)一个数据挖掘引擎,其分析生产线后端成品率数据,以识别与低成品率有关的一个或多个处理工具;以及(b)响应来自上述分析的输出,分析来自一个或多个处理工具的处理工具数据,从而识别与低成品率有关的一个或多个处理工具的参数。
附图说明
图1表示一个处理工具优化系统的框图,该系统是根据本发明的一个实施例构造的。
具体实施方式
图1表示根据本发明的一个实施例构造的处理工具优化系统1000。众所周知的是,在半导体晶片或基片上已经了制造器件(这里也指集成电路或称IC)之后,要执行许多功能性测试,其例如但不限于是电子测试,以便确定是否上述器件的运行与设计规范一致。如图1所示,根据本领域技术人员所公知的多种方法中的任何一种,将这些功能性测试的结果(即从功能性测试仪器输出的功能性测试结果的集合)存储在工厂范围(fab-wide)的生产线后端成品率提高数据库140中。执行这些功能性测试的预定的功能性测试套件和功能性测试装置对本领域技术人员来说也是公知的。应指出,本发明的实施例并不限于在半导体晶片上制造器件时应用,实际上,本发明包含了可在其他材料上制造器件时加以应用的实施例,上述其他材料例如但不限于是玻璃基片或二氧化硅基片等材料。
再参见图1,生产线后端成品率提高数据挖掘引擎150检索存储在工厂范围生产线后端成品率提高数据库140中的数据,并分析这些数据,从而:(a)识别低成品率晶片;以及(b)使得上述低成品率晶片与以下内容相关:(i)单独的处理工具或处理工具组;(ii)临时事件;(iii)处理和/或器件设计,以及(iv)等等。本说明书所使用的术语“低成品率”指的是低于预定数量的成品率,或者对于特定器件参数来说超出控制范围或边界之外的测量值。众所周知的是,数据挖掘是一系列公知的方法,这些方法被可用于在(典型是大组的)数据中发现各种模式,以帮助解释一个或多个响应变量的状态。公知的是,数据挖掘与至少某些建模方法不同,在上述这些建模方法中不存在待测试的预先设想的模型;与之相反,需要用预设范围内的解释变量来找到模型。通常这些变量可能具有各种不同的数据类型,包括离群值(outlier)和遗漏数据。其中一些要包含模型中的变量可能是高度相关的,而且基础关系可能是非线性的并包括交互作用。
进一步公知的是,术语“数据挖掘”已经与多种不同的分析技术相关联。这些技术中有一些涉及使用传统的统计方法,而其他的则利用了诸如神经网络、相关性规则、贝叶斯网络(Bayesian network)和决策树等技术。然而在所有情况下,目标都是要建立一个模型,以便通过一组观测来解释响应中的变化,并且具有准确地预测对于所遇到的新数据的响应的能力。当有大量的数据需要建模,且物理模型尚未被充分认识到足以利用统计方法时,神经元网模型是有用的。这种方法的其中一个缺点是,得到模型参数的物理解释是困难的。同样,模型的预测结果受限于所使用的训练集(traing set)的应用范围。贝叶斯网络比神经元网络更具有物理性,因为该网络中的节点是实测的变量,但它仍然难以从网络中提取到物理模型的各元素,或者有效地使模型中所体现的关系可视化。与神经元网络不同,贝叶斯网络可用于发现新的关系。相关性规则是一种工具,用于寻找具有数据中的一致性的模式。举例来说,失败的批(即一组晶片)是怎样经常受到处理工具的各种组合(例如沉积处理工具与蚀刻处理工具的组合)的处理的。相关性规则分析在发现行为的模式时是有用的,但是不产生预测模型。决策树是用于研发行为的分层模型的分析工具。一个树是基于与变量有关的最佳规则,通过反复评价哪一个变量解释了响应的最大可变性而建立的。当关系还是未知的时候,以及需要做出宽泛的分类或预测的时候,决策树是有用的。而当你需要对一个连续变量做出精确预测时,它们就不太有用了。
来自生产线后端的成品率提高的数据挖掘引擎150的输出将识别出看来与低成品率相关联的一个处理工具或处理工具的组合。根据原有技术方法,这一数据要引起维护人员的注意,然后该维护人员试图对识别出的工具或工具组合加以修理活至少进行故障检修,以提高成品率。然而,根据本发明的一个实施例,如图1所示,生产线后端成品率提高数据挖掘引擎150的输出被作为输入而提供给处理工具数据挖掘引擎130。生产线后端成品率提高数据挖掘引擎150可按照本领域普通技术人员所公知的多种方法之中的任何一种,作为一种软件应用来构造。例如,生产线后端成品率提高数据挖掘引擎150可作为以下一种基于web的软件应用来构造:(a)通过网络来存取数据(例如从工厂范围的生产线后端成品率提高数据库140),上述网络例如但不限于是因特网、局域网等等;以及(b)通过网络来传送数据(例如传送到处理工具和数据挖掘引擎130)。
如图1所示,蚀刻处理工具100处理要被传递到测量/检测系统110的晶片,而化学汽相沉积(CVD)处理工具200处理要被传递到测量/检测系统210的晶片。应理解的是,蚀刻处理工具100和CVD处理工具200仅仅是处理工具的代表性示例,其输出根据本发明的一个或多个实施例而受到分析。当蚀刻处理工具100处理晶片时,由智能Sys工具120来收集处理输出数据,而当CVD处理工具200处理晶片时,则由智能Sys工具220来收集处理输出数据。智能Sys工具是由美国加利福尼亚州Santa Clara的应用材料有限公司制造的一种数据收集和分析工具,可用来监控处理工具的处理控制参数。另外,智能Sys工具还包含检测是否条件偏离与模型(处理工具的最优范围的模型)相符的数值的应用程序。例如,智能Sys工具的一个实施例包含“设备正常监控和故障检测”应用程序,它可评价一个处理工具的“正常”指标(即指示器),以便优化处理工具性能。该设备正常监控和故障检测应用程序是通过利用基于历史的、基于多个变量的预期行为的模型,以及多个预定变量的交互作用来完成上述工作的,这些变量可包括设备功能参数和/或处理参数(设备功能参数和处理参数包括设备级数据和对应于后者的处理腔室数据)。举例而不带局限性地说,设备功能参数包括机器人位置,而处理参数则包括温度、真空压力、RF幅度和气流。智能Sys工具监控预定的指示器以检测条件是否偏离了预期行为模型的最佳范围。这样,这些预定的指示器就通过预测超出范围的处理行为而有助于防止晶片损耗。智能Sys工具还收集、存储、显示实时数据,以保证处理基材和告警是准确的。
如图1所示,经过蚀刻处理工具100和CVD处理工具200处理的晶片被分别传送到各自的测量/检测系统110与210进行处理。测量/检测系统110与210包括以下一种或多种内容:(a)一个或多个参数的计量工具;(b)一个或多个检查工具;(c)一个或多个缺陷评价系统;(d)缺陷源识别器;以及(e)处理知识库(“PKL”)。众所周知的是,计量和检查工具产生测量数据,以及用于核对处理工具与器件参数的缺陷测量数据。同样众所周知的是,缺陷评价系统是进一步分析检查工具所产生的数据的工具,为的是提供指示出缺陷源的数据。缺陷源识别器是可从美国加利福尼亚州Santa Clara的应用材料有限公司得到的设备,该设备分析计量数据、检查数据、评价数据和历史缺陷数据,以确定缺陷源或在确定缺陷源时提供帮助。最后,PKL是一种应用程序,如应用软件,它可根据本领域普通技术人员所公知的多种方法中的任何一种来构造,用来提供缺陷的特定知识,以及与这些缺陷相关的、涉及超限制范围的处理参数的特定校正动作。例如,PKL可指出(举例但不限于是)对于特定的器件设计来说是有问题的RF电源的特定值。
进一步如图1所示,处理工具数据挖掘引擎130访问智能Sys工具120和智能Sys工具220,从而获得其中存储的至少一部分数据。此外,处理工具数据挖掘引擎130访问测量/检测系统110和测量/检测系统210,从而获得其中存储的至少一部分数据。处理工具数据挖掘引擎130所获得的该组数据根据从生产线后端成品率提高数据挖掘引擎150所接收到的输入,或是根据来自使用者(如成品率工程师)的输入,而得到确定。例如,来自生产线后端成品率提高数据挖掘引擎150的输入,以及来自使用者的输入,可能指示出被识别为与低成品率相关一个或多个处理工具。来自生产线后端成品率提高数据挖掘引擎150的上述输入甚至可以指示出与低成品率相关的具体时间段。作为响应,处理工具数据挖掘引擎130将从相关处理工具访问被指示出的时间段的信息(例如通过访问与上述处理工具相关的智能Sys工具),并且将访问存储在相关系统中的相关的计量、检查和评价数据(例如借助于访问测量/检测系统110、和/或测量/检测系统210、和/或类似系统)。另外,如果不能自动获得如上所述的特定类型的数据,则举例来说可以借助使用者的输入而以文件形式提供数据,或借助于提供预先设定的指定的数据位置来提供数据。进一步的是,通过与本领域普通技术人员所公知的许多方法中的任何一种相一致的系统配置程序,可获得指明其中存储有预定数据的位置的映像(例如处理工具和相关智能Sys工具的映像)。这样,当遇到一个新故障时,处理工具数据挖掘引擎130就会询问其他自动化部件和计量工具,以收集为提示出可能原因所需要的数据。进一步,处理工具数据挖掘引擎130可构造成与本领域普通技术人员所公知的许多方法中的任何一种相一致的应用软件。例如处理工具数据挖掘引擎130可构造成基于web的应用软件,其:(a)通过像因特网、内联网等等(举例但不限于此)这样的网络来存取数据(该数据例如来自智能Sys工具120、智能Sys工具220、测量/检测系统110、和测量/检测系统210);以及(b)通过网络以下述方式输出数据。
根据本发明的一个或多个实施例,处理控制数据挖掘引擎130进行数据挖掘,以:开发与成品率影响信号有关的处理内工具(intra-processtool);输出成品率影响信号160到处理优化引擎170;和/或举例来说通过网络,将具体的器件缺陷与超限度的处理参数之间的相关性,提供给与受影响的处理工具有关的测量/检测系统(例如测量/检测系统110或210)中的PKL。这样,处理控制数据挖掘引擎130就使得生产线后端的成品率与特定的处理工具参数相关,这些特定处理工具参数例如但不限于是压力、温度、RF幅度、气流等等。在完成这种数据挖掘时,处理控制数据挖掘引擎130可利用:(a)来自处理工具的数据,上述处理工具是被生产线后端成品率提高数据挖掘引擎150识别出与低成品率相关联的;(b)在一定条件下,来自尚未被识别出与低成品率相关联的处理工具的数据(例如为了比较目的);以及(c)来自处理工具的历史数据。来自处理控制数据挖掘引擎130的输出(即成品率影响信号160)将至少对于被识别的处理工具,标识出与低成品率有关的处理工具参数。这些成品率影响信号160,即故障的前兆,被作为输入而施加到处理优化引擎170。可替代的是,它们也可以由处理优化引擎170从处理控制数据挖掘引擎130存取。
处理控制数据挖掘引擎130可根据本领域技术普通人员所公知的大量方法中的任何一种,来执行数据挖掘。例如,关于执行数据挖掘的下列条件是众所周知的,并且会是要考虑到的。数据挖掘要求有数据的有效性、合理有效的访问方法、对数据问题的合理的鲁棒性、合理有效的算法、合理高性能的应用程序服务器、和传送结果时的灵活性。当对于某一用途选择一种产品或方法时,必须考虑各种数据挖掘方法对数据问题的敏感度。特别是,所涉及的数据问题是那些由于超出正常观测范围的间隙(gap)和测量值所引起的数据问题——即所谓的离群值。尽管数据挖掘方法对于遗漏数据具有鲁棒性,但是当间隙能够避免时,结果将得到改善;但是离群值出现在大多数真实世界的数据集合中。使用非参数法(即那些不依赖于基础分配的正规性的方法)的数据挖掘算法对于离群值较少敏感。在分析之前“清洗(Cleaning)”数据也可避免由离群值引起的错误信号。对于交互式的使用来说,将输出传送到图表,连同与该图表交互作用的能力,足以使基本图形关系可视化。
如图1所示,处理优化引擎170是一种基于知识的系统,其例如而并不限于是一个专家系统,将成品率影响参数160作为一组规则使用,借助这些规则,根据本领域技术人员所公知的引导优化处理的多种方法中的任何一种,来创建一个分级知识系统。例如,如果成品率影响信号160包括蚀刻处理工具100的压力,则压力优化引擎170就将反馈信息输出到智能Sys工具120,以监控偏移的处理压力。监控处理将识别出偏移,并且用户可采取校正行动,这将增加成品率。例如,这种校正可采取以下形式:(a)使用修正处理方法形式的自动修复;(b)在危及制造处理之前降级关闭;和/或(c)预防性维修(PM)。有利的是,根据本发明的一个或多个实施例,数据挖掘可导致类似专家系统的诊断规则,用以建议后续的步骤,并使错误得以被更有效地隔离。例如,PM预先考虑到消耗和磨损的效应,从而在各个部件失灵并危及处理之前更换它们。PM的频率和特殊的PM通常取决于各种处理,以及所要完成的方法上的改变。例如,在方法的改变和改变之后立即执行的处理之间可能有相互作用。对于半导体设备提供者来说,这类影响是难以预计和测试的。然而,它们可能对使用处理工具的半导体器件制造者的成功产生重要影响。
另外,正是因为认识到存在许多导致工厂内的可变性的因素,而且这些因素随时间而变化,所以应该认识到,这种可变性引起处理步骤过程中的不断变化。因此,校正单一一个范围外的事故不会对一条完整的生产线永久性地提供长期的优化解决方案。换言之,处理是动态的,并且它们要求持续的监控和校正行动。另外,当一条生产线中引入新设备时,整个生产线都需要在生产的引入和提升过程中使其成品率得到优化。在本发明的一个或多个实施例的使用中,处理的漂移不仅被检测到,而且它们可以通过在处理流程中反向地馈送回处理校正而得到校正。因此,本发明的一个或多个实施例使安装过程中处理工具的生产率能够提高,一旦放在适当的位置也可使其得到改进。
虽然图1显示的是这样一个实施例:其中智能Sys工具120和220各自直接向处理工具数据挖掘引擎130发送信息,但是也存在其他实施例:其中有其他系统(例如但并不限于为服务器),它们充当协调器和/或中心点,用于上述智能Sys工具与其他系统和/或应用程序之间的交互作用。在这样一个实施例中,信息可以通过上述服务器而被传送到处理工具数据挖掘引擎130。
同理,尽管图1显示的是这样一个实施例:其中测量/检测系统110和210各自直接向处理工具数据挖掘引擎130发送信息,但也存在其他实施例:其中有其他系统(例如但并不限于为服务器),它们充当协调器和/或中心点,用于上述测量/检测系统与其他系统和/或应用程序之间的交互作用。在这样一个实施例中,信息可以通过上述服务器而被传送到处理工具数据挖掘引擎130。另外,尽管图1显示的是晶片从蚀刻处理工具100被传送到测量/检测系统110,以及晶片从CVD处理工具200被传送到测量/检测系统210,但也存在其他实施例:其中来自各种处理工具的晶片输出都被送到同样的测量/检测系统。另外,如上文所述,测量/检测系统可包括多个不同的系统。在此情况下,尽管图1显示的是单独一个处于测量/检测系统与处理工具数据挖掘引擎130之间的通信路径,但也存在其他实施例:其中在个别系统之间有多个通信路径,上述个别系统包括测量/检测系统和处理工具数据挖掘引擎130(或者在例如但不限于服务器的其他系统之间可能有多个通信路径,这些服务器充当协调器和/或中心点,用于各种不同类别系统之间的交互作用,其中上述各种不同类别系统包括测量/检测系统与其他系统和/或应用程序)。
尽管图1显示的是一条通信路径,生产线后端成品率增强数据挖掘引擎150借助它向处理工具数据挖掘引擎130传送信息,但也存在其他实施例:其中信息存储于网络内的一个节点中,该节点例如但不限于是生产线后端成品率增强数据库140或者是服务器,并且其中处理工具数据挖掘引擎130根据本领域普通技术人员所公知的多种方法中的一种从上述节点访问信息。类似地,尽管图1显示的是系统与工具之间的各种通信路径,但也存在其他实施例:其中根据本领域普通技术人员所公知的多种方法中的一种,上述这些通信路径的一些或全部处于网络节点和/或服务器之间。
尽管图1显示的是这样一个实施例:其中处理工具数据挖掘引擎130和生产线后端成品率提高数据挖掘引擎150是运行在独立硬件上的独立的应用程序,但也存在其他实施例:其中它们两者都运行在相同的硬件上,而且还存在其他实施例:其中它们是相同的应用程序(例如但不限于是数据挖掘引擎应用程序),能够操作具有不同算法的处理(例如其在不同时间可以处理不同的数据集)。
本领域技术人员将认识到,以上所提供的描述仅用于说明目的,而且仅仅是描述。同样,以上描述并非要成为穷尽性的,或要将本发明限制到所公开的精确形式。例如,虽然上文已经描述了信息在系统和/或应用程序和/或工具之间传递或传送,但在这里意味着包含这样的实施例:其中存在直接的传递或传送,以及这样的实施例:其中存在非直接传递或传送,在此情况下利用了诸如网络节点、服务器等媒介。
Claims (31)
1.一种用于优化工厂处理流程的成品率的处理工具优化系统,在所述工厂处理流程中,多个基片被一个或更多个处理工具处理,所述系统包括:
处理工具数据挖掘引擎,其被连接以从一个或更多个处理工具中的至少一个接收处理信息,其中所述处理工具数据挖掘引擎输出成品率影响信号,所述信号识别与低成品率相关联的处理工具参数;和
处理优化引擎,其被连接以从所述处理工具数据挖掘引擎接收所述成品率影响信号,并且被连接以向一个或更多个处理工具输出反馈信息;
其中,在所述处理工具执行处理步骤期间,所述处理工具数据挖掘引擎和所述处理优化引擎通过在处理流程中反向地馈送回处理校正来执行持续的监控和校正行动。
2.如权利要求1所述的系统,进一步包括:
生产线后端数据挖掘引擎,其被连接以向所述处理工具数据挖掘引擎提供输出数据,该输出数据识别与低成品率相关的一个处理工具;
其中所述处理工具数据挖掘引擎响应所述生产线后端数据挖掘引擎提供的所述输出数据,输出所述成品率影响信号。
3.一种用于制造系统的处理工具优化系统,在该制造系统中,多个基片被一个或更多个处理工具处理,所述系统包括:
处理工具数据挖掘引擎,其被连接以从所述处理工具接收处理信息,其中所述处理工具数据挖掘引擎输出成品率影响信号,所述信号识别与低成品率相关联的处理工具参数;和处理优化引擎,其中:
(i)所述处理优化引擎被连接以从所述处理工具数据挖掘引擎接收所述成品率影响信号;
(ii)所述处理优化引擎被连接以向所述处理工具输出反馈信息;
(iii)响应接收识别与低成品率相关联的处理工具之一的参数的成品率影响信号,所述处理优化引擎向所述一个处理工具输出反馈;和
(iv)所述反馈指示所述一个处理工具监控所述参数。
4.如权利要求3所述的系统,进一步包括生产线后端数据挖掘引擎,其被连接以向所述处理工具数据挖掘引擎提供输出数据,该输出数据识别与低成品率相关的一个处理工具;
其中所述处理工具数据挖掘引擎响应所述生产线后端数据挖掘引擎提供的所述输出数据,输出所述成品率影响信号。
5.一种用于制造系统的处理工具优化系统,在该制造系统中,多个基片被一个或更多个处理工具处理,所述系统包括:
一个或更多个处理工具,其中每个处理工具包括一个数据收集工具,其在基片被所述处理工具处理时实时收集和存储处理数据;和
处理工具数据挖掘引擎,其被连接以从所述数据收集工具存取所述处理数据;
其中,响应所述制造系统中的故障,所述处理工具数据挖掘引擎从存储在所述数据收集工具之一中的所述处理数据存取和所述故障相关的处理数据。
6.如权利要求5所述的系统,其中:
所述一个或更多个处理工具包括不同的第一和第二处理工具,其分别包括不同的第一和第二数据收集工具。
7.如权利要求5所述的系统,进一步包括:
生产线后端数据挖掘引擎,其被连接以向所述处理工具数据挖掘引擎提供输出数据,该输出数据识别与低成品率相关的一个处理工具;其中所述处理工具数据挖掘引擎响应来自所述生产线后端数据挖掘引擎的输出数据,确定从所述数据收集工具之一存取哪个处理数据。
8.如权利要求5所述的系统,进一步包括:
生产线后端数据挖掘引擎,其被连接以向所述处理工具数据挖掘引擎提供输出数据,该输出数据识别与低成品率相关的一个处理工具和特定时间段;
其中所述处理工具数据挖掘引擎响应来自所述生产线后端数据挖掘引擎的所述输出数据,从所述数据收集工具存取所述识别的处理工具和所述特定时间段的处理数据。
9.一种用于制造系统的处理工具优化系统,在该制造系统中,多个基片被一个或更多个处理工具处理,所述系统包括:
处理工具数据挖掘引擎,其被连接以从一个或更多个处理工具接收处理信息,其中所述处理工具数据挖掘引擎输出成品率影响信号,所述信号是与低成品率关联的处理工具故障的前兆;和
处理优化引擎,其被连接以从所述处理工具数据挖掘引擎接收所述成品率影响信号;
其中,响应于接收作为处理工具故障的前兆的所述成品率影响信号,所述处理优化引擎识别应该在其发生故障之前被替换的处理工具部件。
10.如权利要求9所述的系统,进一步包括:
生产线后端数据挖掘引擎,其被连接以向所述处理工具数据挖掘引擎提供输出数据,该输出数据识别与低成品率相关联的一个处理工具;其中响应于所述生产线后端数据挖掘引擎提供的所述输出数据,所述处理工具数据挖掘引擎输出所述成品率影响信号。
11.一种用于处理基片的处理工具的处理工具优化系统,包括:
处理工具数据挖掘引擎,其被连接到所述处理工具,从而从一个或更多个处理工具接收处理工具数据;和
生产线后端数据挖掘引擎,其分析生产线后端数据,以识别与低成品率相关联的一个或更多个处理工具;
其中在处理所述基片的过程中,所述处理工具数据挖掘引擎持续地分析来自所述一个或更多个处理工具的处理工具数据,从而响应于来自所述生产线后端数据挖掘引擎的输出而识别与低成品率相关联的一个或更多个处理工具参数。
12.如权利要求11所述的系统,其中所述一个或更多个处理工具参数包括一个或更多个设备功能参数。
13.如权利要求11所述的系统,其中所述一个或更多个处理工具参数包括一个或更多个处理参数。
14.如权利要求11所述的系统,其中所述一个或更多个处理工具参数包括温度、真空压力、射频幅度和气流中的至少一个。
15.如权利要求11所述的系统,其中所述生产线后端数据挖掘引擎和所述处理工具数据挖掘引擎是运行在独立硬件上的独立应用程序。
16.如权利要求11所述的系统,其中所述生产线后端数据挖掘引擎和所述处理工具数据挖掘引擎是运行在同一硬件上的各自的应用程序。
17.如权利要求11所述的系统,其中所述生产线后端数据挖掘引擎和所述处理工具数据挖掘引擎是同一数据挖掘引擎。
18.一种用于优化工厂处理流程的成品率的方法,在该工厂处理流程中,多个基片被一个或更多个处理工具处理,该方法包括下列步骤:
从一个或更多个处理工具接收处理信息;
响应于接收所述处理信息,输出识别与低成品率相关联的处理工具参数的成品率影响信号;和
响应于所述成品率影响信号,向一个或更多个所述处理工具输出反馈信息;
其中输出反馈信息的步骤包括通过在所述处理工具执行处理步骤的期间在处理流程中反向地馈送回处理校正来执行持续的监控和校正行动。
19.如权利要求18所述的方法,进一步包括步骤:
输出识别与低成品率相关的一个处理工具的数据;
其中输出所述成品率影响信号的步骤包括响应于识别与低成品率相关的一个处理工具的所述数据,输出所述成品率影响信号。
20.一种优化制造系统的方法,在该制造系统中,多个基片被一个或更多个处理工具处理,所述方法包括以下步骤:
从一个或更多个处理工具接收处理信息;
响应于接收所述处理信息,输出识别与低成品率相关联的处理工具参数的成品率影响信号;和
响应于识别与低成品率相关联的一个处理工具的参数的所述成品率影响信号之一,向所述一个处理工具输出反馈,其中所述反馈指示所述一个处理工具监控所述参数。
21.如权利要求20所述的方法,进一步包括步骤:
输出识别与低成品率相关的一个处理工具的数据;
其中输出所述成品率影响信号的步骤包括响应于识别与低成品率相关的一个处理工具的所述数据,输出所述成品率影响信号。
22.一种优化制造系统的方法,在该制造系统中,多个基片被一个或更多个处理工具处理,所述方法包括以下步骤:
提供一个或更多个处理工具,其中每个处理工具包括一个数据收集工具;
在基片被所述处理工具处理时,每个数据收集工具实时收集和存储处理数据;和
响应所述制造系统中的故障,从存储在所述数据收集工具之一中的所述处理数据存取和所述故障相关的处理数据。
23.如权利要求22所述的方法,其中:
所述一个或更多个处理工具包括不同的第一和第二处理工具,它们分别包括不同的第一和第二数据收集工具。
24.如权利要求22所述的方法,进一步包括步骤:
输出识别与低成品率相关的一个处理工具的数据;
其中存取和所述故障相关的处理数据的步骤包括以下步骤:响应于识别与低成品率相关的一个处理工具的所述数据,确定从所述数据收集工具之一存取哪个处理数据。
25.如权利要求22所述的方法,进一步包括步骤:
输出识别与低成品率相关的处理工具和特定时间段的数据;和
其中存取和所述故障相关的处理数据的步骤包括以下步骤:从所述识别的处理工具的所述数据收集工具存取所述特定时间段的处理数据。
26.一种优化制造系统的方法,在该制造系统中,多个基片被一个或更多个处理工具处理,所述方法包括以下步骤:
从一个或更多个处理工具接收处理信息;
响应于接收所述处理信息,输出成品率影响信号,所述信号是与低成品率相关联的处理工具故障的前兆;和
响应于作为处理工具故障的前兆的所述成品率影响信号,识别应该在其发生故障之前被替换的处理工具部件。
27.如权利要求26所述的方法,进一步包括步骤:
输出识别与低成品率相关的一个处理工具的输出数据;
其中输出成品率影响信号的步骤包括响应于识别与低成品率相关的一个处理工具的所述输出数据,输出所述成品率影响信号。
28.一种优化制造系统的方法,在该制造系统中,多个基片被多个处理工具处理,所述方法包括以下步骤:
从所述多个处理工具接收处理工具数据;
响应于从所述多个处理工具接收处理工具数据,分析生产线后端数据,以识别与低成品率相关联的一个或更多个处理工具;和
在处理所述基片的过程中,持续地分析被识别为与低成品率相关联的来自所述一个或更多个处理工具的处理工具数据,从而识别与所述低成品率相关联的一个或更多个处理工具参数。
29.如权利要求28所述的方法,其中所述一个或更多个处理工具参数包括一个或更多个设备功能参数。
30.如权利要求28所述的方法,其中所述一个或更多个处理工具参数包括一个或更多个处理参数。
31.如权利要求28所述的方法,其中所述一个或更多个处理工具参数包括温度、真空压力、射频幅度和气流中的至少一个。
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US10/105,607 US7401066B2 (en) | 2002-03-21 | 2002-03-21 | Correlation of end-of-line data mining with process tool data mining |
US10/105,607 | 2002-03-21 |
Publications (2)
Publication Number | Publication Date |
---|---|
CN1639854A CN1639854A (zh) | 2005-07-13 |
CN1324515C true CN1324515C (zh) | 2007-07-04 |
Family
ID=28040832
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CNB03804918XA Expired - Fee Related CN1324515C (zh) | 2002-03-21 | 2003-03-20 | 处理工具优化系统和方法 |
Country Status (7)
Country | Link |
---|---|
US (1) | US7401066B2 (zh) |
EP (1) | EP1485950A2 (zh) |
JP (1) | JP4615222B2 (zh) |
KR (1) | KR100956959B1 (zh) |
CN (1) | CN1324515C (zh) |
TW (1) | TWI287244B (zh) |
WO (1) | WO2003081663A2 (zh) |
Families Citing this family (31)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US7461120B1 (en) | 2002-07-09 | 2008-12-02 | Vignette Corporation | Method and system for identifying a visitor at a website server by requesting additional characteristic of a visitor computer from a visitor server |
US7603430B1 (en) * | 2002-07-09 | 2009-10-13 | Vignette Corporation | System and method of associating events with requests |
US7627688B1 (en) * | 2002-07-09 | 2009-12-01 | Vignette Corporation | Method and system for detecting gaps in a data stream |
US6947803B1 (en) * | 2002-09-27 | 2005-09-20 | Advanced Micro Devices, Inc. | Dispatch and/or disposition of material based upon an expected parameter result |
US7251540B2 (en) * | 2003-08-20 | 2007-07-31 | Caterpillar Inc | Method of analyzing a product |
JP4399400B2 (ja) * | 2005-07-11 | 2010-01-13 | 株式会社日立ハイテクノロジーズ | 検査データ解析システムと検査データ解析プログラム |
US7315765B1 (en) * | 2005-07-29 | 2008-01-01 | Advanced Micro Devices, Inc. | Automated control thread determination based upon post-process consideration |
US7650199B1 (en) * | 2005-08-03 | 2010-01-19 | Daniel Kadosh | End of line performance prediction |
US7657339B1 (en) | 2005-10-14 | 2010-02-02 | GlobalFoundries, Inc. | Product-related feedback for process control |
US7337033B1 (en) * | 2006-07-28 | 2008-02-26 | International Business Machines Corporation | Data mining to detect performance quality of tools used repetitively in manufacturing |
US7751920B2 (en) * | 2006-12-08 | 2010-07-06 | International Business Machines Corporation | Method and system of data weighted object orientation for data mining |
US7974723B2 (en) * | 2008-03-06 | 2011-07-05 | Applied Materials, Inc. | Yield prediction feedback for controlling an equipment engineering system |
US8112170B2 (en) * | 2008-05-02 | 2012-02-07 | General Electric Company | Method and system for machining process control |
TW200951752A (en) * | 2008-06-06 | 2009-12-16 | Inotera Memories Inc | A method for prognostic maintenance in semiconductor manufacturing |
TWI389050B (zh) * | 2009-03-11 | 2013-03-11 | Inotera Memories Inc | 尋找產品良率與預防維護兩者間之關聯性的方法 |
US8234001B2 (en) * | 2009-09-28 | 2012-07-31 | International Business Machines Corporation | Tool commonality and stratification analysis to enhance a production process |
US8594821B2 (en) * | 2011-02-18 | 2013-11-26 | International Business Machines Corporation | Detecting combined tool incompatibilities and defects in semiconductor manufacturing |
US9746849B2 (en) | 2012-11-09 | 2017-08-29 | Tokyo Electron Limited | Method and apparatus for autonomous tool parameter impact identification system for semiconductor manufacturing |
CN104808597B (zh) * | 2014-01-24 | 2018-07-03 | 中芯国际集成电路制造(上海)有限公司 | 生产派工的方法和装置 |
US10712289B2 (en) | 2014-07-29 | 2020-07-14 | Kla-Tencor Corp. | Inspection for multiple process steps in a single inspection process |
CN104765691B (zh) * | 2015-04-23 | 2017-05-24 | 武汉精测电子技术股份有限公司 | 液晶模组的修正代码判断方法 |
EP3288752A4 (en) * | 2015-04-29 | 2018-10-24 | Packsize LLC | Profiling of packaging systems |
US10935962B2 (en) * | 2015-11-30 | 2021-03-02 | National Cheng Kung University | System and method for identifying root causes of yield loss |
CN108074836B (zh) * | 2016-11-16 | 2020-06-09 | 中芯国际集成电路制造(上海)有限公司 | 用于解决浅沟槽隔离刻蚀中的球型缺陷的方法和系统 |
TWI625682B (zh) | 2017-12-01 | 2018-06-01 | 財團法人工業技術研究院 | 參數最佳化方法、裝置以及非暫態電腦可讀取媒體 |
US11592812B2 (en) | 2019-02-19 | 2023-02-28 | Applied Materials, Inc. | Sensor metrology data integration |
US10924334B1 (en) * | 2019-09-12 | 2021-02-16 | Salesforce.Com, Inc. | Monitoring distributed systems with auto-remediation |
US20210103221A1 (en) | 2019-10-08 | 2021-04-08 | International Business Machines Corporation | Tool control using multistage lstm for predicting on-wafer measurements |
US11100221B2 (en) | 2019-10-08 | 2021-08-24 | Nanotronics Imaging, Inc. | Dynamic monitoring and securing of factory processes, equipment and automated systems |
US11086988B1 (en) | 2020-02-28 | 2021-08-10 | Nanotronics Imaging, Inc. | Method, systems and apparatus for intelligently emulating factory control systems and simulating response data |
US11853042B2 (en) * | 2021-02-17 | 2023-12-26 | Applied Materials, Inc. | Part, sensor, and metrology data integration |
Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2000269276A (ja) * | 1999-03-16 | 2000-09-29 | Toshiba Corp | 欠陥解析システムおよびその方法 |
US6314379B1 (en) * | 1997-05-26 | 2001-11-06 | Taiwan Semiconductor Manufacturing Company, Ltd. | Integrated defect yield management and query system |
US20010051836A1 (en) * | 1998-05-11 | 2001-12-13 | Patrick H. Lamey | Fab yield enhancement system |
DE10032322A1 (de) * | 2000-06-22 | 2002-01-17 | Promos Technologies Inc | System und Verfahren zur Auffindung der Kombination aus Operation/Werkzeug, welche den integrierten Ausfall in einer Halbleiterfertigungseinrichtung verursacht |
US20020022937A1 (en) * | 2000-07-24 | 2002-02-21 | Haruo Funakoshi | Abnormality-cause identifying apparatus and method |
US20020032888A1 (en) * | 1999-01-11 | 2002-03-14 | Reinhold Ott | System and method for determining yield impact for semiconductor devices |
Family Cites Families (10)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US51836A (en) * | 1866-01-02 | Improvement in revolving fire-arms | ||
US22937A (en) * | 1859-02-15 | Henry cogswell | ||
US32888A (en) * | 1861-07-23 | Faucet | ||
US5222210A (en) * | 1990-12-03 | 1993-06-22 | Motorola, Inc. | Method of displaying the state of an artificial neural network |
US5097141A (en) * | 1990-12-12 | 1992-03-17 | Motorola, Inc. | Simple distance neuron |
US5819245A (en) * | 1995-09-05 | 1998-10-06 | Motorola, Inc. | Method of organizing data into a graphically oriented format |
US5897627A (en) * | 1997-05-20 | 1999-04-27 | Motorola, Inc. | Method of determining statistically meaningful rules |
JP2000259222A (ja) * | 1999-03-04 | 2000-09-22 | Hitachi Ltd | 機器監視・予防保全システム |
US6298470B1 (en) * | 1999-04-15 | 2001-10-02 | Micron Technology, Inc. | Method for efficient manufacturing of integrated circuits |
US20020046001A1 (en) | 2000-10-16 | 2002-04-18 | Applied Materials, Inc. | Method, computer readable medium and apparatus for accessing a defect knowledge library of a defect source identification system |
-
2002
- 2002-03-21 US US10/105,607 patent/US7401066B2/en not_active Expired - Lifetime
-
2003
- 2003-03-20 KR KR1020047014871A patent/KR100956959B1/ko not_active IP Right Cessation
- 2003-03-20 CN CNB03804918XA patent/CN1324515C/zh not_active Expired - Fee Related
- 2003-03-20 EP EP03719444A patent/EP1485950A2/en not_active Withdrawn
- 2003-03-20 JP JP2003579274A patent/JP4615222B2/ja not_active Expired - Fee Related
- 2003-03-20 WO PCT/US2003/008797 patent/WO2003081663A2/en active Application Filing
- 2003-03-21 TW TW092106391A patent/TWI287244B/zh not_active IP Right Cessation
Patent Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US6314379B1 (en) * | 1997-05-26 | 2001-11-06 | Taiwan Semiconductor Manufacturing Company, Ltd. | Integrated defect yield management and query system |
US20010051836A1 (en) * | 1998-05-11 | 2001-12-13 | Patrick H. Lamey | Fab yield enhancement system |
US20020032888A1 (en) * | 1999-01-11 | 2002-03-14 | Reinhold Ott | System and method for determining yield impact for semiconductor devices |
JP2000269276A (ja) * | 1999-03-16 | 2000-09-29 | Toshiba Corp | 欠陥解析システムおよびその方法 |
DE10032322A1 (de) * | 2000-06-22 | 2002-01-17 | Promos Technologies Inc | System und Verfahren zur Auffindung der Kombination aus Operation/Werkzeug, welche den integrierten Ausfall in einer Halbleiterfertigungseinrichtung verursacht |
US20020022937A1 (en) * | 2000-07-24 | 2002-02-21 | Haruo Funakoshi | Abnormality-cause identifying apparatus and method |
Also Published As
Publication number | Publication date |
---|---|
TWI287244B (en) | 2007-09-21 |
US20030182252A1 (en) | 2003-09-25 |
KR100956959B1 (ko) | 2010-05-11 |
TW200307972A (en) | 2003-12-16 |
WO2003081663A2 (en) | 2003-10-02 |
JP4615222B2 (ja) | 2011-01-19 |
CN1639854A (zh) | 2005-07-13 |
WO2003081663A3 (en) | 2004-01-22 |
US7401066B2 (en) | 2008-07-15 |
KR20040094831A (ko) | 2004-11-10 |
EP1485950A2 (en) | 2004-12-15 |
JP2006506800A (ja) | 2006-02-23 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN1324515C (zh) | 处理工具优化系统和方法 | |
RU2607237C2 (ru) | Способ анализа и диагностики крупномасштабных автоматизированных систем управления производственными процессами | |
US8055371B2 (en) | Services portal | |
CN111506478A (zh) | 基于人工智能实现告警管理控制的方法 | |
US20090055692A1 (en) | Method and apparatus to automatically create virtual sensors with templates | |
KR20090133138A (ko) | 제조 데이터를 분석하는 방법 및 장치 | |
CN107831736B (zh) | 使用用于造纸机或其它系统的模型参数数据群集的模型-工厂失配检测 | |
CN110709789A (zh) | 用于监测可再生发电装置或微电网内的子系统的状况的方法和设备 | |
CN117391373B (zh) | 一种基于多维数据的全渠道智慧运维管理方法及系统 | |
CN116560326B (zh) | 一种智慧工厂管理平台 | |
CN116992346A (zh) | 一种基于人工智能大数据分析的企业生产数据处理系统 | |
CN116755411A (zh) | 一种工业设备数据采集方法及装置 | |
CN117648543A (zh) | 一种自演化的变电站设备学习方法 | |
CN109523030B (zh) | 一种基于机器学习的遥测参数异常监测系统 | |
US11080613B1 (en) | Process monitoring based on large-scale combination of time series data | |
CN115862304B (zh) | 用于退化天然次生林生态修复的智能预警系统及方法 | |
CN118068819B (zh) | 用于高质量诊断与决策的大模型数据管理系统 | |
CN117870034B (zh) | 洁净室环境参数的控制方法、装置及系统 | |
Bai | Network Equipment Fault Maintenance Decision System Based on Bayesian Decision Algorithm | |
CN117392189A (zh) | 一种腰果无菌苗培养设备的智能管理方法及系统 | |
CN117469102A (zh) | 一种风电设备运行状态智能监测方法及系统 | |
CN117037327A (zh) | 点巡检标准制定方法及系统 | |
CN117930756A (zh) | 一种施工厂房清洁度智能管控方法及系统 | |
Julian et al. | Requirements for an Intelligent Maintenance System for Industry 4.0 | |
Suzuki et al. | An Online Anomaly Detection System Supporting Batch-Process Operator Decision-Making |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
C06 | Publication | ||
PB01 | Publication | ||
C10 | Entry into substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
C14 | Grant of patent or utility model | ||
GR01 | Patent grant | ||
CF01 | Termination of patent right due to non-payment of annual fee |
Granted publication date: 20070704 Termination date: 20170320 |
|
CF01 | Termination of patent right due to non-payment of annual fee |